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Abstract: Accurate human pose estimation is essential for further human action recognition 

and behavioral analysis. Existing convolutional networks can extract local feature 

information but fail to model long-range dependencies, while Transformers excel at 

capturing global context but lose fine-grained details. To address this, we propose a dual-

branch network called the Dual Transformer and CNN Network (DTCNet) that integrates 

global and local information for human pose estimation. DTCNet is proposed to improve 

human pose estimation by leveraging both global context and local features. It contains two 

branches - a Transformer branch that extracts global dependencies and a CNN branch that 

preserves local details. A fusion module then interacts between these branches, combining 

their complementary information to enhance representational power. Finally, the heatmap 

regression decoding unit obtains the pose estimations. Experiments demonstrate that 

through its dual-branch design, DTCNet effectively balances accuracy and efficiency while 

addressing limitations of previous methods. It achieves significantly higher average 

accuracy than the baseline on standard datasets, with 2.9% and 2.1% improvement on MPII 

and COCO respectively, validating that DTCNet better captures both long-range 

dependencies and fine-grained aspects needed for accurate pose estimation.  

1. Introduction 

Human pose estimation, also known as human skeleton  detection [1], aims to extract joint points 

of the human body like shoulders, wrists and knees from images or videos. Those are connected 

according to rules to form a skeletal structure representing the pose. This process provides rich 

information on human pose and morphology. As a fundamental computer vision task, pose 

estimation supports various applications including behavior recognition [2], intelligent monitoring, 

intention recognition [3] and autonomous driving [4]. With continued research, pose estimation 

technology shows significant promise across fields such as visual analysis of human actions, video 

surveillance, understanding intent, and computer-assisted driving. The extraction of skeletal pose 

structures from images enables deeper human-centered visual understanding with wide-reaching 

applications. 

Starting from the excellent performance of LeNet [5] in handwritten digit classification tasks, 

CNN has gradually attracted attention in the field of computer vision. Until the work of AlexNet [6], 

the network architecture based on CNN has really become the mainstream. With the deepening of 
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CNN research, deeper and more effective networks have been gradually proposed, such as VGG [7], 

GoogLeNet [8], ResNet [9] and so on. These excellent backbone networks are proposed on 

classification tasks, and directly applied to human pose estimation tasks often have poor 

performance. Therefore, Xiao et al. proposed a simple baseline (SBL) [10]. This network gradually 

shrinks the high-resolution feature map to the low-resolution feature map through the feature 

extraction network, and then restores the low-resolution feature map to the high-resolution feature 

map through transposed convolution, which provides the basic idea of human pose estimation 

network architecture design. In addition, Sun et al. proposed a High Resolution Network (HRNet) 

[11], which maintains high resolution throughout the feature extraction process by connecting 

multi-resolution subnets in parallel. Cai et al. proposed a novel network structure (Residual Steps 

Network, RSN) [12]. RSN uses multi-layer step convolution and step convolution to extract 

features and perform feature fusion, which improves the understanding and perception of global and 

local information. Thanks to the local connection and weight sharing mechanism of CNN, these 

network frameworks can not only effectively extract the rich detail information and complex texture 

features of the image, but also significantly reduce the computational complexity of the model. 

However, these methods are limited by the inherent inductive bias of convolution, and it is difficult 

to capture the correlation between global upper limbs and lower limbs, which affects the overall 

judgment of posture. 

The Transformer [13] structure is not limited to local operations and can model global context 

information, which has excellent performance in natural language processing tasks. Dosovitskiy et 

al. proposed ViT(Vision Transformer) [14]. For the first time, the Transformer structure is applied 

to image classification tasks, which exceeds the classification accuracy based on CNN method. 

DeiT [15] introduced several training strategies and distillation methods that make data efficient, so 

that ViT can also be effective on smaller data sets. Swin [16] used local window self-attention 

instead of global self-attention to reduce the quadratic relationship between network complexity and 

image size to a linear relationship. At the same time, through local window movement and mask, 

the unity of local information self-attention and global information communication was completed, 

and the balance between speed and accuracy was achieved. Although these network architectures 

have achieved good performance in the field of image classification, it is challenging to apply them 

directly to pixel-level dense prediction because their output feature mapping is single-scale and 

low-resolution, even for common input image sizes. Its computational and memory costs are 

relatively high. Xu et al. proposed ViTPose [17] combined with ViT structure to transform human 

pose estimation into a sequence-based prediction task, opening up a new paradigm for pose tasks. 

