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Abstract: Addressing the challenges of designing unmanned ship autopilot control systems 

in a variable marine environment, this study proposes an anti-disturbance control method 

based on disturbance estimation and compensation under an event-triggered mechanism. 

The disturbances faced by unmanned ships are modeled as a first-order Nomoto process, 

capturing the marine disturbances caused by wind, waves, and currents as well as 

unmodeled dynamics. A extended state observer is constructed to estimate environmental 

disturbances and uncertainties within the ship model. In the control design, the estimated 

disturbances are used for compensation to mitigate the impacts of disturbances and 

uncertainties on the navigation control of unmanned ships. An auxiliary dynamic system is 

designed to reduce the effects of autopilot input saturation, and an event-triggered 

mechanism is introduced to decrease the frequency of autopilot actions to avoid excessive 

wear. Stability analysis using Lyapunov functions indicates that all error signals in the 

closed-loop system are bounded. Simulation results demonstrate the effectiveness and 

feasibility of the autopilot event-triggered control system. 

1. Introduction  

Under the influence of emerging technologies such as artificial intelligence and modern 

information technology, the navigation technology of unmanned ships is advancing rapidly towards 

intelligence and automation. The methods of using unmanned ships for water operations are 

becoming increasingly diverse. Unmanned ships can be used for a variety of tasks including water 

environment monitoring, scientific research exploration, surveying and mapping, as well as rescue 

operation [1]. During navigation, unmanned ships are affected by maritime conditions such as wind, 

waves, and currents, which can cause the vessel to deviate from its preset course, resulting in 

trajectory deviations and the inability to complete the anticipated tasks [2]. In response to this need, 

the autopilot control system has been developed to adjust the ship’s heading in real-time during 

surface navigation [3], aiming to achieve intelligent and automated ship control. This enables the 

unmanned ship to navigate as closely as possible to the target course. 

The autopilot is a maneuvering control device for ships, capable of calculating the necessary 

rudder angle based on heading errors to perform trajectory tracking control for unmanned ships. In 

[4], Sperry utilized a gyrocompass to measure the actual heading of the ship and employed a 

Automation and Machine Learning (2024) 
Clausius Scientific Press, Canada

DOI: 10.23977/autml.2024.050206 
ISSN 2516-5003 Vol. 5 Num. 2

46

mailto:hdz@jou.edu.cn


feedback control method to complete the design of the first autopilot control system. Nicholas 

Minorsk [5] applied the Proportional-Integral-Derivative (PID) control algorithm to autopilot 

control systems. Banazadeh et al. [6] employed frequency domain identification techniques to 

recognize the model parameters of patrol boats and designed a PID autopilot controller. However, 

these studies did not consider the nonlinear maneuvering characteristics of ships. Addressing the 

nonlinear maneuvering characteristics of ships, Perera et al. [7] utilized input-output linearization 

techniques. They divided the ship motion system into linear dynamics and internal dynamics, 

designing a ship heading controller based on Lyapunov analysis methods. The literature 

[8]implemented a discontinuous control strategy to achieve finite-time stability in the ship heading 

control system and subsequently designed a global finite-time method for ship heading control that 

could converge rapidly. These studies did not fully consider the uncertain characteristics of the ship 

model, and due to factors such as onboard load, speed, and external environment, there were 

uncertainties during the ship’s navigation. In [9] an observer with global exponential stability was 

constructed to estimate marine environmental disturbances online and designed a multi-ship 

synchronous formation control strategy with disturbance compensation capabilities. In [10], a 

robust nonlinear disturbance observer was designed to estimate and compensate for time-varying 

marine environmental disturbances, subsequently devising a synchronous navigation tracking 

control strategy for underactuated ships. Ning Jun et al. [11] developed an extended state observer 

to estimate the effects of time-varying marine environmental disturbances and designed a finite-

time formation control strategy for unmanned ships. 

Currently, control methods based on disturbance estimation and compensation are gaining 

increasing attention. The fundamental concept involves using an observer to estimate external 

disturbances and provide compensation. By integrating theories of disturbance estimation with 

fixed-time control [12], adaptive neural network control [13], H control [14], and variable 

structure control [15], methods for simultaneous cancellation and suppression of multiple sources of 

disturbances have been developed to achieve finely tuned disturbance resistance in control systems. 

