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Abstract: This paper proposes a graph-based text summarization extraction algorithm. The 

algorithm is based on directed graphs and can incorporate the position information of 

sentences into the computational scope. When calculating the edge weights of nodes in the 

directed graph, a pre-trained model after negative sampling is used, which not only can 

extract deeper semantic features but also enable higher relevance between the contextual 

sentences in the article. The algorithm also introduces a weighting mechanism to adjust the 

extraction priority of the sentences according to the article’s theme, resulting in a higher 

quality of extracted summary sentences that can represent the key information of the text 

as much as possible. The algorithm can capture the key information in the text, reduce the 

impact of irrelevant information on semantics, and play a role in text compression. 

1. Introduction 

This paper will propose a graph-based text summarization extraction algorithm. Unlike the 

TextRank[1] based on undirected graphs, this algorithm is based on directed graphs and can take the 

position information of sentences into consideration. When calculating the edge weights, a pre-trained 

model is used to extract deep semantic features and generate dynamic word vectors. In addition, for 

better Chinese support, the text uses the full-word masked version of BERT[2], known as Bert-

wwm[3], with the pre-training dataset being the Chinese Wikipedia. In the text, to further improve 

the quality of semantic extraction, negative sampling is used to pre-train Bert-wwm, thereby 

enhancing the relevance of the contextual sentences in the article. This algorithm also refers to the 

article’s theme and introduces a weighting mechanism to adjust the priority of sentence output to 

some extent. The extracted summary text of this algorithm has higher quality, richer information, and 

better represents the meaning of the text. 
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2. Design of Graph-based Text Summarization Extraction Algorithm 

2.1 Algorithm Overview 

The graph-based text summarization extraction algorithm proposed in this paper, named EMW-

Sum, primarily consists of two major components: Firstly, the first part involves the pre-training of 

Bert-wwm, during which negative sampling methods are adopted to obtain the pre-trained Bert-wwm 

model, designated as N-Bert-wwm. Following this, the N-Bert-wwm model is utilized to generate 

sentence representation vectors. These vectors are then employed to compute the similarity between 

sentences, which in turn is used to construct a similarity matrix between the sentences[4]. This part 

generates a text similarity matrix that serves as the foundation for the subsequent calculations. Next, 

the second part uses the directed graph based on the sentence similarity matrix obtained from the 

previous step to compute the scores of the sentences. During the scoring process, certain methods are 

also applied to optimize the final scores of the sentences. Afterward, sentences are sorted according 

to their final scores, and a certain number of sentences are selected until the set length requirement is 

met[5]. Lastly, when generating the summary set, sentences are extracted in the order they appear in 

the original text. Figure 1 illustrates the overall structural diagram of the EMW-Sum algorithm. 

 

Figure 1: EMW-Sum Overall Structure Diagram 

2.2 Input Layer 

Whether it is the pre-training of Bert-wwm or the use of Bert-wwm to extract sentence semantics, 

the sentences must be input into the Bert-wwm. This section will introduce the input layer of Bert-

wwm. 

The input of Bert-wwm is consistent with that of BERT, which requires that sentences be 

segmented at the character level, inserting [CLS] marks at the beginning of the sentence, and [SEP] 

marks at the end, and extending them to a fixed length. Let Sa = {xa1
, xa2

,∙∙∙, xan
} , Sb =

{xb1
, xb2

,∙∙∙, xbn
}, represent the original input sentences, where n is the length of the sentence. Sa, 

Sb need to be added [CLS] and [SEP] marks at the beginning and end, respectively, before they can 

be input into Bert-wwm to capture sentence semantics. Formulas (1) and (2) represent the specific 

adjustment methods: 

𝑆𝑎 = {[𝐶𝐿𝑆], 𝑥𝑎1
, 𝑥𝑎2

,∙∙∙, 𝑥𝑎𝑛
, [𝑆𝐸𝑃]}                        (1) 

