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Abstract: Regarding the EEG (electroencephalogram) signals of motor imagery, existing 

signal decomposition methods similar to EMD (Empirical Mode Decomposition) are often 

affected by mode aliasing and mode oscillation, and classifiers are prone to overfitting in 

high-dimensional data. This article combined WPD (Wavelet Packet Decomposition) and 

one-to-one CSP (Common Spatial Pattern) to study the classification of motor imagery 

EEG signals, aiming to provide better time-frequency resolution and improve classification 

performance. Using the publicly available dataset BCI (Brain-computer Interface) 

Competition IV 2a as the object: firstly, WPD was used to perform multi-level 

decomposition on four types of motor imagery EEG signals from nine subjects; next, the 

covariance matrix of each category of EEG signals in CSP was calculated to extract feature 

vectors, and the features that best distinguish different categories were selected to reduce 

dimensionality and avoid overfitting; finally, in the 10-fold cross-validation process, the 

number of features was optimized to improve the performance of the Random Forest (RF) 

classifier. The results showed that the method proposed in this article had a mean 

Maximum Mutual Information (MMI) of 0.67 bits and a maximum classification accuracy 

of 87.5% for the BCI Competition IV 2a dataset, which was approximately 2.1% higher 

than the Attention-based Temporal Convolutional Network (ATCNet) model. 

1. Introduction 

With the rapid development of BCI (Brain-computer Interface) technology, motor imagery EEG 

(electroencephalogram) signal classification has become a research hotspot at the intersection of 

neuroscience and artificial intelligence. Sports imagination can reflect an individual’s brain 

electrical activity without actual exercise, and has wide applications in rehabilitation training, neural 

engineering, and other fields [1]. However, EEG signals have nonlinear and non-stationary 

characteristics, and are susceptible to noise and artifact interference, making accurate classification 

of these signals a major challenge [2]. In previous signal processing methods, insufficient 

time-frequency resolution and overfitting of classifiers severely constrain the improvement of 

classification performance of EEG signals in motor imagery [3]. How to efficiently extract 

fine-grained features of EEG signals while improving classification accuracy is a hot research 
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problem that urgently needs to be solved. 

This article enhances the accuracy of motor imagery EEG signal classification and reduces 

overfitting by combining wavelet packet decomposition (WPD) and one-to-one common spatial 

pattern (CSP). After 10-fold cross-validation optimization, this method shows significant 

performance improvement on the BCI Competition IV 2a dataset. The main contributions are: 

A method combining wavelet packet decomposition (WPD) and one-to-one common spatial 

pattern (CSP) is proposed, which effectively improves the time-frequency resolution of motor 

imagery EEG signals and extracts more discriminative features from them. 

By performing 10-fold cross-validation optimization on the number of features and adjusting the 

key parameters of the random forest classifier, the overfitting problem in high-dimensional data is 

solved, and the performance of the classifier is improved. 

On the BCI Competition IV 2a dataset, this method achieves a maximum classification accuracy 

of 87.5%, an improvement of approximately 2.1% compared to other advanced models such as 

ATCNet, and demonstrates better classification stability. 

Chapter 2 summarizes the related work; Chapter 3 conducts WPD and CSP-based feature 

extraction; Chapter 4 conducts model training and experimental verification; Chapter 5 summarizes 

the entire content. 

2. Related Works 

To address the challenges of processing EEG signals in motor imagery, many researchers have 

proposed different methods. EMD (Empirical Mode Decomposition) is widely used for 

decomposing non-stationary signals to capture signal characteristics in different frequency bands 

[4-5]. Based on the multivariate fast adaptive empirical mode decomposition method, Dash 

Shaswati [6] et al. successfully achieved automatic recognition of imaginative commands in EEG 

signals, with average accuracies of 60.72%, 59.73%, and 58.78% based on left and right, top and 

bottom, and front and back, respectively. Asghar Muhammad Adeel [7] et al. innovatively proposed 

an efficient spatial feature extraction and selection method with low computational cost through 

multiple empirical mode decomposition and Complex Continuous Wavelet Transform (CCWT). 

However, this method was often affected by mode aliasing and mode oscillation when processing 

complex EEG signals, resulting in unstable decomposition results. Some studies used 

time-frequency analysis and traditional linear classifiers to process high-dimensional features [8-9], 

but these methods often performed poorly in the face of individual differences and noise, which can 

lead to overfitting problems [10]. Although some methods have achieved certain results under 

specific conditions, how to overcome modal aliasing, reduce classifier overfitting, and improve 

model robustness are still key issues in existing research. 