Due to the physical limitations of ship systems, the rudder angle provided is affected by saturation 

constraints. Designing ship navigation control strategies that consider environmental disturbances 

and rudder angle saturation constraints aligns more closely with practical requirements. 

To prevent excessive wear on the servo mechanisms, an event-triggered mechanism is applied to 

the autopilot control system. The core idea relies on pre-set triggering conditions, whereby the 

controller signal is updated only when these conditions are met, thus reducing excessive wear on the 

servo. Zhu et al. [16] designed a ship navigation event-triggered adaptive neural network fault-

tolerant tracking control strategy, incorporating an auxiliary dynamic system to mitigate the effects 

of propulsion saturation constraints. They employed an upper bound disturbance adaptation method 

to suppress the impact of time-varying environmental disturbances on the control system, enhancing 

its disturbance resistance capabilities under varying conditions. However, this method relies on the 

error variables of executed actions and still exhibits disadvantages such as high frequency of 

actuator operations. In practical navigation, to reduce wear on actuators, the frequency of rudder 

movements is kept very low. Therefore, there is an urgent need to design a new type of trigger 

controller that significantly reduces the frequency of actuator actions, making the controller more 

suitable for engineering applications.  

This paper proposes an autopilot control system under event-triggering, addressing the 

environmental disturbances and rudder angle input saturation issues encountered during unmanned 

ship navigation. Considering the marine environmental disturbances caused by wind, waves, and 

currents, a disturbance observer is constructed to estimate disturbances and uncertainties online. An 

auxiliary dynamic system reduces the impact of rudder angle saturation on the control system, and 

an event-triggering mechanism decreases the frequency of actuator operations to avoid excessive 
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wear on the ship’s steering gear. Subsequently, using a Lyapunov function for stability analysis, it is 

shown that all error signals in the closed-loop system are bounded. Simulation results demonstrate 

the effectiveness of this method. 

The structure of this paper is organized as follows: Section 1 establishes the unmanned ship 

model and formulas. Section 2 describes the design of the extended state observer. Section 3 

introduces the design of the controller using an event-triggered and auxiliary dynamic system, 

provides stability analysis, and verifies the feasibility of the proposed control scheme. Section 4 

provides a simulation to illustrate the theoretical results. Section 5 summarizes the paper. 

2. Mathematical Model 

2.1. Symbols 

The following symbols will be used throughout this paper.  represents absolute values, unless 

otherwise specified.  represents the Euclidean norm. m nR  represents the m n  dimensional 

Euclidean space. min  represents the minimum eigenvalue of a square matrix. ( )T represents the 

transpose of a matrix. 

2.2. Model of the Ship 

This ship motion is described by six degrees of freedom, namely surge, sway, yaw, heave, roll, 

and pitch. To simplify the complexity of ship motion control, only the motion in the horizontal 

plane, comprising the three degrees of freedom-surge, yaw, and sway-is typically considered. To 

quantitatively describe the motion of these three degrees of freedom, two coordinate systems are 

commonly used: one is the body-fixed frame, which takes the ship itself as the reference point; the 

other is the earth-fixed frame, which uses the earth as the reference point. As illustrated in Figure 1. 

 

Figure 1: Earth-fixed frame XEOEYE and Body-fixed frame XBOBYB 

The mathematical model of an unmanned ship moving in the horizontal plane is described as 

follows [17]: 
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Where [ , , ]Tx y  is the vector of the ship position ( , )x y  and angle   heading in the earth-

fixed frame. [ , , ]Tv u v r represents the vector of the ship velocities in surge, sway, and yaw in the 

body-fixed fram, 1 2 3[ , , ]Td d d d  represents the vector of environmental disturbances, 

[ , , ]T

u v r     is the control vector of the ship, including forces in surge u , sway v , and yaw 

moment r . M  is the inertia matrix, and D  is the damping matrix. The matrices ( )J   are 

expressed as follows: 
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In the formula, m  represents the mass of the ship, zI denotes the inertial moment of the ship 

about the axes of the body-fixed frame, gx  is the center of gravity of the ship in the body-fixed 

frame, and vX , rY , vN , rN , represents the hydrodynamic parameters.  
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Within the matrix: 13 ( ) ( )v g rc m X v mx Y r     , 23 ( )uc m X u  , 31 ( ) ( )v g rc m X v mx Y r    , 

32 ( )uc m X u   . 
3 3( ) ( )TC v C v R     represents the Coriolis-centripetal force matrix: 
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Where 11 ( )u u u
d X X u   , 22 ( )v r vv v

d Y Y v Y r    , 23 ( )r v r r r
d Y Y v Y r    , 

32 ( )v v v r v
d N N v N v    , 33 ( )r v r r r

d N N v N r    , uX , u u
X , vY , v v

Y , r v
Y , rY , v r

Y , r r
Y , 

vN , v v
N , r v

N , rN , v r
N , r r

N  is the hydrodynamic drag coefficient. 

