
Research on Graph-based Text Summarization Extraction

Algorithm

Junhong Chen1,2,a,*, Kaihui Peng3,b

1School of Software Engineering, South China University of Technology, Guangzhou, China
2LeiHuo Studio, NetEase, Hangzhou, China

3Faculty of Business and Economics, University of Malaya, Kuala Lumpur, Malaysia
ajupyterchen@163.com, bpengkaihui66@163.com

*Corresponding author

Keywords: Text Summarization; Keyword Extraction; Pre-trained Model

Abstract: This paper proposes a graph-based text summarization extraction algorithm. The

algorithm is based on directed graphs and can incorporate the position information of

sentences into the computational scope. When calculating the edge weights of nodes in the

directed graph, a pre-trained model after negative sampling is used, which not only can

extract deeper semantic features but also enable higher relevance between the contextual

sentences in the article. The algorithm also introduces a weighting mechanism to adjust the

extraction priority of the sentences according to the article’s theme, resulting in a higher

quality of extracted summary sentences that can represent the key information of the text

as much as possible. The algorithm can capture the key information in the text, reduce the

impact of irrelevant information on semantics, and play a role in text compression.

1. Introduction

This paper will propose a graph-based text summarization extraction algorithm. Unlike the

TextRank[1] based on undirected graphs, this algorithm is based on directed graphs and can take the

position information of sentences into consideration. When calculating the edge weights, a pre-trained

model is used to extract deep semantic features and generate dynamic word vectors. In addition, for

better Chinese support, the text uses the full-word masked version of BERT[2], known as Bert-

wwm[3], with the pre-training dataset being the Chinese Wikipedia. In the text, to further improve

the quality of semantic extraction, negative sampling is used to pre-train Bert-wwm, thereby

enhancing the relevance of the contextual sentences in the article. This algorithm also refers to the

article’s theme and introduces a weighting mechanism to adjust the priority of sentence output to

some extent. The extracted summary text of this algorithm has higher quality, richer information, and

better represents the meaning of the text.

Advances in Computer, Signals and Systems (2024)
Clausius Scientific Press, Canada

DOI: 10.23977/acss.2024.080603
ISSN 2371-8838 Vol. 8 Num. 6

13

2. Design of Graph-based Text Summarization Extraction Algorithm

2.1 Algorithm Overview

The graph-based text summarization extraction algorithm proposed in this paper, named EMW-

Sum, primarily consists of two major components: Firstly, the first part involves the pre-training of

Bert-wwm, during which negative sampling methods are adopted to obtain the pre-trained Bert-wwm

model, designated as N-Bert-wwm. Following this, the N-Bert-wwm model is utilized to generate

sentence representation vectors. These vectors are then employed to compute the similarity between

sentences, which in turn is used to construct a similarity matrix between the sentences[4]. This part

generates a text similarity matrix that serves as the foundation for the subsequent calculations. Next,

the second part uses the directed graph based on the sentence similarity matrix obtained from the

previous step to compute the scores of the sentences. During the scoring process, certain methods are

also applied to optimize the final scores of the sentences. Afterward, sentences are sorted according

to their final scores, and a certain number of sentences are selected until the set length requirement is

met[5]. Lastly, when generating the summary set, sentences are extracted in the order they appear in

the original text. Figure 1 illustrates the overall structural diagram of the EMW-Sum algorithm.

Figure 1: EMW-Sum Overall Structure Diagram

2.2 Input Layer

Whether it is the pre-training of Bert-wwm or the use of Bert-wwm to extract sentence semantics,

the sentences must be input into the Bert-wwm. This section will introduce the input layer of Bert-

wwm.

The input of Bert-wwm is consistent with that of BERT, which requires that sentences be

segmented at the character level, inserting [CLS] marks at the beginning of the sentence, and [SEP]

marks at the end, and extending them to a fixed length. Let Sa = {xa1
, xa2

,∙∙∙, xan
} , Sb =

{xb1
, xb2

,∙∙∙, xbn
}, represent the original input sentences, where n is the length of the sentence. Sa,

Sb need to be added [CLS] and [SEP] marks at the beginning and end, respectively, before they can

be input into Bert-wwm to capture sentence semantics. Formulas (1) and (2) represent the specific

adjustment methods:

𝑆𝑎 = {[𝐶𝐿𝑆], 𝑥𝑎1
, 𝑥𝑎2

,∙∙∙, 𝑥𝑎𝑛
, [𝑆𝐸𝑃]} (1)

𝑆𝑏 = {[𝐶𝐿𝑆], 𝑥𝑏1
, 𝑥𝑏2

,∙∙∙, 𝑥𝑏𝑛
, [𝑆𝐸𝑃]} (2)

14

During the input process of text into Bert-wwm and the output process, it is necessary to pass

through token embedding, position embedding, and segment embedding to handle the input. The three

embeddings are added together to obtain the final output. This output is the encoding vector obtained

from capturing the semantics of the sentence, as expressed below:

ℎ𝑎 = {ℎ𝑎0
, ℎ𝑎1

,∙∙∙, ℎ𝑎𝑙−1
} = BERT − WWM(𝑆𝑎) (3)

ℎ𝑏 = {ℎ𝑏0
, ℎ𝑏1

,∙∙∙, ℎ𝑏𝑙−1
} = BERT − WWM(𝑆𝑏) (4)

Where ℎ ∈ Rl×d , l is the length of the sequence, d is the dimension of the word vectors

generated by Bert-wwm, ℎai
 represents the semantic representation of the i-th character in sequence

a, and ℎbi
 represents the semantic representation of the i-th character in sequence b[6]. A simple

method for calculating text similarity is to use the vector with the [CLS] mark as a representation of

the entire sentence to directly calculate the similarity. However, if only the vector with the [CLS]

location is used to represent the entire sentence, some information from other positions may be lost,

leading to poor performance in practical applications. Therefore, when using Bert-wwm to calculate

sentence similarity, it is usually the full output of Bert-wwm that is used. In order to extract more rich

context semantic information and make the relevance between the context sentences of the article

higher, it is necessary to re-train them. In this paper, the BERT models used are all Bert-wwm, base

version models. It contains 12 layers and generates each character vector with a dimension of 768,

totaling 110M parameters.

2.3 Calculation of Sentence Similarity Matrix

The sentence similarity matrix refers to the matrix composed of the mutual similarity between

sentences in an article. The calculation of sentence similarity can be done in various ways. For

instance, the classic word2vec model can be used to generate distributed vectors, from which

similarity can be derived, or lexical text similarity can be used to directly calculate the similarity

between sentences[7]. However, with the introduction of pre-trained models like BERT, using pre-

trained models to calculate text similarity has gradually become a mainstream approach. Since pre-

trained models have undergone large-scale unsupervised learning on datasets, they can generate

higher-quality dynamic word vectors. This paper uses Bert-wwm to extract word vectors. Although

the result of directly using Bert-wwm to extract word vectors is already excellent, to further enhance

the quality of semantic extraction, this paper employs a negative sampling method to perform further

pre-training on Bert-wwm, and then uses this re-trained Bert-wwm to extract word vectors, thereby

ensuring that the word vectors generated by the context sentences of the article are more relevant.

The overall structure of the negative sampling model is depicted in Figure 2.

Based on the sentence-level distributed hypothesis theory, two sentences with similar context

semantic environments share similar semantics. Following this theory, the negative sampling method

used in this paper involves taking the preceding and following sentences of a sentence as positive

samples, and using other randomly selected sentences from the corpus as negative samples for

training. Let O_c represent the encoding vector obtained for the current sentence through Bert-wwm,

O_p represent the encoding vector obtained for the positive sample through Bert-wwm, and O_n

represent the encoding vector obtained for the negative sample through Bert-wwm.

15

Figure 2: BERT Pretraining Based on Negative Sampling

The encoding vector is transformed into a sentence vector that can represent the entire sentence

through pooling operations. In this paper, the pooling layer used is the average pooling layer[8]. The

calculation is as follows:

𝑉𝑐,𝑎𝑣𝑔 = ∑
𝑂𝑐𝑖

𝑙𝑐

𝑙𝑐
𝑖=1 (5)

𝑉𝑝,𝑎𝑣𝑔 = ∑
𝑂𝑝𝑖

𝑙𝑝

𝑙𝑝

𝑖=1 (6)

𝑉𝑛,𝑎𝑣𝑔 = ∑
𝑂𝑛𝑖

𝑙𝑛

𝑙𝑛
𝑖=1 (7)

