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Abstract: A multi-algorithm fusion path planning algorithm for patrol robots was proposed, 

In order to improve the robot's path planning ability, optimize the search efficiency, improve 

the robot's path smoothness and improve the control accuracy. The A* algorithm is 

optimized through the search field and heuristic function to optimize the node search, avoid 

the expansion of redundant nodes and improve the search efficiency of the algorithm while 

ensuring the optimal global path. The improved A* algorithm still has node redundancy, 

excessive path transition and other phenomena. Floyd algorithm is used to introduce 

improved A* key nodes to optimize the improved A* algorithm again, eliminate redundant 

nodes, smooth the global path, and dynamically increase the number of key nodes for 

long-distance key nodes to effectively prevent path deviation. In view of the shortcomings of 

the improved A* algorithm in dynamic obstacle planning, the improved DWA algorithm is 

integrated to achieve local path planning, and the integrated path planning algorithm has 

local dynamic and unknown environment obstacle avoidance ability. Experiments show that 

the proposed fusion algorithm has the ability of global path planning and local path planning, 

which verifies the feasibility and effectiveness of the fusion algorithm. 

1. Introduction  

Patrol robots play an increasingly important role in modern society, they are widely used in 

security, monitoring, rescue and other fields. As one of the core functions of patrol robot, path 

planning directly affects its performance and efficiency. Path planning of patrol robots is a very 

complicated and practical problem, which involves from finding the optimal path in static map to 

adjusting the path in dynamic environment to cope with various complex external environment. The 

traditional path planning algorithm usually only considers the optimal path in static environment, 

but ignores the influence of dynamic environment on path planning, which is difficult to adapt to 

the real-time changes of the environment, and easily leads to the inconsistency between the planned 

path and the actual situation, which affects the efficiency and performance of patrol robots. 

With the deepening of the research on robot path planning, path planning is divided into global 

path planning and local path planning. Global path planning belongs to static planning and local 

path planning belongs to dynamic planning. Among them, the common algorithms for global path 

planning include Dijkstra algorithm[1], A* algorithm[2], D* algorithm[3] and other algorithms 
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based on graph search, RRT algorithm based on sampling[4], and intelligent algorithms such as ant 

colony algorithm[5], genetic algorithm[6], neural network algorithm[7] and so on. Local path 

planning algorithms commonly used artificial potential field method[8], dynamic window algorithm 

(DWA)[9], time elastic band algorithm (TEB)[10] and other algorithms. Global path planning is the 

optimal path planning for static maps, which cannot meet the path planning in complex dynamic 

environments. However, the method based on local planning may lead to local optimal path rather 

than global optimal path, thus limiting the navigation ability of robots [11]. In view of this situation, 

a single algorithm has been unable to meet people's needs for complex environment applications, 

and the fusion algorithm of global path planning and local path planning has become the hot core of 

robot path planning research. Among them, the fusion algorithm of A* and artificial potential field 

can realize the robot's global path and local path planning, but fails to take into account the 

influence of dynamic obstacles on the algorithm [12].The fusion algorithm of A* and DWA can 

realize dynamic local programming, but A* algorithm still has redundant nodes that need to be 

further optimized [13]. The fusion of A* and intelligent algorithm has high complexity, long 

planning time and low efficiency [14]. 

Therefore, this paper proposes A multi-algorithm fusion path planning algorithm for patrol 

robots, which optimizes A* algorithm through search domain and heuristic function, and optimizes 

node search to avoid the expansion of redundant nodes and improve the search efficiency of the 

algorithm under the condition of ensuring the optimal global path. The improved A* algorithm still 

has node redundancy, excessive path transition and other phenomena. Floyd algorithm is used to 

introduce improved A* key nodes to optimize the improved A* algorithm again, eliminate 

redundant nodes, smooth the global path, and dynamically increase the number of key nodes for 

long-distance key nodes to effectively prevent path deviation. In view of the shortcomings of the 

improved A* algorithm in dynamic obstacle planning, the improved DWA algorithm is integrated 

to achieve local path planning. The integrated path planning algorithm has the ability to avoid 

obstacles in local dynamic and unknown environments, and completes local path planning while 

ensuring the global optimization. 