2.3. Model Decoupling 

The mathematical model represented by equation (1) can be simplified by assuming a constant 

surge velocity 0u u , resulting in a sway-yaw dynamics model, described as: 

0( )vr vr vr vrM v N u v                                                               (5) 
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Where [ , ]T

vrv v r  is the state vector and vr  represents the vector of forces and moments in the 

sway and yaw directions respectively. 
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0( )N u  can be expressed as: 

0( ) vr LN u C D                                                               (7) 
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Where: 

vr b                                                                      (9) 

Where [ , ]Tb Y N    , Y  and N  are the sway moment coefficient and yaw moment coefficient, 

respectively. 

In this model, equation (5), considering only the motion in sway and yaw degrees of freedom, 

can be transformed into a Nomoto model: 

3

1 2

(1 )( )

( ) (1 )(1 )

K T sr s

s T s T s




 
                                                       (10) 

Where iT ( 1,2,3)i   is related to the ship’s following performance index, r  is the heading 

angular velocity,   is the rudder angle, and K  is the ship’s turning performance index. 

 Experimental results indicate that the constants 2T  and 3T  are almost equal [18]. Therefore, 

equation (10) can be written as: 

( )

( ) 1

r s K

s Ts



                                                            (11) 

in the equation, 1 2 3T T T T   . 

Considering saturation issues, and it can be attained that m mU U   , mU  is the maximum rudder 

deflection. The error function between unsaturated and saturated problems is defined as c    , 

where c  is the rudder angle calculated by the controller. 

2.4. Control Objective 

The desired heading angle d  provided by the system, and the desired heading angular velocity 

dr , is obtained from the following second-order filter: 
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Where 1l R is a positive constant. 

The control objective is to force the unmanned ship to track the reference heading signal d  and 

reduce the frequency of servo actions, such that: 

limt d                                                           (13) 

Where   is a sufficiently small positive constant. 

For clarity, the proposed controller structure diagram is provided below. As shown in Figure 2. 

 

 Figure 2: Structure diagram of the autopilot event-triggered control system 

3. Extended State Observer 

Due to the environmental disturbances and model uncertainties that the unmanned ship is 

autopilot control system encounters in practical operations, which are unknown and unmeasurable, 

an extended state observer is introduced to estimate the unknown environmental disturbances and 

model uncertainty information, thereby providing more accurate signals. Based on equation (11), 

the controller is designed as follows: 

1
( )c w

K
r r

T T
                                                          (14) 

Where w  represents unknown but bounded environmental disturbance. 

To facilitate the design of the extended state observer, we rewrite equation (14) in the state space 

form: 

1 2

2 3 0

3

t

x x

x x a b u

x h



  



                                                         (15) 

In the equation, 1x  , 2x r , 3 ( / ) wx K T  , (1/ )a T r  , 0 ( / )b K T , t cu    . 

Assumption 1: There exists a positive constant *h  satisfying *h h . 

Remark 1: Assumption 1 is reasonable because the assumed environmental disturbances are 

bounded. a represents the controlled object, 3x represents the environmental disturbances, h  

51



represents the derivative of the environmental disturbances, and tu is the input signal. 

In expression (15), the matrix form can be expressed as follows: 

x Ax Bu Eh                                                                (16) 

Where 1 2 3[ , , ]Tx x x x  is the extended state vector. 
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The estimated state of the state observer is as follows: 

ˆ ˆx Ax Bu Le                                                                (18) 

Where 1 1̂e x x  , 1 2 3
ˆ ˆ ˆ ˆ[ , , ]Tx x x x  is the estimation of x , 1 2 3[ , , ]TL k k k is observer gain matrix 

with ik , ( 1,2,3)i   is a positive constant. 

Subtracting equation (18) from equation (16) yields the observation error for the state observer, 

as follows: 

x Ax Eh Le                                                           (19) 

In the equation, ˆx x x  . 