However, the resolution of the output feature map of the ViT structure is low and single, resulting 

in the loss of local information. Yang et al. [18] and Li et al. [19] introduced the Transformer 

structure after extracting the minimum feature map from the CNN network, and converted the 

features extracted by the convolutional layer into sequences and input them into the Transformer to 

capture global dependencies, but their parameters are large and the computational complexity is 

high. Ludwig et al. [20] used readable vectors instead of tokens, and regressed any intermediate s 

by interpolation, which solved the problem that the previous method could only detect a fixed 

number of s. Although Transformer can model the global context, it has limitations in extracting 

fine-grained information. Referring to Swin Transformer [16], Wang et al. [21] proposed a pure 

Transformer structure based on pyramids, which is divided into multiple stages to generate features 

of different scales. This structure achieves better performance in dense prediction tasks, but it 

requires pre-training weights to exert its effect, resulting in its network structure can not be flexibly 

adjusted. 

In order to leverage both the local detail extraction of CNNs and the global information 

modeling ability of Transformers, this paper proposes the Dual-Transformer and Convolutional 
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Network (DTCNet), which integrates CNNs and Transformers. The DTCNet introduces CNN 

branches alongside the Transformer to not only extract local information features but also enhance 

the network's ability to capture global context. Additionally, the proposed Dual-Fusion CNN-

Transformer Block (DCTB) first inputs the encoder branches based on CNN and Transformer 

respectively for feature extraction and acquisition of long-range dependencies. It then splices the 

outputs of the CNN and Transformer branches to realize feature interaction and fusion, enhancing 

the model's representational power. Finally, the fused features are input again into the encoder 

branches for bidirectional fusion. Extensive experiments on the MPII and COCO datasets 

demonstrate that compared to other CNN-based or Transformer-based methods, the proposed 

DTCNet achieves significantly greater improvement over the baseline model and other state-of-the-

art algorithms for human pose estimation. 

2. Method  

2.1. Overall Structure 

Human pose estimation is essentially a pixel-level classification task, and obtaining global and 

local information of human s is the key to improving detection performance. Convolutional CNN is 

limited by fixed convolution kernels, and limited receptive fields cannot model global information. 

Transformer self-attention mechanism can obtain global context information by calculation, but it is 

easy to lose internal information during segmentation and stretching patch. In order to enhance the 

ability of network context information perception and retain rich detail information, a dual-branch 

detection network framework based on CNN and Transformer is proposed according to the 

characteristics of human image data. The overall structure is based on the form of feature extraction 

network (backbone) and feature reduction network (head). 
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Figure 1: The network architecture of DTCNet 

Figure 1 shows the overall structure of the model in this paper. According to the data 

characteristics of human body images, the model consists of two parallel branches. The CNN 

branch is directly input into the DCTB to extract features, gradually increasing the receptive field 

and extracting local information. The Transformer branch first divides the image into several small 

slices through OPE (Overlapping Patch Embedding), and then flattens the slices into a sequence. 

After transforming the dimension through the linear mapping layer, it enters the DCTB module to 

extract global information and downsampling the feature map. Then use the FB module to connect 

the intermediate features extracted from the independent branches in two directions. Convolutional 

fusion is performed on the connection features from two branches. Then the supplementary 

information is transmitted to the original branch in both directions. After repeating 4 stages, put into 

the LFRM (Last Feature Recovery Module, LFRM). 
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2.2. Dual-Fusion CNN-Transformer Block (DCTB) 

Considering that the target scale of pose estimation is different, the shape is changeable and 

complex, and some s are blurred and accompanied by occlusion, it is necessary to fully combine the 

global and local feature information from Transformer branch and CNN branch. This paper 

proposes a DCTB module that integrates CNN and Transformer structure. It can use the respective 

advantages of CNN and Transformer to extract local and global features respectively. Through 

interactive fusion, it not only constructs context dependencies, but also enriches local detail 

information and enhances the ability of the network to extract features. DCTB is the core module of 

the feature extraction stage. The detailed structure of DCTB is shown in Figure 2, which consists of 

two branches, one is Transformer branch and the other is CNN branch. 
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Figure 2: Dual-Fusion CNN-Transformer Block (DCTB) 

2.2.1. Transformer branch 

The Transformer branch is mainly composed of N continuous spatial reduction self-attention 

modules. In order to reduce the computational complexity, the multi-head self-attention mechanism 

of Trans_Block in this paper uses SRA [21]. Each module consists of LN, SRA, residual connection 

and feed forward network (FFN). Suppose that at stage i, the Transformer branch input is 1ix . The 

variables output by SRA and residual connection is 1
ˆ

ix . The output of the Transformer branch is 1ix . 