2. Classical A* algorithm research 

2.1 Classical A* algorithm 

A* algorithm can be traced back to the 1968 paper "A Formal Basis for the Heuristic 

Determination of Minimum Cost Paths" was first proposed, A heuristic search algorithm, Used to 

find the shortest path from the starting point to the target point in a graph or graph class problem 

[15]. A* algorithm combines breadth-first search (BFS) with Dijkstra's algorithm and introduces a 

heuristic search algorithm to measure the distance relationship between the real-time search location 

and the target location, so that the search direction is preferentially oriented to the direction of the 

target point, and finally achieves the effect of improving search efficiency [16]. 

The classic A* algorithm is divided into the following steps: 

Setp 1: System initialization: create two lists open list and close list. The open list stores the 

nodes to be checked, and the close list stores the nodes that have been searched. Select the start 

node, set the cost of the start node to zero, and put it in the open list. At the same time, the 

generation value to the target node is estimated and recorded by a heuristic function according to 

each node position. 

Setp 2: Node selection: Initially, the start node is the only candidate waiting node. 

Setp 3: Node extension: For the selected node, traverse its domain nodes. Calculate the actual 

cost of getting from the current node to the domain node and add the estimated cost of getting from 

the domain node to the target node. If this total cost is less than the current total cost of the domain 
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node, update the total cost of the domain node and set the current node as the parent of the domain 

node. 

Setp 4: Node tag: Places the selected node tag in the closed list and removes it from the open list. 

Setp 5: Search loop: Repeat steps 2 to 4 until the target node is found or the open list is empty. 

The loop ends. If the target point appears in the open list, the path is found; if the open list is empty, 

the path is not found. 

Setp 6: Path backtracking: Once the destination node is found, the shortest path can be built from 

the destination node back to the start node. 

The advantage of depth-first search is that it is fast, but it can rarely find the optimal solution. 

Breadth-first search can indeed find the optimal solution, but because breadth-first search is layer 

by layer, covering every node, the search time is long and the space efficiency is not high. A* 

algorithm can extract the advantages of both and solve these two disadvantages: not only to find the 

best solution with great probability, but also to reduce the redundant time, the most critical part of 

the advantage of A* algorithm is the determination of its heuristic function. 

2.2 Search domain simulation comparison 

The classical A* search domain, 8-neighborhood search method is adopted. As shown in Figure 

1, node S is the starting point of the robot, and the robot can move in 8 directions from node 1 to 

node 8 at S. Now the search direction is optimized according to the relationship between the 

connection between the robot's current position and the target point and the Angle formed by the 

direction of node 2, so as to reduce unnecessary search nodes and improve search efficiency. The 

node search method has been optimized from the original 8-neighborhood search to the variable 

neighborhood search method [17]. In the variable neighborhood search method, the smallest 

neighborhood search is first adopted, and when the solution cannot be improved, the solution is 

switched to a slightly larger neighborhood. If the solution can continue to be improved, the solution 

is returned to the smallest neighborhood; otherwise, the search is continued to be switched to a 

larger neighborhood, and the search diversity is increased by changing the neighborhood structure, 

thus increasing the optimization probability [18], through the A* Manhattan distance search method, 

the search methods of 4-neighborhood, 8-neighborhood and text change neighborhood are 

simulated. As shown in Figure 2, where black is the obstacle, white is the free area, gray is the 

traversal node, red line is the planned path, blue dot represents the starting point, red dot represents 

the end point. Figure 2-a shows 4-neighborhood search path planning, 2-b shows 8-neighborhood 

search path planning, and 2-c shows variable neighborhood search path planning. Compare the 

neighborhood algorithms, as shown in Table 1. 

 

Figure 1: Neighborhood graph 
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(a)                      (b)                      (c) 

Figure 2: Neighborhood simulation diagram 

Table 1: Comparison table of neighborhood search algorithms 

Algorithm Simulation time (s) 
Number of 

traversal nodes 
Planning distance 

4 Neighborhood 2.980 855 72.0 

8 Neighborhood 1.613 373 57.355 

Variable neighborhood 1.342 259 57.355 

According to Figure 2 and Table 1, compared with the four-neighborhood search algorithm, the 

variable neighborhood search strategy adopted in this paper saves 54.97% in simulation time, 69.71% 

in search nodes and 14.64% in planned paths; compared with the 8-neighborhood search algorithm, 

it saves 16.80% in simulation time and 30.56% in search nodes. All planned paths can be planned to 

the optimal path. The variable neighborhood search strategy selected in this paper can find the 

optimal path, and is obviously superior to the 4-neighborhood search strategy and the 

8-neighborhood search strategy in simulation time and search node number. 