Define that Le LCx , [1,0,0]C  . Therefore, equation (19) can be rewritten as: 

( )x A LC x Eh                                                              (20) 

Option for an appropriate matrix L  to stabilize the matrix A LC . Under Assumption 1, 

equations (20) and (18) ensure that the estimates of environmental disturbances and model 

uncertainties converge to their true values within a finite time. 

4. Controller Design 

Before designing the controller, construct an auxiliary dynamic system to address the issue of 

servo input saturation. The auxiliary dynamic system is designed as [19]: 

1 1 1 2L                                                               (21) 

2 2 2 0L b                                                            (22) 

Where 1L , 2L  is a positive constant, 1 , 2  representing the auxiliary state. 

The design process for the controller is as follows: 
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Step 1: Define the first error vector as: 

1 1
ˆ

dz                                                              (23) 

And select a Lyapunov function: 

2

1 1

1

2
V z                                                                (24) 

According to equations (23) and (21), the time derivative of  1V  can be represented as: 

1 1 1 1 1 1 2
ˆ( )dV z z z r r L                                                 (25) 

Where r̂  is the estimate of r . 

Define the second error vector as: 

2 2
ˆz r                                                         (26) 

Where   is a signal produced by a first-order low-pass filter, 2l   
, where 2l  is a positive 

constant and   is a virtual control, defined as: 

1 1 1 1dc z r L    
                                                     (27) 

Where 1 0c 
 is a constant. 

Simplifying and combining equations (25) and (27) yields: 

2

1 1 1 1 2( )V c z z z                                                      (28) 

In the equation,     . 

Step 2: Select the Lyapunov function as follows: 

2

2 1 2

1

2
V V z                                                            (29) 

Based on equations (18), (22), and (26), it follows that: 

2 2 3 0 2 2 2 0

1
ˆ ˆ ( )cz x x b k e L b

T
                                          (30) 

Substituting equation (30) into the time derivative of 2V , and simplifying with equation (28) 

yields: 

2

2 1 1 1 2 2 2 3 0 2 2 2

1
ˆ ˆ( ) ( )cV c z z z z x x b k e L

T
                                (31) 

To ensure 2z  stability, the controller is designed as: 

1 2 3 2 2 2 2

0

1 1
ˆ ˆ( )c z x x c z L

b T
                                             (32) 

Where 2c  is a positive constant. 

Substituting equation (32) into equation (31) results in: 

2 2

2 1 1 2 2 1 2 2V c z c z z k z e                                                   (33) 
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It is known from the literature [20], that  is bounded. u is the upper bound of  . Using 

Young’s inequality, we obtain: 

2 2

1 1 1

1 1

2 2
u uz z z                                                         (34) 

2 2 2

2 2 2

1 1 1 1

2 2 2 2

Tz e z e z x x                                                   (35) 

Step 3: Consider the total Lyapunov function as: 

2 2

2 1 2

1 1 1

2 2 2

TV V x x                                                      (36) 

The time derivative of V according to equations (20), (21), (22), (34), and (35) yields the 

following result: 

2 22 2
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Where 3 min ( )c A LC  , and  *h  is given according to *Eh h . 

Define   as the upper bound of  , and using Young’s inequality, we obtain: 

2 2

2 2 2

2 2

1 2 1 2

1 1
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2 2

     

   

  

 
                                                   (38) 

Hence, equation (37) can be written as: 

2 22 2
1 1 2 2 3

2 20
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1
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( ) ( )
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Tk k
V c z c z c x x
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Where 
* 2 2

1 0(1/ 2) ( / 2)uh b     . 

Step 4: In common continuous control schemes, the design has already been completed in Step 3. 

This paper adopts the concept of event-trigger control and establishes the triggering conditions will 

be established in this step. During the flow period between two consecutive trigger moments, a 

zero-order hold is used to maintain c  constant. The key to a successful event-triggered controller 

design lies in selecting an appropriate triggering condition. The current triggering moment is 

denoted as 
igt , and the next triggering moment is determined by satisfying 

1igt 
 the following 

condition: 

1
inf{ | }

i ig g at t R t t W V

                                                   (40) 

Where
2 2

1 1 2 2 2( (1/ 2)) ( ( / 2))aW c z c k z    , min 1 2 20 {( (1/ 2)),  ( ( / 2))}c c k     are adjustable 

variables. Once the triggering condition is satisfied, thus aW V , and it renders. 
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0 aW V                                                               (41) 

And it implies aW  is bounded: Thus, we obtain: 

2 202
3 1 1 2 2 1

2 202
3 1 1 2 2 1

1 1
( ) ( ) ( )

2 2 2 2
1 1

( ) ( ) ( )
2 2 2 2
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V W c x x L L
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c x x L L
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  

         

        
                    (42) 

From the definition of V , it can be determined that V , x , 1 , 2  are bounded and convergent. It is 

known from the aW V that 1z , 2z  are bounded. The above proof demonstrates that V is 

convergent, and thus 1z , 2z  is also convergent. Therefore, all signals in the closed loop are bounded. 