In the i+1 stage, the input of the Transformer branch is 2ix . The output connected by SRA and 

residual is 2
ˆ

ix . The output of the Transformer branch is 2ix . The output of the convolution module 

in the CNN branch after Flatten is 1iy . The overall calculation process is as follows: 

  1 1 1
ˆ

i i iLx xSRA N x 
                                                        (1) 

  1 1 1
ˆ ˆ

i i iFFN LNx x x 
                                                       (2) 

  2 2 2
ˆ

i i iLx xSRA N x 
                                                      (3) 

  2 2 2
ˆ ˆ

i i iFFN LNx x x 
                                                      (4) 

In order to supplement the location information and enhance the local feature expression, the 
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output of the Transformer branch is fused with the output of the CNN branch. Among them, the 

feature size of the input sequence of the Transformer branch is i iL D , iL  is the characteristic 

length of the sequence in the i-th stage, iD  is the number of sequence feature dimensions of the i-th 

stage. The output feature map size of  Conv_Block is i i iH W C  , iH  and iW  is the height and 

width of the feature map in the i stage, iC  is the number of channels of the i-stage feature map, and

i i iL H W  . Firstly, the output of the Transformer branch is rearranged into the form of sequence 

features, the size of which is i i iH W C  , and then concatenates with the output of Conv_Block on 

the feature dimension, the size is 2i i iH W C  . Then the spliced features are input into the FB 

module for feature fusion. Finally, the fused features are split and input into the T_fusion module 

for processing. The final output sequence feature size is i iL D . 

2.2.2. CNN branch 

When constructing our CNN branch, the common practice is to use ordinary CNN coding blocks 

to create a feature extraction network to achieve the conversion of high-resolution images to low-

resolution images. For our network model, this approach requires no small computational overhead.  

Therefore, this paper draws on the lightweight idea of ShuffleNetV2 [22], and uses deep separable 

convolution [23] and channel shuffle instead of ordinary convolution to realize the lightweight of 

convolution operation. The former will greatly reduce the network size and computational overhead 

of the convolution operation, and the latter will supplement the information loss caused by the 

convolution grouping through channel shuffle.  

As shown in Figure 2, the Conv_Block module uses the channel spilt module to divide the 

number of channels of the input image into two parts on average, one for residual connection and 

one for feature extraction. The channel shuffle module reorders the channels of the stacked feature 

maps to achieve feature fusion between groups. In the basic module, the shape of the feature map is 

unchanged, and the number of channels is unchanged. In the down-sampling module, the length and 

width of the feature map are halved, and the number of channels is doubled. 

2.2.3. Improved Fusion Block 

Figure 3 depicts our Improved Fusion Block (IFB). IFB consists of FB module, T-Fusion module 

and C-Fusion module. The FB module is mainly composed of four continuous convolution residual 

bottleneck modules. The processing process is similar to the CNN branch. Each convolution 

residual bottleneck module includes 1×1 convolution, ReLU and another 1×1 convolution. The 

residual connection between the input and the output accelerates the model convergence. 

Specifically, the intermediate feature sum iT  and iM  is given from the i-th CNN_Block and 

Transformer_Block，and the FB module is used to fuse the feature maps of two branches: 

( ( ( ), ))i i iM FB Concat rearrange T F                                           (5) 

Among them, 
2i i iH W C

iM R
 

  represents the fusion feature. After preliminary fusion, the fusion 

feature iM  is divided into two features along the channel dimension, which is i i iH W CT

iM R
 

  and 

i i iH W CF

iM R
 

 , and then input into the T-Fusion module and the C-Fusion module, which are 

composed of MLP blocks and convolution blocks. Then, each fused feature flows back to each 

branch and added to the original input features iT  and iF . 
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Figure 3: Structure of Improved Fusion Block (IFB) 

2.3. OPE Block 

This paper adds an OPE (Overlapping Patch Embedding) module, which uses overlapping to 

mark images and model local continuity information. The commonly used Patch Embedding 

operation ignores the correlation between patch blocks, potentially leading to loss of features 

around patch boundaries. In this paper, the OPE module is used to downsampling the feature map. 