2.3 Heuristic function simulation comparison 

The traditional A* algorithm evaluation function is: 

( ) ( ) ( )f n g n h n                                (1) 

In formula (1), g (n) represents the actual generation value from the starting point to the current 

node, and h(n) represents the estimated generation value from the current node to the target point. 

Commonly used predictive cost functions include Manhattan distance, Euclidean distance and 

Chebyshev distance[18], while the standard heuristic function for A* is Manhattan distance, and the 

Manhattan distance function is: 

gc gM ch x x yy   
                            (2) 

In formula (2), cx
and cy

is the horizontal and vertical position coordinates of the current node, 

gx
and gy

is the horizontal and vertical position coordinates of the target node. 

In A complex environment, the path chosen by the A* algorithm is not optimal, and the A* 

algorithm is faced with the shortcomings of long search time, low search efficiency, and many 

redundant nodes. In the face of this situation, the heuristic function of A* algorithm is improved, 

and Euclidean distance and Chebyshev distance are proposed to replace Manhattan distance 
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function [19]. 

The Euclidean distance heuristic function is:  

   
2 2

c g c gE x y yh x   
                         (3) 

The Chebyshev distance heuristic function is: 

c gdx xx 
                               (4) 

c gdy y y 
                               (5) 

 2 2 *min( , )Ch dx dy dx dy   
                       (6) 

Where dx and dy are the difference between the current coordinate and the target point. 

Manhattan distance function, Euclidean distance and Chebyshev distance were simulated and 

compared respectively, as shown in Figure 3-a, 3-b and 3-c. The comparison of the path planning 

algorithms of each algorithm is shown in Table 2. 

 
(a)                     (b)                        (c) 

Figure 3: Algorithm simulation diagram 

Table 2: Algorithm Comparison Table 

Algorithm Simulation time (s) 
Number of 

traversal nodes 
Planning distance 

A*- Manhattan 0.981 142 59.541 

A* - Euclidean 2.578 512 57.355 

A* - Chebyshev 1.632 373 57.355 

As can be seen from Figure 3 and Table 2, the A* -Manhattan distance algorithm has high path 

planning efficiency and few search nodes, but it cannot find the optimal path. A*-Euclidean 

distance algorithm, the planning time and search node is the worst among the three algorithms, but 

it can find the optimal path; The search time and search nodes of A* -Chebyshev distance algorithm 

are medium among the three algorithms, and the optimal path can be found, but the search nodes 

are significantly more than that of A* -Manhattan distance algorithm. Although the three algorithms 

have their own advantages, they are still unable to optimize node elimination and search efficiency 

well, so it is necessary to further optimize the A* algorithm. 
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3. Algorithm improvement 

3.1 Improved A* algorithm 

In order to further improve the search efficiency and the number of search nodes, the heuristic 

function is weighted. The weighting function is, and the expression of the evaluation function is 

[20]: 

( ) ( ) ( )* ( )f n g n h n w n                            (7) 

In formula (7), ( )w n  represents the weight corresponding to the n node. In the process of 

search, when ( )h n  is less than the actual cost, the smaller ( )h n  is, the more nodes A* searches, 

the slower the search efficiency will be. When ( )h n  is equal to the actual cost, the A* algorithm 

only looks for the optimal path and does not search for other nodes. When ( )h n  is greater than the 

actual cost, the A* algorithm can not guarantee to find an optimal path by expanding the search 

node. The larger the weight ( )w n , the A* algorithm will preferentially expand to the end point, and 

the search speed will be accelerated, but the local optimal path may appear. The smaller the weight 
( )w n is, the A* algorithm preferentially searches the optimal path, which is bound to increase the 

search nodes and slow down the search speed. A good search algorithm should not only consider 

the planned path, but also consider the speed of the search. Based on this consideration, dynamic 

weighting method is set up to solve the above problems. 

After studying the distance algorithm of A* algorithm, this paper adopts the fusion of A* 

-Manhattan distance algorithm and A*-Chebyshev distance algorithm, and realizes the 

complementary advantages of the algorithm and optimizes the node and search efficiency through 

dynamic weighting. The improved distance strategy is as follows: 

M Cd d d  
                                (8) 

Where, d is the distance calculation method adopted in this paper, Md
 is the Manhattan 

distance between the current node and the target point, Cd
is the Chebyshev distance between the 

current node and the target point,α and βis the dynamic weight factor. 

 ( ) 1 /w n d S 
                                (9) 

   *g c g cS x x y y  
                            (10) 

In formula (10), 
 ,g gx y

is the horizontal and vertical coordinate of the target point, and
 , ccx y

 

is the current horizontal and vertical coordinate of the robot's location. 