In recent years, various methods combining time-frequency analysis and spatial filtering have 

been proposed to address EEG decomposition problems. WPD, as an effective time-frequency 

decomposition method, can finely decompose EEG signals at multiple scales and provide higher 

time-frequency resolution [11]. Previous studies have shown that WPD can effectively improve the 

classification performance of motor imagery EEG signals, achieving significant results in reducing 

dimensionality and suppressing noise, and is commonly used in the diagnosis of epilepsy and other 

diseases. Sairamya Nanjappan Jothiraj [12] et al. used both Discrete Wavelet Transform (DWT) and 

WPD to automatically diagnose epileptic seizures and their types by identifying the optimal wavelet 

function and the required decomposition level for analyzing EEG signals from seven commonly 

used wavelet series. Dash Deba Prasad [13] et al. used dynamic mode decomposition power 

features, wavelet packet decomposition coefficients to evaluate power spectral density, variance, 

and Katz fractal dimension features for detection, achieving a classification accuracy of 95.5% for 

166



pre-seizure EEG segments. However, existing research often overlooks the issue of selecting 

high-dimensional features [14], leading to the continued existence of overfitting. CSP is a spatial 

filtering method that can effectively extract differentiated features between different motor imagery 

tasks [15]. This article further optimized the feature extraction and classification process through a 

one-to-one CSP strategy to address the challenges of dimensionality redundancy and insufficient 

classification accuracy in existing methods. 

3. WPD and CSP-based Feature Extraction 

3.1. Data Sources 

This study uses the BCI Competition IV 2a dataset, which includes EEG data from 9 participants. 

The experiment includes four types of motor imagery tasks, with 288 trials per experiment. The 

signal is recorded through 22 electrodes. Figure 1 shows the EEG signal recordings of a single 

subject. 

 

Figure 1: EEG and EEG channels for four types of motor imagery tasks 

(Figure 1 (a): Motor imagery of both feet; Figure 1 (b): Motor imagery of left hand; Figure 1 (c): 

Motor imagery of right hand; Figure 1 (d): Motor imagery of tongue; Figure 1 (e): 22 EEG channel 

locations) 

The subject sits on a chair, facing the computer screen. At the beginning of the experiment, a 

prompt appears, and the subjects follow the prompt to complete the task. After 6 seconds, the screen 

turns black and the experiment ends. The signal is sampled at 250Hz, bandpass filtered at 

0.5-100Hz, and the amplifier sensitivity is 100µV. 

3.2. Application of Wavelet Packet Decomposition 

WPD is used to perform multi-level decomposition on motor imagery EEG signals to improve 

their time-frequency resolution. For each subject’s EEG signal 𝐗(𝑡), Daubechies wavelet (db4) is 

used for wavelet packet decomposition. The wavelet packet coefficients for a given signal are 

obtained through the following recursive filtering and downsampling operations: 

{
𝐖𝑗,𝑘(𝑛) = ∑  ∞

𝑚=−∞ ℎ(𝑚 − 2𝑛)𝐖𝑗−1,𝑘(𝑚)

𝐕𝑗,𝑘(𝑛) = ∑  ∞
𝑚=−∞ 𝑔(𝑚 − 2𝑛)𝐖𝑗−1,𝑘(𝑚)

                      (1) 

Among them, 𝐖𝑗,𝑘(𝑛) and 𝐕𝑗,𝑘(𝑛) are the approximate coefficients and detail coefficients of 

the 𝑗-th layer, respectively, and ℎ(𝑚) and 𝑔(𝑚) are the orthogonal mirror filters. The initial 

condition is 𝐖0,𝑘(𝑛) = 𝐗(𝑛). By repeatedly applying the above operation, the signal is recursively 

decomposed into multiple sub bands. In this study, the signal is decomposed into the third level, that 

is, the original signal 𝐗(𝑡) is decomposed into 8 different frequency bands 𝐗𝑖(𝑡), each band 
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representing the energy distribution of the signal in different frequency ranges: 

𝐗(𝑡) = ∑  8
𝑖=1 𝐗𝑖(𝑡)                               (2) 

After signal decomposition, the coefficients of each frequency band level are processed to 

eliminate noise and irrelevant signal interference. For each decomposed signal 𝐗𝑖(𝑡), the soft 

thresholding is performed based on the energy threshold λ𝑖: 

𝐗𝑖,thresholded(𝑡) = sign(𝐗𝑖(𝑡)) ⋅ 𝑚𝑎𝑥(|𝐗𝑖(𝑡)| − 𝜆𝑖 , 0)                 (3) 

Here, 𝜆𝑖 is adaptively selected based on the energy distribution of frequency band 𝐗𝑖(𝑡), with 

the aim of removing low-energy noise components while preserving the main characteristic signals. 