 Thus, equation (42) can be written as: 

1V cV                                                                  (43) 

Where c  is a positive constant. 

If the triggering condition is met, min 3 2 1 2 0{( ( / 2)),  ( (1/ 2)),  ( (1/ 2) ( / 2))}c c k L L b     , 

otherwise min 1 2 2 3 2 1 2 0{( (1/ 2)),  ( ( / 2)),  ( ( / 2)),  ( (1/ 2)),  ( (1/ 2) ( / 2))}c c c k c k L L b       . 

Ultimately, it can be derived that: 

( )1 1( ) ( (0) ) c tV t V e
c c

 

 

   
 

                                             (44) 

Based on the definition of ,V  it can conclude that 1z , 2z , x , 1 , and 2  are bounded. From 

equation (44), 1z  exponentially converges to a compact set 1 1 1{ | 2( / ( ))}z z c      that can be   

made arbitrarily small by adjusting c  , it can be maintained lim ,t d     thus completing 

the control over the controlled object. 

5. Simulation Results 

This section conducts simulations using Matlab and provides simulation results to verify the 

effectiveness and feasibility of the controller. The parameters for the extended state observer are set 

1 4k  , 2 5k  , 3 10k  , and the range 35  for the rudder angle is established. The sampling period 

for the triggering condition is 0.01s , 
1

0.01
i ig gt t

  , 0.01  . with the reference heading signal set 

to 30d  , 0 250s t s  . when 0d  , 250 500s t s  . 

Figure 3 depicts the output response of the controller, where the blue solid line represents the 

desired output heading angle, the red solid line indicates the actual heading angle signal under the 

event-triggered control system, and the black dashed line shows the estimated heading angle curve. 

As seen in the figure, the event-triggered control system allows the unmanned ship to accurately 

track the reference course, achieving the expected tracking performance. In Figure 4, the blue solid 

line represents the heading angular velocity, and the red dashed line shows the estimated heading 

angular velocity curve. It can be observed that the event-triggered control system achieves good 

estimation results even when the heading angular velocity is unknown, and the estimation of the 

heading angular velocity converges well to the actual heading angular velocity. Figure 5’s blue 

solid line represents environmental disturbances, and the red solid line shows the estimation of 

these disturbances. The results demonstrate that the state observer can accurately estimate 

environmental disturbances. Figure 6 displays the variation over time of the rudder angle   under 
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the event-triggered control system conditions. From the figure, it is evident that the frequency of 

rudder angle updates is significantly lower than that achieved by traditional time-sampling methods. 

The event-triggered control system reduces mechanical wear and fuel consumption by lowering the 

frequency of autopilot usage. 

 

Figure 3: Heading-tracking curve 

 

Figure 4: Heading angle velocity and its estimated curves 
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Figure 5: Environmental disturbances and their estimated curves 

 

Figure 6: Steering angle curve under the event-triggered control condition 

6. Conclusion 

This paper conducts an in-depth study on the autopilot control problem for unmanned ships, 

particularly addressing issues related to environmental disturbances and servo input saturation. A 

control strategy based on extended state observer, auxiliary dynamic systems, and event-triggered is 

proposed. An extended state observer is utilized to estimate unknown environmental disturbances as 

well as model uncertainties. An auxiliary dynamic system is employed to handle saturation issues. 

The final derivation of the event-triggered conditions ensures that the autopilot controller updates 

only when these conditions are met, significantly reducing mechanical wear and fuel consumption. 

Simulation results demonstrate that the designed controller can ensure the unmanned ship’s actual 

heading accurately tracks the reference heading. Stability analysis based on Lyapunov’s theorem 

proves that all signals are bounded, and the tracking error converges to a neighborhood of the origin. 

The feasibility of the proposed control algorithm is validated using Matlab simulations. 
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