In order to verify the effectiveness of the algorithm, the simulation of the improved A* algorithm 

is shown in Figure 4, and the parameter table is shown in Table 3. 
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Figure 4: Improved A* simulation diagram 

Table 3: Improved A* parameter table 

Algorithm 
Simulation time 

(s) 

Number of traversal 

nodes 
Planning distance 

Improves the 

algorithm 
0.769 163 57.355 

Compared with Dijkstra's algorithm, the improved A* algorithm in this paper reduces the 

simulation time and the number of traversing nodes by 79.56% and 83.63% respectively. The 

A*-Hamilton distance cannot find the optimal path, so it is not considered. Compared with 

A*-Euclidean distance, the simulation time and the number of traversing nodes are reduced by 

70.17% and 68.16% respectively. Compared with A*-Chebyshev distance, the simulation time and 

number of traversing nodes are reduced by 52.88% and 56.30%, respectively. The improved A* 

algorithm can find the optimal path, and the simulation time and the number of traversing nodes 

have obvious advantages compared with other algorithms. 

3.2 Path optimization 

According to the motion of the robot in the real environment, the Angle path is not conducive to 

the movement of the robot, and it needs to be smoothed. Smoothing processing can find a path with 

the highest feasibility according to the actual path, and the smoothed path is more suitable for robot 

movement, and the robot can accurately control the turn and improve the controllability of the robot 

path [21]. This paper optimizes the global planning path based on the Floyd algorithm, the steps are 

as follows: 

Step 1: Initialization, traverses all key nodes in A*. If the current node is collinear with multiple 

adjacent nodes, the previous node of the current node is a redundant node and node judgment is 

performed. 

Step 2: After deleting redundant nodes, plan a path in advance and check whether the safe 

distance between the path and obstacles is greater than the threshold. If the distance is greater than 

the threshold, keep the planned path. If the value is smaller than the value, the planned path is close 

to the obstacle. Therefore, the planned path is discarded and the abandoned node is restored. The 

optimal smooth path is found through node path loop in turn. 

Floyd algorithm optimization has the disadvantages of high time complexity in planning and is 

not suitable for calculating a large amount of data. In this paper, the node strategy is improved, and 

the key node of A* algorithm is preferentially selected as the traversal node of Floyd algorithm, 

which effectively guarantees the time complexity of Floyd algorithm. Considering that in an 

environment with a long planned path, the distance between two nodes is long, which is not 
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conducive to path planning, this paper uses the Floyd algorithm to dynamically increase the number 

of planned key nodes when the planned path is larger than the set value to prevent a large deviation 

between the planned path and the actual path due to a small number of key nodes. The improved 

Floyd algorithm is simulated to verify the feasibility of the algorithm. The improved Floyd 

algorithm was simulated to verify the feasibility of the algorithm, as shown in Figure 5. Figure 5-a 

shows the path planning after the improved A* algorithm, and Figure 5-b shows the path planning 

after the improved Floyd algorithm, and the comparison is shown in Table 4. 

 
(a)                        (b) 

Figure 5: Algorithm simulation diagram 

Table 4: Algorithm comparison table 

Algorithm 

Number of 

turning 

points 

Degree of 

inflection 

Number of 

traversal nodes 

Planning 

distance 

Improve the A * 

algorithm 
13 585.0 229 40.526 

Improving the A * - 

Floyd algorithm 
10 197.272 151 40.670 

In this paper, the path smoothing of Floyd algorithm is improved on the basis of the improved 

A* algorithm. Simulation shows that the turn times of the improved smooth path are reduced by 

23.07%, the turn Angle is reduced by 66.28% and the number of traversing nodes is reduced by 

34.06%, all of which are greatly reduced. However, in the smoothing process, the smoothed path 

only increases by 0.35%. 

4. Improve DWA algorithm 

A* algorithm can only complete global path planning in A static environment. For a complex 

dynamic unknown environment, A* algorithm cannot properly plan the path, so it is necessary to 

adopt appropriate local path planning according to the specific environment [22]. The principle of 

DWA algorithm is to establish a kinematic model of linear velocity and angular velocity, fully 

consider the limitations and constraints of physical attributes such as velocity and acceleration in 

robot motion, and conduct multiple groups of samples in the velocity space to simulate a cluster of 

motion trajectories of multiple groups of velocity within a certain period of time, and then select the 

optimal trajectory and velocity through the evaluation function. Robot local path planning [23] is 

realized. 