The processed frequency band signal is reconstructed to form multiple decomposed EEG signal 

subsets 𝐗𝑖,thresholded(𝑡), as shown in Figure 2, which represent the characteristics 𝐗reconstructed(𝑡) =

∑  8
𝑖=1 𝐗𝑖,thresholded(𝑡) of the original signal in different frequency ranges. 

 

Figure 2: WPD of EEG signals for motor imagery of both feet in a single conversation 

Figure 2 shows the decomposition process of WPD on motor imagery EEG signals, dividing the 

signals into approximate (low-pass) and detail (high pass) signals. Compared to EMD, which 

directly decomposes the original signal multiple times, WPD uses multiple high-pass and low-pass 

filters for hierarchical decomposition, with a structure similar to a binary tree and a hierarchical 

relationship. By decomposing EEG signals into more detailed frequency bands, WPD can capture 

subtle changes in signals at different time scales, overcoming the shortcomings of traditional EMD 

like methods in processing non-stationary signals. 

3.3. One-on-one CSP Feature Extraction 

The overall feature extraction process is shown in Figure 3. Firstly, based on WPD, four types of 

motor imagery EEG are decomposed, with each imagery task divided into eight sub segments: left 

hand A (A1, A2... A8), right hand B (B1, B2... B8), feet C (C1, C2... C8), and tongue D (D1, D2... 

D8). The comparison between each two categories is considered: A-B, A-C, A-D, B-C, B-D, C-D. 

One-on-one CSP-based feature extraction is performed on the sub segments decomposed by their 

respective WPDs (such as A-B being A1-B1, A2-B2... and so on). 
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Figure 3: One-on-one CSP feature extraction process 

At each level of WPD decomposition, the covariance matrix 𝐶𝑖 for the 𝑖-th type of motor 

imagery task is calculated: 

𝐶𝑖 =
1

𝑁𝑖−1
∑  

𝑁𝑖
𝑗=1 (𝑋𝑖,𝑗 − 𝑋̅𝑖)(𝑋𝑖,𝑗 − 𝑋̅𝑖)

𝑇
                     (4) 

Among them, 𝑋̅𝑖 is the mean vector of the 𝑖-th type signal. Similarly, for each pair of task 

categories (𝑖, 𝑗), covariance matrices 𝐶𝑖 and 𝐶𝑗 are calculated, and the CSP algorithm is applied 

for feature extraction: 

A feature matrix 𝐴 is constructed for the category pair (𝑖, 𝑗): 

𝐴 = 𝐶𝑖
−1𝐶𝑗                                 (5) 

Here, 𝐶𝑖
−1 is the inverse matrix of the covariance matrix of the 𝑖-th type signal. Performing 

eigenvalue decomposition on matrix 𝐴 yields eigenvalues Λ and eigenvectors Φ: 

𝐴Φ = ΛΦ                                  (6) 

Here, Φ is the eigenvector matrix, and Λ is the diagonalized eigenvalue matrix. The top 𝑚 

features Φ𝑚 with the highest eigenvalues are selected to construct a feature space, and these 

feature vectors Φ𝑚 can maximize the separation of class signals. The projected feature after 

selecting feature vectors is: 

𝑌𝑖,𝑗 = Φ𝑚
𝑇 𝑋𝑖,𝑗                                (7) 

Among them, 𝑋𝑖,𝑗 is the raw data of the 𝑖-th and 𝑗-th class signals, and the projection result 

𝑌𝑖,𝑗  is the representation in the new feature space. By calculating the power spectral density 

function 𝑃𝑌𝑖,𝑗
(𝑓) of the projected features for each pair of tasks, the most discriminative feature for 

classification is selected with the aim of maximizing the power difference between categories: 

𝐷𝑖 =
Var(𝑌𝑖)−Var(𝑌𝑗)

Var(𝑌𝑖)+Var(𝑌𝑗)
                               (8) 

Here, Var(𝑌𝑖)  and Var(𝑌𝑗)  are the variances of the 𝑖 -th and 𝑗 -th projection features, 

respectively. 
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4. Results and Discussions 

4.1. Model Parameter Optimization 

This article uses 70% of EEG data for training and 30% for testing. The features are optimized 

through 10-fold cross-validation and random forest analysis. The verification accuracy is shown in 

Figure 4. 