𝑆𝑏 = {[𝐶𝐿𝑆], 𝑥𝑏1
, 𝑥𝑏2

,∙∙∙, 𝑥𝑏𝑛
, [𝑆𝐸𝑃]}                        (2) 
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During the input process of text into Bert-wwm and the output process, it is necessary to pass 

through token embedding, position embedding, and segment embedding to handle the input. The three 

embeddings are added together to obtain the final output. This output is the encoding vector obtained 

from capturing the semantics of the sentence, as expressed below: 

ℎ𝑎 = {ℎ𝑎0
, ℎ𝑎1

,∙∙∙, ℎ𝑎𝑙−1
} = BERT − WWM(𝑆𝑎)                 (3) 

ℎ𝑏 = {ℎ𝑏0
, ℎ𝑏1

,∙∙∙, ℎ𝑏𝑙−1
} = BERT − WWM(𝑆𝑏)                 (4) 

Where ℎ ∈ Rl×d , l  is the length of the sequence, d  is the dimension of the word vectors 

generated by Bert-wwm, ℎai
 represents the semantic representation of the i-th character in sequence 

a, and ℎbi
 represents the semantic representation of the i-th character in sequence b[6].  A simple 

method for calculating text similarity is to use the vector with the [CLS] mark as a representation of 

the entire sentence to directly calculate the similarity. However, if only the vector with the [CLS] 

location is used to represent the entire sentence, some information from other positions may be lost, 

leading to poor performance in practical applications. Therefore, when using Bert-wwm to calculate 

sentence similarity, it is usually the full output of Bert-wwm that is used. In order to extract more rich 

context semantic information and make the relevance between the context sentences of the article 

higher, it is necessary to re-train them. In this paper, the BERT models used are all Bert-wwm, base 

version models. It contains 12 layers and generates each character vector with a dimension of 768, 

totaling 110M parameters. 

2.3 Calculation of Sentence Similarity Matrix 

The sentence similarity matrix refers to the matrix composed of the mutual similarity between 

sentences in an article. The calculation of sentence similarity can be done in various ways. For 

instance, the classic word2vec model can be used to generate distributed vectors, from which 

similarity can be derived, or lexical text similarity can be used to directly calculate the similarity 

between sentences[7]. However, with the introduction of pre-trained models like BERT, using pre-

trained models to calculate text similarity has gradually become a mainstream approach. Since pre-

trained models have undergone large-scale unsupervised learning on datasets, they can generate 

higher-quality dynamic word vectors. This paper uses Bert-wwm to extract word vectors. Although 

the result of directly using Bert-wwm to extract word vectors is already excellent, to further enhance 

the quality of semantic extraction, this paper employs a negative sampling method to perform further 

pre-training on Bert-wwm, and then uses this re-trained Bert-wwm to extract word vectors, thereby 

ensuring that the word vectors generated by the context sentences of the article are more relevant. 

The overall structure of the negative sampling model is depicted in Figure 2. 

Based on the sentence-level distributed hypothesis theory, two sentences with similar context 

semantic environments share similar semantics. Following this theory, the negative sampling method 

used in this paper involves taking the preceding and following sentences of a sentence as positive 

samples, and using other randomly selected sentences from the corpus as negative samples for 

training. Let O_c represent the encoding vector obtained for the current sentence through Bert-wwm, 

O_p represent the encoding vector obtained for the positive sample through Bert-wwm, and O_n 

represent the encoding vector obtained for the negative sample through Bert-wwm. 
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Figure 2: BERT Pretraining Based on Negative Sampling 

The encoding vector is transformed into a sentence vector that can represent the entire sentence 

through pooling operations. In this paper, the pooling layer used is the average pooling layer[8]. The 

calculation is as follows: 

𝑉𝑐,𝑎𝑣𝑔 = ∑
𝑂𝑐𝑖

𝑙𝑐

𝑙𝑐
𝑖=1                                  (5) 