1) Robot kinematics model 

The patrol robot adopts differential motion, which stipulates that the robot has only the linear 

velocity in the X direction and the rotational angular velocity in the Z axis. In a short period of time, 
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the robot movement can be regarded as a straight line movement. Assuming a short period of time, 

linear motion at a constant speed is established, and the kinematic model is expressed as [24]: 

1

1

1

t t t

t t t

t t

x x v tcos

y y v tsin

w t





 







  


  
                                 (11) 

In formula 11, tx
, ty

, ta
 and are the current position and direction Angle of the robot; 1tx  , 1ty  ,

1ta  is the position and direction Angle of the robot at the next moment. v  and w are the linear and 

angular velocity at time t. The formula shows that in a certain time window, the pose of the robot is 

determined by the current speed and heading Angle together, because different combinations of 

speed and heading Angle can produce different robot poses and form different motion trajectories. 

Since the speed and heading Angle are not constrained by any conditions, this combination can 

reach countless kinds, which is obviously not the goal of the design, and speed constraints are 

needed to optimize the robot movement. 

2) Velocity sampling 

Velocity sampling is to control the sampling interval within a certain range, so as to generate 

several limited combinations of velocity and acceleration, and establish the robot constraint 

conditions [25]. 

(1) Velocity and angular velocity constraints 

According to the robot's own conditions and moving environment, the minimum, maximum 

speed and angular speed constraints are established. The expression is as follows: 

min max

min max

v v v

w w w

 


                                (12) 

In formula 12, where, minv
, maxv

is the minimum and maximum velocity, minw
, maxw

is the minimum 

and maximum angular velocity. 

(2) Acceleration and deceleration constraints 

Due to the influence of motor performance, the maximum acceleration and deceleration speed of 

the robot is limited. The acceleration and deceleration constraint conditions of the robot are 

established, and the expression is as follows: 

c min c max

c min c max

v a t v v a t

w a t w w a t

     


                               (13) 

In Formula 13, cv
, cw

, mina
, maxa

respectively represent the current velocity, current angular 

velocity, maximum robot deceleration and maximum acceleration. 

(3) Braking distance constraints 

Based on the safety of robot movement, when the robot moves to obstacle 3, it is necessary to 

stop the robot movement within a certain distance and complete the brake to avoid collision 

between the robot and obstacle. The constraint condition of robot braking distance is established, 

and the expression is as follows: 

 2 , * minv dist v w a
                             (14) 
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In Formula 14, 
 ,dist v w

 is the minimum distance between the robot's trajectory and the 

obstacle when the velocity combination is
 ,v w

. 

3) Traditional evaluation function 

Several feasible velocity combination trajectories are obtained by velocity sampling. This cluster 

of trajectories is scored by evaluation function, the optimal path is selected, and the evaluation 

function equation is established as: 

 
   

 

, ,
,

,

head v w dis v w
G v w

vel v w

 




 
  

                       (15) 

In formula 15,   is the smoothing function,  ,  , is the weighting factor of each function. 

 ,head v w
is the heading Angle evaluation function, which is the Angle between the position of 

the robot and the target point under the current velocity combination. The smaller the Angle value, 

the higher the azimuth Angle evaluation function value, and the better the motion trajectory 

corresponding to the velocity combination. 
 ,dist v w

 is the obstacle distance evaluation function, 

where dist is the minimum distance between the trajectory curve corresponding to velocity 

combination 
 ,v w

 and the obstacle vehicle. The larger the value, the higher the value of the 

evaluation function, indicating that the motion trajectory corresponding to this velocity combination 

is better. 
 ,vel v w

 is the velocity evaluation function, the closer the robot is to the target speed 

during normal driving, the better. 

4) Improved evaluation function 

Evaluation function is the decisive factor in robot path selection. The traditional DWA algorithm 

evaluates the path trajectory based on the local path through the evaluation function of heading 

Angle, obstacle distance and velocity, ignoring the guiding role of the global path to the robot. In 

addition, the traditional DWA algorithm only considers the distance between the robot and static 

obstacles. The dynamic influence of the dynamic obstacles on the robot in the location environment 

is not considered. Based on this, this paper introduces the dynamic obstacle distance evaluation 

function and the global path evaluation function to improve the robot's path selection. The improved 

evaluation function is as follows: 

 

   

   

 

, ,

, , _ ,

,

head v w dis v w

G v w vel v w dis D v w

path v w

 

  



 
 

   
 
                        (16) 

In formula 16, compared with formula 15, weight factors   and   are added, and global path 

evaluation function 
 ,path v w

 is added. The closer the robot's motion trajectory is to the global 

path, the better the planned path will be. The dynamic obstacle distance evaluation function 

 _ ,dis D v w
 enhances the robot's obstacle avoidance ability to unknown dynamic obstacles. 