 

Figure 4: Process of selecting the number of feature vectors 

Figure 4 shows that when using 12 feature vectors, the classification accuracy reaches 0.89 with 

a standard deviation of 0.019. When the number of feature vectors is between 1 and 22, the 

accuracy fluctuates. Although some feature vectors (such as 2, 8, 10, 13) also exhibit high accuracy, 

considering both accuracy and stability, selecting 12 feature vectors as the optimal solution can 

ensure high classification accuracy while maintaining low standard deviation. Therefore, 12 feature 

vectors are selected in subsequent experiments to optimize classification performance. 

After feature selection, the parameters of the random forest are optimized (tree depth, minimum 

sample size for node splitting, and minimum sample size for leaf nodes). The parameter settings and 

results are shown in Table 1. 

Table 1: Parameter setting combinations and corresponding classification results of random forest 

classifier 

Configuration 

No. 
Tree Depth 

Min Samples 

Split 

Min Samples 

Leaf 

Classification 

Accuracy (%) 

1 5 2 2 82.4 

2 5 2 4 81.7 

3 5 5 2 83.5 

4 5 5 4 82.9 

5 10 2 2 85.1 

6 10 2 4 84.3 

7 10 5 2 86.0 

8 10 5 4 85.4 

9 20 2 2 87.5 

10 20 2 4 86.8 

11 20 5 2 86.7 

12 20 5 4 85.9 

When the tree depth is 20, the highest accuracy reaches 87.5%. Setting the minimum sample size 
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for node splitting and leaf nodes to 2 also achieves this accuracy. Therefore, a tree depth of 20 is 

used in the study, with a minimum sample size of 2 for node splitting and leaf nodes. 

4.2. Classification Performance Evaluation 

The optimized random forest classifier is evaluated based on accuracy, sensitivity (Sn), and 

specificity (Sp). This article compares the model with the ATCNet model proposed by Altaheri 

Hamdi [16] et al. in 2022 and the enhanced convolutional neural network based on temporal data 

proposed by Li Hongli [17] et al. in 2023. The result is shown in Figure 5. 

 

Figure 5: Classification performance evaluation 

(Figure 5 (a): Motor imagery of both feet; Figure 5 (b): Motor imagery of left hand; Figure 5 (c): 

Motor imagery of right hand; Figure 5 (d): Motor imagery of tongue) 

Figure 5 shows the performance of WPD and one-on-one CSP methods. In the motor imagery of 

both feet task, the model has an accuracy of 87.5%, a sensitivity of 85.3%, and a specificity of 

86.7%, which is better than the ATCNet model and the enhanced CNN model. In the motor imagery 

of left hand, the accuracy rate is 86.8%; in the motor imagery of right hand, the accuracy rate is 

86.9%; in motor imagery of tongue, the accuracy rate is 87.0%. Overall, the model performs 

excellently in all tasks, validating the effectiveness of the method. 

4.3. Maximum Mutual Information Assessment 

Table 2: MMI comparison of different models 

Task Category 

Proposed Model 

(WPD + 

One-vs-One CSP) 

ATCNet (2022) 
Enhanced CNN 

(2023) 

Both Feet Motor 

Imagery 
0.67 0.65 0.64 

Left Hand Motor 

Imagery 
0.66 0.64 0.63 

Right Hand Motor 

Imagery 
0.67 0.65 0.64 

Tongue Motor 

Imagery 
0.68 0.66 0.65 

Average 0.67 0.65 0.64 
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MMI is calculated to reflect the maximum correlation between extracted features and category 

labels, measuring the discriminative ability of classification features. After discretizing the feature 

space, the mutual information between features and category labels is calculated using information 

entropy, and the maximum mutual information is selected as the evaluation criterion. The results are 

shown in Table 2. 

In the four motor image tasks, the MMI value of this model ranges from 0.66 to 0.68 bits, higher 

than the 0.64 to 0.66 bits of ATCNet and the 0.63 to 0.65 bits of enhanced CNN. This model 

demonstrates higher effectiveness in feature extraction and classification. 

5. Conclusions  

This article improved the classification of motor imagery EEG signals by using WPD for 

time-frequency decomposition and CSP for feature extraction. By optimizing features through 

10-fold cross-validation, the accuracy of the random forest classifier was improved to 87.5%, with 

an average MMI of 0.67 bits. Although the method proposed in this article has achieved significant 

improvements in classification performance, further research is needed to investigate its adaptability 

in larger datasets or multi-task environments. Future work can focus on optimizing the 

computational efficiency of algorithms and exploring their potential applications in real-time BCI 

systems. 
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