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Abstract: With the continuous advancement of aerospace and deep-sea technologies, the 

safety of enclosed spaces has increasingly garnered attention, particularly concerning the 

control of carbon dioxide (CO2) concentrations. However, there are challenges with existing 

CO2 control methods. For instance, the adsorption efficiency cannot be measured when 

utilizing Lithium Hydroxide for absorption. To address this challenge, this paper presents a 

new model to quantify LiOH AC. This study integrates Long Short-Term Memory (LSTM) 

networks with a self-attention mechanism, refined utilizing Non-Dominated Sorting Genetic 

Algorithm II (NSGA-II) for optimization. The results indicate that the supposed model 

surpasses traditional LSTM model leading to improved predictive precision and enhanced 

overall performance in the prediction of LiOH AC. 

1. Introduction 

With the continuous advancement of aerospace and deep-sea technologies, the safety of enclosed 

spaces has been increasingly emphasized. Among them, the Environmental Control and Life Support 

System (ECLSS) is an essential component for ensuring the safety of personnel within enclosed 

spaces, with one of its primary tasks being the removal of carbon dioxide (CO2) [1]. Among the 

various methods developed for the control of carbon dioxide (CO2) concentrations, lithium hydroxide 

(LiOH) as a chemical adsorption material has been widely used due to the advantages of low energy 

consumption and high adsorption capacity [2]. In the aerospace and marine industries, LiOH is used 

as a CO2 absorbent in the filtration units to reduce the side effects of high CO2 concentrations on 

human operators. A simplified diagram of the use of LiOH to adsorb CO2 in a filtration apparatus is 

shown in Fig. 1. When CO2 is generated in a confined space, according to the operator's environment, 

mainly including temperature and humidity, and carbon dioxide concentration, the amount of CO2 

removal can be estimated, and further to find the fan air volume. LiOH filling volume can be 

calculated accordingly. In the apparatus device under the action of the fan, CO2 will enter into the 

LiOH filter layers through the air inlet on both sides of the apparatus device to chemically react with 

LiOH to form, resulting in lithium carbonate (Li2CO3) and water (H2O). The generated Li2CO3 will 

be retained in the filtration device, and the water can be removed by other water separation devices. 
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Figure 1: The flowchart of CO2 adsorption by LiOH. 

2LiOH(solid) + CO2(gas) → Li2CO3(solid) + H2O(gas)                            (1) 

An issue arises in conjunction with using LiOH. According to formula 1, the adsorption efficiency 

of LiOH (LiOH AC) is estimated based on the coefficient ratio of 2:1 for LiOH to CO2. However, 

formula 1 is under ideal conditions but not accurate in various practical conditions. As in Fig. 1, the 

chemical reaction can be affected by several factors, including the particle reaction time (PRT), 

carbon dioxide concentration (CC), airflow (A), humidity (H), particle filling amount (FV), 

temperature (T), and particle concentration (PFM). Different ranges of values for these factors can be 

combined to form a complex set of chemical reactions. The diversity of chemical reaction conditions 

is seen as critical in influencing LiOH AC. The problem is how to quantify LiOH AC.  

To address the above problems, in this study, this paper presents a new model to quantify LiOH 

AC with the following innovations: The model combines Long Short-Term Memory (LSTM) 

networks with the self-attention mechanism to predict LiOH AC with multiple input factors, including 

PRT, CC, A, H, FV, T, and PFM. The hyperparameter optimization is conducted by utilizing the Non-

Dominated Sorting Genetic Algorithm II (NSGA-II) within this model. The trained model does not 

need experiments, and it helps users obtain LiOH AC under different reaction conditions. This 

provides engineering guidance for future researchers to apply LiOH in various environmental 

conditions.  