5) Normalization 

In order to unify the ratio advantage of each evaluation function and make the evaluation 

function without comparability comparable [25], the evaluation function is normalized and the 

normalization equation is shown in formula 17: 
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 
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dis i
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dis i

vel i
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dis D i
normal dis D i
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path i
normal path i

path i
















 



 


 















                         (17) 

5. Algorithm fusion simulation and implementation 

In this paper, the improved A* algorithm is used for global path planning and the improved 

DWA algorithm for local path planning. The improved A* algorithm can accelerate the search 

speed, improve the search efficiency, and accurately find the optimal path. However, as A global 

path planning, A* algorithm ignores the influence of dynamic environment on path planning, and 

cannot meet the requirements of local obstacle and dynamic obstacle path planning. DWA 

algorithm can satisfy the dynamic local path planning, but DWA algorithm is based on local 

planning method may lead to local optimization of the path instead of global optimization, thus 

limiting the navigation ability of the robot. Through the combination of global optimization and 

local real-time, the patrol robot can intelligently plan the path in the complex environment and 

respond to the change of the environment in time. In this paper, A path search algorithm combining 

improved A* algorithm and improved DWA algorithm is used to verify the feasibility and 

superiority of the algorithm through simulation experiments. 

Simulation experiments include simple map simulation and complex map simulation. The 

simulation of no unknown obstacle, single unknown static obstacle and dynamic obstacle, and 

multiple static obstacle and dynamic obstacle are respectively simulated, as shown in Figure 6 and 

Figure 7. Where black is the static obstacle, white is the free area, gray is the unknown static 

obstacle, yellow is the dynamic obstacle, blue triangle is the starting point, blue circle is the target 

point, and blue line is the planned path. 

1) Simple map simulation 

Figure 6-a shows the simulation of no unknown obstacles by the fusion algorithm, Figure 6-b 

show the simulation of a single unknown static obstacle and dynamic obstacle by the fusion 

algorithm, and Figure 6-c show the simulation of multiple static and dynamic obstacles by the 

fusion algorithm. 
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(a)                      (b)                       (c) 

Figure 6: Simple map simulation 

2) Complex map simulation 

Figure 7-a is the simulation of no unknown obstacles by the fusion algorithm, Figure 7-b is the 

simulation of a single unknown static obstacle and dynamic obstacle by the fusion algorithm, and 

Figure 7-c is the simulation of multiple static and dynamic obstacles by the fusion algorithm. 

 
(a)                  (b)                        (c) 

Figure 7: Complex map simulation 

Through the fusion algorithm simulation of different environments, the feasibility of the 

algorithm is verified. The robot can normally avoid static obstacles and dynamic obstacles, and path 

planning can realize path planning, which meets the continuous control requirements of the robot 

movement, meets the precise control requirements of the robot, and meets the requirements of the 

expected movement. 

6. Conclusion 

In this paper, A multi-algorithm fusion path planning algorithm for patrol robots is proposed, 

which optimizes the A* algorithm by searching the neighborhood and heuristic function. Under the 

condition of ensuring the optimal global path, the number of ubiquitous nodes and simulation time 

are reduced to varying degrees, avoiding the expansion of redundant nodes and improving the 

search efficiency of the algorithm. The improved A* algorithm still has node redundancy, excessive 

path transition and other phenomena. Floyd algorithm is used to introduce improved A* key nodes 

to optimize the improved A* algorithm again, eliminate redundant nodes, smooth the global path, 

and dynamically increase the number of key nodes for long-distance key nodes to effectively 

prevent path deviation. In view of the shortcomings of the improved A* algorithm in dynamic 

obstacle planning, the improved DWA algorithm is integrated to achieve local path planning, and 

the integrated path planning algorithm has local dynamic and unknown environment obstacle 

avoidance. Finally, the design algorithm is tested in real environment through the patrol robot 

platform. The experiment shows that the fusion algorithm proposed in this paper has the ability of 
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global path planning and local path planning, and verifies the feasibility of the fusion algorithm. 
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