𝑉𝑝,𝑎𝑣𝑔 = ∑
𝑂𝑝𝑖

𝑙𝑝

𝑙𝑝

𝑖=1                                  (6) 

𝑉𝑛,𝑎𝑣𝑔 = ∑
𝑂𝑛𝑖

𝑙𝑛

𝑙𝑛
𝑖=1                                 (7) 

Where Vc,avg, Vp,avg, Vn,avg are the sentence vectors of the current sentence, positive sample, 

and negative sample, respectively. l is the length of the sequence, and the optimized loss function is 

as follows: 

𝑙𝑜𝑠𝑠 = max (∥ 𝑉𝑐,𝑎𝑣𝑔 − 𝑉𝑝,𝑎𝑣𝑔 ∥ −∥ 𝑉𝑐,𝑎𝑣𝑔 − 𝑉𝑝,𝑎𝑣𝑔 ∥ + 𝜆, 0)              (8) 

Here, ∥∙∥ denotes the distance measure, and this paper uses the Euclidean distance to measure 

distance.  λ represents the margin between edges, and the model optimizes the model by making the 

distance between the current sentence and the positive sample closer than the distance from the 

negative sample by λ. 

After the model training is complete, the sentence vectors produced by the pre-trained model need 

to use a similarity calculation method to determine the similarity between them, such as cosine 

similarity, or dot product[9]. During the experimental process, it was found that using vector dot 

product to calculate the similarity between vectors is more effective. The dot product calculation 

formula is as follows: 

𝛼 = [𝑎1, 𝑎2,∙∙∙, 𝑎𝑛]                             (9) 

𝛽 = [𝑏1, 𝑏2,∙∙∙, 𝑏𝑛]                            (10) 

α ∙ β = 𝑎1𝑏1 + 𝑎2𝑏2 +∙∙∙ +𝑎𝑛𝑏𝑛                      (11) 

Let Eij represent the similarity between the i-th sentence and the j-th sentence in the text, and 

Vi, Vj be the sentence vectors of the i-th and j-th sentence text, respectively, through the pre-trained 

model, then the calculation of the sentence similarity matrix is as follows. 

𝐸𝑖𝑗 = 𝑉𝑖 ∙ 𝑉𝑗                              (12) 
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2.4 Calculation of Sentence Scores 

After obtaining the sentence similarity matrix using the pre-trained Bert-wwm model, the matrix 

will be used to calculate the score of each sentence, with higher scores indicating a higher priority in 

the extraction process[10]. To this end, this paper proposes a graph-based text summarization 

extraction method. Each sentence in the text is converted into a node in the graph, and nodes are 

connected by directed edges, with edge weights representing the similarity between two sentences. 

Before obtaining the final score of a sentence, the article’s theme is considered, and a weighting 

mechanism is introduced to adjust and optimize the scores. Compared to algorithms like TextRank, 

which are based on undirected weighted graphs, this algorithm uses directed weighted graphs, and 

the position information between sentences can affect the extraction results. 

Assuming the preprocessed document is denoted as D = {s1, s2,∙∙∙, sn}, and eij  represents the 

similarity between the edges (si,sj), a sentence score can be calculated based on the following method: 

𝑠𝑐𝑜𝑟𝑒𝑖 = ∑ 𝑒𝑖𝑗𝑗∈{1,∙∙∙,𝑖−1,𝑖+1,∙∙∙,𝑛}                         (13) 

However, this method treats the graph as an undirected graph and does not introduce position 

information. In reality, there is a pair of directed edges between sentences si and sj, pointing from 

si to sj and from sjto si.Considering the direction of the edges, the score calculation for a sentence 

is as follows: 

𝑠𝑐𝑜𝑟𝑒𝑖 = ∑ 𝑒𝑖𝑗𝑗<𝑖 + ∑ 𝑒𝑖𝑗𝑗>𝑖                           (14) 