2. Experiments and Methods  

2.1 Overall flow 

Fig. 2 shows the flowchart of how LiOH AC can be predicted using the enhanced NSGAII-LSTM 

model. After experiments are designed and raw data from the experiments are collected, the data are 

used to train and test the established models for LiOH AC prediction under different reaction 

conditions. Because of the temporal nature of the collected data, this study employs the LSTM model 

to forecast LiOH AC, utilizing R² and MSE as evaluation metrics. To enhance the predictive ability 

of the model, a multi-head self-attention mechanism is integrated into the LSTM to better capture the 

crucial features within the input data. Furthermore, the NSGA-II algorithm is utilized to optimize the 

model's hyperparameters, thereby further enhancing the predictive performance.  
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Figure 2: The flowchart of the developed methodology. 

2.2 Methodology 

In this study, an enhanced NSGAII-LSTM model is designed for LiOH AC prediction. The input 

includes the particle reaction time (PRT), carbon dioxide concentration (CC), airflow (A), humidity 

(H), particle filling amount (FV), temperature (T), and particle concentration (PFM). A, T, and RH 

data are collected in the form of a time series. Therefore, the model should adequately consider the 

dynamic features within the time series. Long Short-Term Memory (LSTM) is a type of recurrent 

neural network (RNN) specifically designed for processing and predicting time series data. LSTM 

employs gate mechanisms are integral components in the architecture of neural networks.  

The input gate plays a crucial role in deciding the necessity of updating the data within the memory 

unit. Herein lies its formal explanation. 

𝑖𝑡 = 𝑠𝑖𝑑𝑚𝑜𝑖𝑑(𝑊𝑖𝑖 ∗ 𝑥 + 𝑊ℎ𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖)                      (2) 

where 𝑊𝑖𝑖 and  𝑊ℎ𝑖are the weights establishing the connection between the input gate and the 

prior hidden state, and 𝑏𝑖is the bias value of the input gate. 

The operational function of the forget gate, denoted as 𝑓𝑡 , is to regulate the decision-making 

process regarding the retention or removal of information stored within the memory unit.  

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑓 ∗ 𝑥 + 𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓)                    (3) 
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where x is the input of the LSTM network.ℎ𝑡−1 is the previous hidden state. 𝑊𝑖𝑓and 𝑊ℎ𝑓are the 

weights that link the forget gate to the prior hidden state, and 𝑏𝑓 is the bias value of the forget gate. 

The decision regarding the dissemination of the status details from the concealed layer hinges upon 

the output gate denoted as𝑜𝑡, as elaborated in the subsequent definition. 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑜 ∗ 𝑥 + 𝑊ℎ0 ∗ ℎ𝑡−1 + 𝑏0)                   (4) 

Whether the status information of the hidden layer is output is determined by the output gate 𝑜𝑡. 

The following is its definition. 

The candidate state 𝑐′𝑡 retains information about candidates and undergoes updates through the 

utilization of the preceding concealed state in conjunction with the present input in the subsequent 

manner. 

𝑐′𝑡 = 𝑖𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑊𝑖𝑐 ∗ 𝑥 + 𝑊ℎ𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐)                  (5) 

where 𝑊𝑖𝑐and 𝑊ℎ𝑐  are the weights connecting the previous hidden state to the candidate state, 

and bc is the bias value of the candidate state. 

The following is how output gates and cell states are used to update the hidden state ℎ𝑡. 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐′𝑡)                           (6) 

The LSTM network regulates the flow of new information through the input gate. The input gate 

determines whether to retain or discard information in the memory cells through the forget gate. It 

generates potential new information to update the memory based on candidate states, which 

dynamically manages the cell state according to the forget gate and candidate state. Finally, the output 

gate decides which parts of the cell state are to be output as hidden states, effectively transmitting 

information to the next time step and subsequent network layers. 

However, traditional LSTM models still encounter issues of information loss and insufficient 

selection of important features when dealing with long sequences. Additionally, for neural network-

based models, hyperparameter tuning is a crucial task that demands a significant amount of time and 

effort to determine the optimal set of hyperparameters [3]. To address the limitations of the LSTM 

model, we have introduced a self-attention mechanism and NSGA-II algorithm. By employing a self-

attention mechanism, the LSTM model is facilitated to autonomously select the features that have the 

most significant impact on LiOH AC. The self-attention mechanism, when dealing with sequential 

data, dynamically weights the relationships between elements in a sequence to assist models in 

focusing on crucial features. The incorporation of attention mechanisms facilitates the capturing of 

long-term temporal patterns in LSTM models, thereby enhancing their generalization capability. The 

formula for this mechanism is as follows:  

𝐻 = 𝐿𝑆𝑇𝑀(𝑋)                                 (7) 

where X represents a sequence comprising seven input features in the present study, where H 

denotes the hidden states of all time steps in the LSTM model. 