Where Vc,avg, Vp,avg, Vn,avg are the sentence vectors of the current sentence, positive sample,

and negative sample, respectively. l is the length of the sequence, and the optimized loss function is

as follows:

𝑙𝑜𝑠𝑠 = max (∥ 𝑉𝑐,𝑎𝑣𝑔 − 𝑉𝑝,𝑎𝑣𝑔 ∥ −∥ 𝑉𝑐,𝑎𝑣𝑔 − 𝑉𝑝,𝑎𝑣𝑔 ∥ + 𝜆, 0) (8)

Here, ∥∙∥ denotes the distance measure, and this paper uses the Euclidean distance to measure

distance. λ represents the margin between edges, and the model optimizes the model by making the

distance between the current sentence and the positive sample closer than the distance from the

negative sample by λ.

After the model training is complete, the sentence vectors produced by the pre-trained model need

to use a similarity calculation method to determine the similarity between them, such as cosine

similarity, or dot product[9]. During the experimental process, it was found that using vector dot

product to calculate the similarity between vectors is more effective. The dot product calculation

formula is as follows:

𝛼 = [𝑎1, 𝑎2,∙∙∙, 𝑎𝑛] (9)

𝛽 = [𝑏1, 𝑏2,∙∙∙, 𝑏𝑛] (10)

α ∙ β = 𝑎1𝑏1 + 𝑎2𝑏2 +∙∙∙ +𝑎𝑛𝑏𝑛 (11)

Let Eij represent the similarity between the i-th sentence and the j-th sentence in the text, and

Vi, Vj be the sentence vectors of the i-th and j-th sentence text, respectively, through the pre-trained

model, then the calculation of the sentence similarity matrix is as follows.

𝐸𝑖𝑗 = 𝑉𝑖 ∙ 𝑉𝑗 (12)

16

2.4 Calculation of Sentence Scores

After obtaining the sentence similarity matrix using the pre-trained Bert-wwm model, the matrix

will be used to calculate the score of each sentence, with higher scores indicating a higher priority in

the extraction process[10]. To this end, this paper proposes a graph-based text summarization

extraction method. Each sentence in the text is converted into a node in the graph, and nodes are

connected by directed edges, with edge weights representing the similarity between two sentences.

Before obtaining the final score of a sentence, the article’s theme is considered, and a weighting

mechanism is introduced to adjust and optimize the scores. Compared to algorithms like TextRank,

which are based on undirected weighted graphs, this algorithm uses directed weighted graphs, and

the position information between sentences can affect the extraction results.

Assuming the preprocessed document is denoted as D = {s1, s2,∙∙∙, sn}, and eij represents the

similarity between the edges (si,sj), a sentence score can be calculated based on the following method:

𝑠𝑐𝑜𝑟𝑒𝑖 = ∑ 𝑒𝑖𝑗𝑗∈{1,∙∙∙,𝑖−1,𝑖+1,∙∙∙,𝑛} (13)

However, this method treats the graph as an undirected graph and does not introduce position

information. In reality, there is a pair of directed edges between sentences si and sj, pointing from

si to sj and from sjto si.Considering the direction of the edges, the score calculation for a sentence

is as follows:

𝑠𝑐𝑜𝑟𝑒𝑖 = ∑ 𝑒𝑖𝑗𝑗<𝑖 + ∑ 𝑒𝑖𝑗𝑗>𝑖 (14)

For the edge (si,sj), when j < i, the edge is a forward edge, indicating that the edge points from

si to a node located before si in the article. When j > i, the edge is a backward edge, indicating that

the edge points from si to a node located after si. Although formula (14) distinguishes between

forward edges and backward edges, the calculated result is the same as that of formula (13). To

address this, two hyperparameters λ1 and λ2 are introduced, representing the weight of forward

edges and backward edges, respectively. Thus, the sentence score calculation is as follows:

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝜆1 ∑ 𝑒𝑖𝑗𝑗<𝑖 + 𝜆2 ∑ 𝑒𝑖𝑗𝑗>𝑖 (15)

The introduction of hyperparameters allows for different weights for forward and backward edges

of a sentence. When λ1 and λ2 are both equal to 1, the result is equivalent to the calculation method

using undirected edges. Subsequent experiments show that λ1 tends to be negative, which means

that when a node is similar to previous nodes, it will reduce the score of that node, making it easier

for nodes that are further along to have lower scores and harder to achieve high scores that can be

extracted.