When cutting the patch, there is an overlapping between each patch. The operation is similar to the 

movement of the convolution kernel on the feature map. The resolution of the feature map is 

controlled by modifying the values of the three parameters K, S and P. K represents the size of the 

patch, S represents the distance between adjacent patches, and P represents the size of the filling. 

We expanded the patch window to make the adjacent windows overlap half of the area, and filled 

zeros on the feature map to maintain the resolution. 

2.4. Feature Recovery Module 

The final feature reduction module LFRM is used to fuse the final output of the Transformer 

branch and the CNN branch, and three sets of Deconvolution (DeConv) are used to realize the 

upsampling operation of the low-resolution feature map. Finally, the 1×1 convolution is used to 

adjust the channel to the heatmap regression, and its structure is shown in Figure 4. 
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Figure 4: Last Feature Recovery Module (LFRM) 

The output of the two branches is fused by the fusion module after concating. The output of the 

Transformer branch first undergoes a Rearrange operation, while the output of the CNN branch is 

spliced along the channel dimension. After convolution in the Fusion Block, the final fused feature 

map is obtained. 

179



3. Experimental Analysis 

3.1. Datasets and Evaluation Criteria 

This method follows a two-stage top-down human pose estimation paradigm, similar to CPN 

[24], and is verified by two benchmark datasets (MPII and COCO).  

The MPII [25] human posture dataset consists of about 25,000 images from a wide range of real-

world activities, including 40,000 individual instances and body posture annotations marked with 

16 s. About 28,000 individual instances are used as training samples, and about 12,000 individual 

instances are used as test samples. For the MPII dataset, the standard evaluation index of the top-

down paradigm of human pose estimation is the head normalization probability of the correct. In 

this paper, PCKh with a threshold of 0.5 is used as the evaluation criterion. 

The COCO [26] keypoint detection dataset contains more than 200,000 images and 250,000 

human instances with 17 keypoints. The dataset is divided into training set train2017, validation set 

val2017 and test set test-dev2017, with 57,000, 5,000 and 20,000 images respectively. For the 

COCO dataset, the standard evaluation index of the top-down paradigm of human pose estimation 

is based on the similarity of targets (OKS). This paper uses AP (the average precision of key points 

at OKS = 0.50, 0.55, ..., 0.90, 0.95), AP75 (precision at OKS = 0.75), AP50, APM (precision for 

detecting medium objects), APL (precision for detecting large objects) and AR (the average recall 

of keypoints at OKS=0.50, 0.55, ..., 0.90, 0.95) as evaluation metrics. 

3.2. Experimental Environment and Settings 

The experimental environment of this paper is Ubuntu18.04, the CPU is Intel (R) Xeon (R) 

Gold6230, the GPU is TeslaT4 (16G), the Python version is 3.8.18, the Pytorch version is 1.8.1, the 

optimizer is Adam, the learning plan follows the setting of SBL [10], the basic learning rate is set to 

0.0005, and it is reduced to 0.00005 and 0.000005 respectively in the 170th and 200th times, and 

the training process ends in 210 cycles. The training batch size of the model in this paper is set to 64, 

and the model is trained from scratch without using pre-training weights. Based on the MMPose 

code library, this paper adopts common training strategies, that is, different data pipelines are set for 

the training set and the validation set. For the training set, the clipping strategy is to first extend 

each human detection box to a fixed aspect ratio (height: width = 1.25), and then a translation factor 

(0.16) is set for random translation. Then, a data augmentation strategy is designed, including 

random flipping, random rotation ([-40, 40]) and random scaling ([0.5, 1.5]). The main purpose is to 

improve the scale invariance and rotation invariance. As shown in Figure 5, the network effect is 

visualized as follows. 

 

Figure 5: Visualization 
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3.3. Experimental Results and Analysis 

This paper follows the top-down human pose estimation paradigm and compares the detection 

accuracy with other representative advanced methods on MPII and COCO datasets. Table 1 reports 

the comparison of the proposed method with other methods on the MPII verification set. The results 

show that the proposed method can maintain good detection accuracy and is competitive in the 

model.  