For the edge (si,sj), when j < i, the edge is a forward edge, indicating that the edge points from 

si to a node located before si in the article. When j > i, the edge is a backward edge, indicating that 

the edge points from si to a node located after si. Although formula (14) distinguishes between 

forward edges and backward edges, the calculated result is the same as that of formula (13). To 

address this, two hyperparameters λ1 and λ2 are introduced, representing the weight of forward 

edges and backward edges, respectively. Thus, the sentence score calculation is as follows: 

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝜆1 ∑ 𝑒𝑖𝑗𝑗<𝑖 + 𝜆2 ∑ 𝑒𝑖𝑗𝑗>𝑖                         (15) 

The introduction of hyperparameters allows for different weights for forward and backward edges 

of a sentence. When λ1 and λ2 are both equal to 1, the result is equivalent to the calculation method 

using undirected edges. Subsequent experiments show that λ1 tends to be negative, which means 

that when a node is similar to previous nodes, it will reduce the score of that node, making it easier 

for nodes that are further along to have lower scores and harder to achieve high scores that can be 

extracted. 

2.5 Adjustment of Sentence Scores 

However, the aforementioned calculation method treats sentences as independent individuals 

without considering the relationship between the sentences and the overall theme of the article. Key 

words in an article often represent the overall theme, and the more keywords appear in a specific 

sentence, the closer it is to the theme, making the sentence more important. To count the keywords 

in an article, text preprocessing is required[11]. 

Firstly, there is tokenization. After a comprehensive evaluation of various tokenization tools, it is 

decided to use the Jieba tokenization tool as the tokenization tool in this paper. Next is the removal 

of stopwords, which are words that have no actual meaning in practical applications, such as "a", 

"the", "or", and so on. In addition to removing these meaningless words, special symbols need to be 

removed as well. 
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The calculation of keywords uses the TF-IDF algorithm. The TF-IDF algorithm gives priority to 

words that have a high frequency in the paper but a low frequency in the entire corpus[12], as these 

keywords are more representative of the entire article’s meaning. Among them, IDF can be obtained 

in advance through statistics, which is the inverse document frequency, indicating the frequency of a 

word appearing in all documents in the entire corpus. TF is the term frequency and needs to be 

dynamically obtained based on the article input. In this algorithm, the TF-IDF algorithm is used to 

calculate the top 10 most frequent words in the paper as keywords. Through these keywords, the 

keyword coverage rate of each sentence can be calculated, which will affect the final score of the 

sentence. Let K(si) represent the keyword coverage rate of si, then the calculation method of K(si) 

is as follows. 

𝐾(𝑠𝑖) =
𝑙𝑒𝑛(𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑠𝑖))

𝑙𝑒𝑛(𝑠𝑖)
                          (16) 

where len(si)  represents the number of words after si  is tokenized and filtered, and 

len(keywords(si)) represents the number of keywords contained in si. When calculating sentence 

scores, a node weight is introduced to optimize the node scores. Let wi represent the weight of si, 

then wi is calculated as follows: 

𝑤𝑖 = 1 + ℎ ∙ 𝐾(𝑠𝑖)                             (17) 

Here, ℎ  is a hyperparameter that controls the extent of the influence of the weight on the 

calculation. When ℎ  is 0, it indicates that no weight optimization is used.The mechanism of 

introducing the weight optimizes the calculation after which the sentence score calculation process is 

as follows: 

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑤𝑖(𝜆1 ∑ (𝑒𝑖𝑗 ∙ 𝑤𝑗)𝑗<𝑖 + 𝜆2 ∑ (𝑒𝑖𝑗 ∙ 𝑤𝑗)𝑗>𝑖 )               (18) 

The weight of a node not only affects its own score but also has an impact on the scores of other 

nodes. Then, sentences are sorted according to the final score, and a certain number of sentences are 

selected until the set length requirement is met. Finally, when generating the summary set, sentences 

are extracted in the order they appear in the original text[13]. 