2.5 Adjustment of Sentence Scores

However, the aforementioned calculation method treats sentences as independent individuals

without considering the relationship between the sentences and the overall theme of the article. Key

words in an article often represent the overall theme, and the more keywords appear in a specific

sentence, the closer it is to the theme, making the sentence more important. To count the keywords

in an article, text preprocessing is required[11].

Firstly, there is tokenization. After a comprehensive evaluation of various tokenization tools, it is

decided to use the Jieba tokenization tool as the tokenization tool in this paper. Next is the removal

of stopwords, which are words that have no actual meaning in practical applications, such as "a",

"the", "or", and so on. In addition to removing these meaningless words, special symbols need to be

removed as well.

17

The calculation of keywords uses the TF-IDF algorithm. The TF-IDF algorithm gives priority to

words that have a high frequency in the paper but a low frequency in the entire corpus[12], as these

keywords are more representative of the entire article’s meaning. Among them, IDF can be obtained

in advance through statistics, which is the inverse document frequency, indicating the frequency of a

word appearing in all documents in the entire corpus. TF is the term frequency and needs to be

dynamically obtained based on the article input. In this algorithm, the TF-IDF algorithm is used to

calculate the top 10 most frequent words in the paper as keywords. Through these keywords, the

keyword coverage rate of each sentence can be calculated, which will affect the final score of the

sentence. Let K(si) represent the keyword coverage rate of si, then the calculation method of K(si)

is as follows.

𝐾(𝑠𝑖) =
𝑙𝑒𝑛(𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑠𝑖))

𝑙𝑒𝑛(𝑠𝑖)
 (16)

where len(si) represents the number of words after si is tokenized and filtered, and

len(keywords(si)) represents the number of keywords contained in si. When calculating sentence

scores, a node weight is introduced to optimize the node scores. Let wi represent the weight of si,

then wi is calculated as follows:

𝑤𝑖 = 1 + ℎ ∙ 𝐾(𝑠𝑖) (17)

Here, ℎ is a hyperparameter that controls the extent of the influence of the weight on the

calculation. When ℎ is 0, it indicates that no weight optimization is used.The mechanism of

introducing the weight optimizes the calculation after which the sentence score calculation process is

as follows:

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑤𝑖(𝜆1 ∑ (𝑒𝑖𝑗 ∙ 𝑤𝑗)𝑗<𝑖 + 𝜆2 ∑ (𝑒𝑖𝑗 ∙ 𝑤𝑗)𝑗>𝑖) (18)

The weight of a node not only affects its own score but also has an impact on the scores of other

nodes. Then, sentences are sorted according to the final score, and a certain number of sentences are

selected until the set length requirement is met. Finally, when generating the summary set, sentences

are extracted in the order they appear in the original text[13].

3. Experimental Results and Analysis

3.1 Experimental Dataset

This chapter’s experiments use the test set from NLPCC 2017[14], which contains data from

headline news, including the full text of the news and the corresponding abstracts, totaling 50,000

data items. From the full text of the news and the corresponding benchmark abstract data, 10,000

pairs of samples were randomly selected for testing based on the text length distribution. The selected

news texts cover news from various fields such as healthcare and current events.

3.2 Baseline Models

The baseline models compared in this experiment are primarily TextRank, LexRank, and some

improved methods of these models. For example, TextRank-word2vec indicates the use of the

word2vec model as the calculation model for edge weights and TextRank to compute text summaries.

TextRank-Bert-wwm indicates using Bert-wwm to extract text feature vectors. Similarly, LexRank-

word2vec signifies using the word2vec model to calculate edge weights, while LexRank is used to

compute text summaries. LexRank-Bert-wwm indicates using Bert-wwm to generate edge weights.

18

3.3 Evaluation Metrics

The algorithm uses the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) evaluation

metric. The principle of the ROUGE evaluation metric is to compare the text summaries extracted by

the algorithm with a set of benchmark text summaries and obtain corresponding scores. Then, through

these scores, measure the similarity between the automatically generated text summaries and the

benchmark text summaries.

3.4 Analysis of Experimental Results

To verify the impact of pretraining on the results, the pretrained Bert-wwm model and the

unpretrained Bert-wwm model will be used to extract sentence semantic information, with the weight

adjustment mechanism not being used and the weights for both forward and backward edges both set

to 0.5. It is also necessary to verify the impact of the number of negative samples during pretraining

on the results. Therefore, a comparative experiment was designed, including scenarios with one

positive sample corresponding to one negative sample, one positive sample corresponding to two

negative samples, and one positive sample corresponding to three negative samples. The experimental

results are shown in Table 1.