From Table 1, it can be seen that on the MPII test set, the DTCNet has excellent detection 

performance. It has better performance in hand, shoulder and other parts average PCK index, 

reaching 96.52%, 95.58% and 89.01%, respectively. Models such as Hourglass-52 and 

ShuffleNetV2 are constructed based on CNN structure, which can capture local context information 

and locate pixels, but lack of global information. Models such as PVT-S and Swin-S take advantage 

of Transformer ability to establish long-distance feature dependencies to obtain rich global 

information, but lack of fine-grained local information. 

Compared with the human detection baseline model PVT, the DTCNet has improved in all 

indicators, and the average PCK index has increased by 4.61%. Compared with the CNN network 

ShuffleNetV2, the average PCK index is increased by 6.61%. Compared with other advanced ratio 

models, the network DTCNet in this paper reaches the best value in the average PCK index, 

indicating that the model can accurately detect the human body, and its prediction results are highly 

similar to the real values. The two-way fusion of CNN and Transformer enables the model in this 

paper to better perceive detailed information, reduce the probability of regional false detection, and 

improve the detection accuracy. 

Table 1: Comparison of experimental results of MPII validation set (PCKh@0.5) 

Method Input Size Params/106 GFLOPs Hea/% Sho/% Elb/% Wri/% Hip/% Kne/% Ank/% Mean/% 

ResNest-50 256×256 35.93 8.97 96.3 95.6 89.1 84 87.8 84.9 80.4 88.8 

Simple 

Baseline 
256×256 34 7.28 96.1 95.1 88.2 81.9 88.1 83 77.5 87.7 

Swin-S 256×256 54.1 15.4 96.1 94.8 87.2 80.8 87.9 82.3 77.8 87.3 

EfficientViT 256×256 3.04 1.89 95.4 94 85.6 78.9 86.3 79.8 73.7 85.8 

LiteHRNet-30 256×256 1.76 0.56 95.2 93.5 84.7 78.1 86.2 78.9 73.8 85.1 

MobileNetV2 256×256 9.57 2.12 95.6 93.8 84.8 77.8 85.7 79.4 73 85 

PVT-S 256×256 28.17 5.47 95 93.3 84 77.4 85 78.1 72.8 84.4 

ShuffleNetV2 256×256 7.55 1.83 94.2 92.3 81.9 74.1 84 75.2 68.8 82.4 

Hourglass-52 256×256 94.85 28.67 96.5 95.5 88.8 83.8 88.2 85 80.8 88.9 

DTCNet(ours) 256×256 44.12 8.29 96.52 95.58 88.97 83.85 89.16 85.16 80.32 89.1 

In addition, this paper also compares and analyzes the parameters and computational complexity 

of each pose estimation segmentation model, and the results are shown in Table 1. In order to 

extract more abundant and effective feature context information, DTCNet adopts parallel dual-

branch structure to obtain global and local complex information respectively. The feature fusion 

module complements and fuses missing information. The module structure is relatively complex, 

resulting in a slightly higher parameter number and computational complexity of the model. 

Compared with ResNest-50 and HRNet-W32 models, the parameters in this paper are higher, but 

the computational complexity is reduced by 0.68G and 1.56G. Compared with Hourglass-52, Swin-

S and other models based on CNN and Transformer, the DTCNet parameters and computational 

complexity of this network are greatly reduced. However, compared with the lightweight models 

such as EfficientViT-M0 and MobileNetV2, the network DTCNet parameter number and 

calculation index in this paper are relatively high, which is a trade-off process. However, for the 

field of pose estimation, detection accuracy and accuracy are crucial goals, and the added 

parameters are conducive to improving the model segmentation effect. Combining PCK and other 
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performance indicators, parameter quantity and computational complexity, DTCNet has appropriate 

parameters and computational complexity while maintaining high detection accuracy. 