 𝑄 = 𝐻𝑇                                    (8) 

where Q represents queries, and HT denotes the final hidden state of the LSTM model. 

Using all hidden states of LSTM as keys and values. 

𝐾 = 𝑉 = 𝐻                                 (9) 

Where the attention mechanism consists of values V, K is keys, H is hidden states. The aggregation 

of the output A from each attention head, denoted as headi, is calculated. 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄 ∗ 𝑊𝑄
𝑖 , 𝐾 ∗ 𝑊𝐾

𝑖 , 𝑉 ∗ 𝑊𝑉
𝑖)                    (10) 
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𝐴 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑡𝑎𝑐𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . . , ℎ𝑒𝑎𝑑ℎ) ∗ 𝑉      (11) 

where 𝑊𝑄
𝑖 , 𝑊𝐾

𝑖 , 𝑊𝑉
𝑖  are learned projection matrices for each head. The outputs of each attention 

head are concatenated and linearly transformed. 

𝑌̂ = 𝑊𝑜𝑢𝑡 ∗ 𝐴                                  (12) 

Where the matrix 𝑊𝑜𝑢𝑡 represents the weights of the output layer in the neural network 

architecture. The symbol Ŷdenotes the predicted values generated by the model. 

Furthermore, NSGA-II operates by simulating a natural evolutionary process, wherein multiple 

potential solutions are evaluated based on defined objectives to determine the optimal hyperparameter 

configuration. This not only enhances the model's performance but also ensures its robustness by 

exploring a diverse solution space, thereby avoiding local optima [4]. This optimization problem aims 

to minimize MSE and maximize R2, thus the mathematical model for the optimization problem is as 

follows: 

𝑚𝑖𝑛(𝐹(𝑙, ℎ, 𝑏)) = 𝑚𝑖𝑛(𝑀𝑆𝐸,
1

𝑅2)                         (13) 

𝑠. 𝑡. = {

0.00001＜𝑙＜0.1

26＜ℎ＜1500

16＜𝑏＜526

                             (14) 

The symbol 𝑙 represents the learning rate, h denotes the number of hidden units, and b signifies 

the batch size. Determination coefficient (R2) and mean square error (MSE) were used for evaluation. 

The higher the value of R2 and the lower the values of MSE, the more accurate the model’s prediction 

result is. The calculation equations are shown in formula 15 and formula 16. 

R2 = 1 −
∑ (ypred−yact)

2𝑁
n=1

∑ (ypred−ymean)
2𝑁

n=1

                            (15) 

MSE =
1

𝑁
∑ (yact − ypred)2𝑁

n=1                           (16) 

where N is the total number of data points, and ypred, yact, and ymean denote the predicted, actual, 

and mean values of the LiOH AC, respectively. 

3. Conclusion 

A novel approach is presented in this study, introducing a model that employs Long Short-Term 

Memory (LSTM) networks with a self-attention mechanism to quantify LiOH AC. The optimization 

of this model is achieved through the utilization of the Non-Dominated Sorting Genetic Algorithm II 

(NSGA-II).  

The results indicate that the LSTM model, enhanced with the self-attention mechanism and 

NSGA-II algorithm, exhibits superior accuracy in predicting LiOH AC. The model achieves an R² of 

0.987 and MSE of 0.04, outperforming the traditional LSTM model which only attains an R² of 0.92 

and MSE of 0.21. The incorporation of the self-attention mechanism and NSGA-II algorithm 

effectively addresses the limitations of the LSTM model, enhancing its predictive accuracy and 

overall performance.  

Subsequent research endeavors may focus on evaluating the performance of this model across 

different datasets and application scenarios, thereby providing more robust predictive capabilities. 
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