Table 1: Results of Pretraining Experiments

 ROUGE-1 ROUGE-2 ROUGE-L

No pretraining 0.19769 0.08530 0.16234

One positive sample, one negative

sample
0.27753 0.12672 0.21517

One positive sample, two negative

samples
0.27207 0.12242 0.21133

One positive sample, three negative

samples
0.26976 0.11953 0.20875

From the results, it can be seen that pretraining Bert-wwm can significantly improve the accuracy

of extraction. Additionally, when one positive sample is sampled with one negative sample, the effect

is the best, with ROUGE-1 of 0.27753, ROUGE-2 of 0.12672, and ROUGE-L of 0.21517. Therefore,

in the subsequent experimental calculations, the pretrained model used is the model obtained from

pretraining with one positive sample corresponding to one negative sample.

In the process of text summarization extraction, there are multiple hyperparameters involved,

including the parameter that controls the weight of keyword proportion h, and the parameters that

control the forward edge weight λ1 and the backward edge weight λ2. To simplify the calculation

and facilitate the control of variables, it is assumed that λ1+λ2=1, and the tuning results are optimized

with reference to the ROUGE-L results. λ1、λ2, and ℎ are changed with a step size of 0.1. Figure

3 shows the analysis of the parameter tuning results.

The image displays some typical curves during the parameter tuning process, including the curve

with the best performance, as well as curves around the optimal value of ℎ, and also a curve with ℎ

set to 0. From the figure, it can be seen that when ℎ is 0.4, λ1 is -0.7, and λ2 is 1.7, the model’s

extraction performance is the best. When λ1 is in the interval [-1, 0] and [0.5, 1], the weight

mechanism has a significant promotion effect on the results. When λ1 is in the interval [-1, 0], the

algorithm’s performance gradually improves as ℎ increases, and the optimal performance is

achieved when ℎ is 0.4. After that, as ℎ increases, the effect gradually decreases. When λ1 is in

the interval [0.5, 1], the results increase with the increase of ℎ, but the overall performance of this

interval is significantly worse than that when λ1 is negative.

19

Figure 3: Parameter Tuning Change Trend

Through comparative experiments, it can be observed that the use of a weighting mechanism to

adjust and optimize the extraction of sentences effectively increases the accuracy of summary

extraction, making the extracted summaries more in line with the article’s theme and more

representative. By utilizing different weights for forward and backward edges, the sentence position

information can be employed to assign different extraction priorities to sentences at different positions

in the article, making the summary extraction strategy of the algorithm more consistent with the

stylistic characteristics of news, thereby extracting higher-quality text summaries.

When computing the similarity matrix, a method is needed to measure the similarity between

various vectors. To date, the experiments have used dot products to calculate the similarity between

vectors. To compare the impact of different calculation methods on the results, various methods for

calculating vector similarity have been used to measure the similarity between vectors. At this point,

the weighting adjustment mechanism is introduced, and the optimal parameters are used. ROUGE-1,

ROUGE-2, and ROUGE-L are used as reference metrics for the experiments. The experimental

results are shown in Table 2.

Table 2: Experimental Results of Different Similarity Calculation Methods

Similarity Calculation Method ROUGE-1 ROUGE-2 ROUGE-L

Dot Product 0.35781 0.19690 0.29227

Cosine Similarity 0.34998 0.19013 0.28616

Eclidean Distance 0.29052 0.15360 0.24013

Manhattan Distance 0.29007 0.15316 0.24030

From the results, it can be seen that using dot product for similarity calculation yields the best

results, with the highest values for ROUGE-1, ROUGE-2, and ROUGE-L. Therefore, in the EMW-

Sum model, dot product is used to calculate sentence similarity.

To test the performance of the EMW-Sum algorithm compared to TextRank and LexRank-based

algorithms, this paper set up a comparative experiment with different algorithms. The comparison

objects are the TextRank algorithm and the relevant improved algorithms of TextRank. In addition,

to verify the effectiveness of using Bert-wwm, a comparison group using word2vec to calculate the

similarity matrix and EMW-Sum to solve is added. Table 3 shows the comparison results of various

models.