3. Experimental Results and Analysis 

3.1 Experimental Dataset 

This chapter’s experiments use the test set from NLPCC 2017[14], which contains data from 

headline news, including the full text of the news and the corresponding abstracts, totaling 50,000 

data items. From the full text of the news and the corresponding benchmark abstract data, 10,000 

pairs of samples were randomly selected for testing based on the text length distribution. The selected 

news texts cover news from various fields such as healthcare and current events.  

3.2 Baseline Models 

The baseline models compared in this experiment are primarily TextRank, LexRank, and some 

improved methods of these models. For example, TextRank-word2vec indicates the use of the 

word2vec model as the calculation model for edge weights and TextRank to compute text summaries. 

TextRank-Bert-wwm indicates using Bert-wwm to extract text feature vectors. Similarly, LexRank-

word2vec signifies using the word2vec model to calculate edge weights, while LexRank is used to 

compute text summaries. LexRank-Bert-wwm indicates using Bert-wwm to generate edge weights. 
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3.3 Evaluation Metrics 

The algorithm uses the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) evaluation 

metric. The principle of the ROUGE evaluation metric is to compare the text summaries extracted by 

the algorithm with a set of benchmark text summaries and obtain corresponding scores. Then, through 

these scores, measure the similarity between the automatically generated text summaries and the 

benchmark text summaries. 

3.4 Analysis of Experimental Results 

To verify the impact of pretraining on the results, the pretrained Bert-wwm model and the 

unpretrained Bert-wwm model will be used to extract sentence semantic information, with the weight 

adjustment mechanism not being used and the weights for both forward and backward edges both set 

to 0.5. It is also necessary to verify the impact of the number of negative samples during pretraining 

on the results. Therefore, a comparative experiment was designed, including scenarios with one 

positive sample corresponding to one negative sample, one positive sample corresponding to two 

negative samples, and one positive sample corresponding to three negative samples. The experimental 

results are shown in Table 1. 

Table 1: Results of Pretraining Experiments 

 ROUGE-1 ROUGE-2 ROUGE-L 

No pretraining 0.19769 0.08530 0.16234 

One positive sample, one negative 

sample 
0.27753 0.12672 0.21517 

One positive sample, two negative 

samples 
0.27207 0.12242 0.21133 

One positive sample, three negative 

samples 
0.26976 0.11953 0.20875 

From the results, it can be seen that pretraining Bert-wwm can significantly improve the accuracy 

of extraction. Additionally, when one positive sample is sampled with one negative sample, the effect 

is the best, with ROUGE-1 of 0.27753, ROUGE-2 of 0.12672, and ROUGE-L of 0.21517. Therefore, 

in the subsequent experimental calculations, the pretrained model used is the model obtained from 

pretraining with one positive sample corresponding to one negative sample. 

In the process of text summarization extraction, there are multiple hyperparameters involved, 

including the parameter that controls the weight of keyword proportion h, and the parameters that 

control the forward edge weight λ1 and the backward edge weight λ2. To simplify the calculation 

and facilitate the control of variables, it is assumed that λ1+λ2=1, and the tuning results are optimized 

with reference to the ROUGE-L results. λ1、λ2, and ℎ are changed with a step size of 0.1. Figure 

3 shows the analysis of the parameter tuning results. 

The image displays some typical curves during the parameter tuning process, including the curve 

with the best performance, as well as curves around the optimal value of ℎ, and also a curve with ℎ 

set to 0. From the figure, it can be seen that when ℎ is 0.4, λ1 is -0.7, and λ2 is 1.7, the model’s 

extraction performance is the best. When λ1  is in the interval [-1, 0] and [0.5, 1], the weight 

mechanism has a significant promotion effect on the results. When λ1 is in the interval [-1, 0], the 

algorithm’s performance gradually improves as ℎ  increases, and the optimal performance is 

achieved when ℎ is 0.4. After that, as ℎ increases, the effect gradually decreases. When λ1 is in 

the interval [0.5, 1], the results increase with the increase of ℎ, but the overall performance of this 

interval is significantly worse than that when λ1 is negative. 
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Figure 3: Parameter Tuning Change Trend 