Table 2: Comparison of experimental results of COCO val2017 set 

Method Input Size Params/106 GFLOPs AP/% AP50/% AP75/% APM/% APL /% AR/% 

LiteHRNet-30 256×192 1.76 0.42 67.6 88 75.6 - - 73.6 

MobileNetV2 256×192 9.57 1.59 64.8 87.4 72.5 - - 70.9 

ShuffleNetV2 256×192 7.55 1.37 60.2 85.7 67.2 - - 66.8 

LDMNet 256×192 4.8 2.1 70.1 91.5 78.2 67.5 74.1 73.4 

PVT-S 256×256 28.17 5.47 70.9 91.5 78.4 68.3 75.2 74.1 

LEViTPose-S 256×256 2.16 1.45 71 91.6 78.5 68.2 75.1 74.1 

ViTPose-B 256×256 90.04 23.8 73.2 92.5 81.5 71.2 76.6 76.5 

DTCNet(ours) 256×192 44.12 8.29 73.4 90.1 81.1 70.1 79.9 78.9 

Table 2 reports the comparison results of DTCNet with other methods on COCO val2017. The 

average accuracy of the DTCNet network in the COCO validation set reaches 73.4%, which has a 

great advantage over the mainstream human pose estimation algorithms. As shown in Table 2, 

compared with the Transformer-based model ViTPose-B, DTCNet improves the average accuracy 

by 0.2%, but the number of parameters decreases by 50.9% and the amount of computation 

decreases by 65.1%. Compared with the baseline network PVT-S, the average accuracy of the 

network DTCNet in this paper is increased by 2.5%, indicating that the addition of CNN branch has 

achieved better results. Compared with other networks in the table, our method has great advantages. 

By comparing the performance of the DTCNet on the val set and test set of MPII and COCO, it is 

found that the performance growth of the network is relatively balanced, and there is no obvious 

over-fitting phenomenon, which shows that the model designed in this paper can effectively learn 

the generalization features in the data. On the whole, the algorithm proposed in this paper has great 

competitiveness on MPII data set and COCO data set. In the case of strict detection accuracy 

requirements, the advantage of DTCNet is more obvious, and the design goal of the human pose 

estimation algorithm is achieved. In addition, the model in this paper has good computational 

efficiency and competitive in real-time reasoning. 

3.4. Ablation Experiment 

The ablation experiment in this paper is carried out on the MPII validation set. All configuration 

strategies follow the settings in the MPII comparison experiment, including input size of 256×256, 

batch size of 64, etc. In this paper, the Only-trans algorithm framework proposed by PVT is used as 

the basis for model design. This model is used as a baseline for model improvement, called DTCNet 

(ours), as shown in Table 3.  

Table 3: Data analysis for ablation experiments 

Method 
DCTB 

OPE Mean/% 
Trans Conv FB IFB 

PVT √ × × × × 85.9 

DTCNet(ours) 

√ √ √ × × 88.7 

√ √ × √ × 88.8 

√ √ √ × √ 88.9 

√ √ × √ √ 89.1 

The ablation experiment mainly includes the CNN branch, the feature fusion block (FB), the 

improved feature fusion module (IFB), and the overlapping embedding block (OPE).  

According to the results of Table 3, only adding CNN branch and feature fusion module can 
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greatly improve the accuracy of the model, but the loss of parameters and GFLOPs is large. Using 

the improved feature fusion block module, only a small amount of model parameters are increased 

while the accuracy is improved. The addition of overlapping feature embedding module can further 

improve the accuracy of the model without increasing the amount of parameter calculation. The 

final experimental results show that by adding the CNN branch and overlapping feature embedding 

module, the DTCNet (ours) designed using the improved Fusion Block module can achieve the best 

results. 

4. Conclusion  

The main contribution of this paper is to propose a dual-branch network for human pose 

estimation with global and local information interaction. This structure extracts local features 

through CNN branches and Transformer branches model global context information, which can 

better identify details and suppress background interference, thus effectively dealing with the 

difficulty of human detection. A fusion module is designed that effectively combines the local 

features extracted by CNN and the global features extracted by Transformer, improving the 

detection ability of the network. The Transformer structure in this model does not need to be pre-

trained on large-scale data. The effectiveness of the method is verified on public datasets like 

COCO and MPII. The model balances accuracy and efficiency well with its parameter quantity and 

computation, achieving good accuracy. While the proposed model can accurately detect the target 

areas of human bodies, it is a two-dimensional network, which is more suitable for two-dimensional 

images. In follow-up studies, the model will be further improved and optimized to more effectively 

apply to three-dimensional human pose estimation with richer image information. 
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