20

Table 3: Comparison Results of Different Models

Model ROUGE-1 ROUGE-2 ROUGE-L

TextRank 0.29208 0.13600 0.22930

TextRank-word2vec 0.30292 0.14177 0.23287

TextRank-Bert-wwm 0.30043 0.13915 0.23040

LexRank-word2vec 0.29923 0.13902 0.22882

LexRank-Bert-wwm 0.29122 0.13496 0.22809

EMW-Sum-word2vec 0.31554 0.16707 0.25808

EMW-Sum 0.35781 0.19690 0.29227

Through comparative experiments, the performance of TextRank, LexRank, and their

improvements are compared with the model proposed in this paper. From the above table, it can be

seen that the method EMW-Sum proposed in this paper has significantly higher scores in all

evaluation metrics compared to the scores of other algorithms. Compared to the EMW-Sum algorithm

that uses word2vec, the algorithm based on pre-trained Bert-wwm is superior, indicating that sentence

vectors generated by Bert-wwm are more suitable for summarization extraction.

4. Conclusion

This paper first introduces the steps of the EMW-Sum algorithm for summary extraction, including

text preprocessing and input, pretraining of Bert-wwm, and the specific steps for summary extraction.

Then, it describes the dataset used in the experiment and the relevant environmental configuration,

followed by the evaluation metrics used to assess the effectiveness of summary extraction.

Subsequently, the optimization of multiple parameters and calculation methods within the model is

discussed to obtain the optimal calculation method. Finally, the effectiveness of the EMW-Sum

algorithm is verified by comparing it with some classic and commonly used baseline models on a

news summarization data set.

References

[1] Mihalcea R, Tarau P. Textrank: Bringing order into text[C]//Proceedings of the 2004 conference on empirical

methods in natural language processing. 2004: 404-411.

[2] Devlin J. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint

arXiv:1810.04805, 2018.

[3] Cui Y, Che W, Liu T, et al. Pre-training with whole word masking for chinese bert[J]. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 2021, 29: 3504-3514.

[4] Abdi A, Shamsuddin S M, Idris N, et al. A linguistic treatment for automatic external plagiarism detection[J].

Knowledge-Based Systems, 2017, 135: 135-146.

[5] Nápoles G, Dikopoulou Z, Papageorgiou E, et al. Prototypes construction from partial rankings to characterize the

attractiveness of companies in Belgium[J]. Applied Soft Computing, 2016, 42: 276-289.

[6] Goyal R, Dymetman M, Gaussier E. Natural language generation through character-based rnns with finite-state prior

knowledge[C]//Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:

Technical Papers. 2016: 1083-1092.

[7] Yu D, Wang H, Chen P, et al. Mixed pooling for convolutional neural networks[C]//Rough Sets and Knowledge

Technology: 9th International Conference, RSKT 2014, Shanghai, China, October 24-26, 2014, Proceedings 9. Springer

International Publishing, 2014: 364-375.

[8] Li B, Zhou H, He J, et al. On the sentence embeddings from pre-trained language models[J]. arXiv preprint

arXiv:2011.05864, 2020.

[9] Yu Y, Wang Y, Mu J, et al. Chinese mineral named entity recognition based on BERT model[J]. Expert Systems with

Applications, 2022, 206: 117727.

[10] Mahata D, Kuriakose J, Shah R, et al. Key2vec: Automatic ranked keyphrase extraction from scientific articles using

phrase embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). 2018: 634-639.

21

[11] Yao L, Pengzhou Z, Chi Z. Research on news keyword extraction technology based on TF-IDF and TextRank[C]//

2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS). IEEE, 2019: 452-455.

[12] Genest P E, Lapalme G. Framework for abstractive summarization using text-to-text generation[C]//Proceedings

of the workshop on monolingual text-to-text generation. 2011: 64-73.

[13] Hua L, Wan X, Li L. Overview of the NLPCC 2017 shared task: single document summarization[C]//Natural

Language Processing and Chinese Computing: 6th CCF International Conference, NLPCC 2017, Dalian, China,

November 8–12, 2017, Proceedings 6. Springer International Publishing, 2018: 942-947.

[14] Yuan W, Neubig G, Liu P. Bartscore: Evaluating generated text as text generation[J]. Advances in Neural

Information Processing Systems, 2021, 34: 27263-27277.

22