Through comparative experiments, it can be observed that the use of a weighting mechanism to 

adjust and optimize the extraction of sentences effectively increases the accuracy of summary 

extraction, making the extracted summaries more in line with the article’s theme and more 

representative. By utilizing different weights for forward and backward edges, the sentence position 

information can be employed to assign different extraction priorities to sentences at different positions 

in the article, making the summary extraction strategy of the algorithm more consistent with the 

stylistic characteristics of news, thereby extracting higher-quality text summaries. 

When computing the similarity matrix, a method is needed to measure the similarity between 

various vectors. To date, the experiments have used dot products to calculate the similarity between 

vectors. To compare the impact of different calculation methods on the results, various methods for 

calculating vector similarity have been used to measure the similarity between vectors. At this point, 

the weighting adjustment mechanism is introduced, and the optimal parameters are used. ROUGE-1, 

ROUGE-2, and ROUGE-L are used as reference metrics for the experiments. The experimental 

results are shown in Table 2. 

Table 2: Experimental Results of Different Similarity Calculation Methods 

Similarity Calculation Method ROUGE-1 ROUGE-2 ROUGE-L 

Dot Product 0.35781 0.19690 0.29227 

Cosine Similarity 0.34998 0.19013 0.28616 

Eclidean Distance 0.29052 0.15360 0.24013 

Manhattan Distance 0.29007 0.15316 0.24030 

From the results, it can be seen that using dot product for similarity calculation yields the best 

results, with the highest values for ROUGE-1, ROUGE-2, and ROUGE-L. Therefore, in the EMW-

Sum model, dot product is used to calculate sentence similarity. 

To test the performance of the EMW-Sum algorithm compared to TextRank and LexRank-based 

algorithms, this paper set up a comparative experiment with different algorithms. The comparison 

objects are the TextRank algorithm and the relevant improved algorithms of TextRank. In addition, 

to verify the effectiveness of using Bert-wwm, a comparison group using word2vec to calculate the 

similarity matrix and EMW-Sum to solve is added. Table 3 shows the comparison results of various 

models. 
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Table 3: Comparison Results of Different Models 

Model  ROUGE-1 ROUGE-2 ROUGE-L 

TextRank 0.29208 0.13600 0.22930 

TextRank-word2vec 0.30292 0.14177 0.23287 

TextRank-Bert-wwm 0.30043 0.13915 0.23040 

LexRank-word2vec 0.29923 0.13902 0.22882 

LexRank-Bert-wwm 0.29122 0.13496 0.22809 

EMW-Sum-word2vec 0.31554 0.16707 0.25808 

EMW-Sum 0.35781 0.19690 0.29227 

Through comparative experiments, the performance of TextRank, LexRank, and their 

improvements are compared with the model proposed in this paper. From the above table, it can be 

seen that the method EMW-Sum proposed in this paper has significantly higher scores in all 

evaluation metrics compared to the scores of other algorithms. Compared to the EMW-Sum algorithm 

that uses word2vec, the algorithm based on pre-trained Bert-wwm is superior, indicating that sentence 

vectors generated by Bert-wwm are more suitable for summarization extraction. 

4. Conclusion 

This paper first introduces the steps of the EMW-Sum algorithm for summary extraction, including 

text preprocessing and input, pretraining of Bert-wwm, and the specific steps for summary extraction. 

Then, it describes the dataset used in the experiment and the relevant environmental configuration, 

followed by the evaluation metrics used to assess the effectiveness of summary extraction. 

Subsequently, the optimization of multiple parameters and calculation methods within the model is 

discussed to obtain the optimal calculation method. Finally, the effectiveness of the EMW-Sum 

algorithm is verified by comparing it with some classic and commonly used baseline models on a 

news summarization data set. 
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