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Abstract: The surface electromyography (sEMG) signal, as a type of bioelectrical signal, 

has been widely applied in modern human-computer interaction, especially for gesture 

recognition. The rapid advancement of deep learning has significantly promoted the 

development of sEMG-based gesture recognition technology. However, existing studies 

often face challenges such as insufficient feature extraction from sEMG signals and low 

differentiation between similar gestures. To address these issues, this study proposes a 

novel dual-branch model architecture specifically designed for sparse-channel sEMG 

gesture recognition. The model leverages the strengths of Convolutional Neural Networks 

(CNN) and Bidirectional Long Short-Term Memory-Transformer (BiT) networks to 

process both the time-frequency representations and raw signals of sEMG data, 

thoroughly extracting spatiotemporal features. Additionally, the proposed Hybrid 

Attention Block (HAB) further enhances the feature representation capability of the CNN 

branch. To verify the model’s effectiveness, multiple experiments were conducted on the 

NinaPro-DB1 dataset. The results demonstrate that the proposed model achieved a 

classification accuracy of 89.23%, outperforming most mainstream models. 

1. Introduction 

Technological advancements have fueled growing interest in recognizing human motion 

intentions across various fields. Gesture recognition, a natural and intuitive interaction method, has 

found broad applications in medical rehabilitation, virtual reality, and human-computer interaction 

[1][2]. sEMG, which records muscle activity through electrodes placed on the skin, is widely used 

for gesture recognition due to its non-invasive nature and convenience. sEMG captures the unique 

electrical patterns generated by specific muscle groups during gestures, enabling real-time 

recognition. Unlike vision-based methods or those relying on accelerometers and gyroscopes, 

sEMG is unaffected by lighting changes or hand occlusion, offering notable advantages. 

Traditional gesture recognition methods, such as SVM and KNN [3][4], offer advantages like 

low computational complexity and fast processing times. However, their accuracy is limited when 

handling complex gestures and diverse sEMG signal patterns, as they struggle with the high-

dimensional, nonlinear nature of the data. Additionally, manually designed feature engineering is 

inefficient and may miss important information.The advancement of artificial intelligence has 
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enhanced sEMG gesture recognition, with deep learning models like RNN and CNN showing 

superior accuracy by extracting complex features, particularly through converting sEMG signals 

into time-frequency maps.  

Wei et al.[5] introduced a multi-stream CNN that divides raw sEMG images into blocks based 

on electrode layout, using a "divide-and-conquer" approach to independently learn muscle and 

gesture correlations. This method achieved 85% accuracy on the NinaPro database.Sandoval-Espino 

et al. [6] compared four sets of time-domain features, converting them into images for CNN training. 

They found that incorporating power spectral information and optimizing image representations 

significantly improved classification accuracy, with results of 97.61% on NinaPro DB2 and 90.23% 

on DB3. 

LSTM networks, designed to address gradient issues in RNN, are well-suited for capturing the 

complex temporal dynamics of sEMG signals in time series gesture classification tasks.Samadani A 

[7] compared different RNN configurations for sEMG-based gesture classification, focusing on 

LSTM and GRU units, achieving a maximum accuracy of 86.7% on the NinaPro DB2 dataset. 

Bittibssi et al. [8] proposed three LSTM-based models: standard LSTM, convolutional dilated 

LSTM, and GRU, with the dilated convolutional LSTM showing the best performance on most 

datasets, reaching 90% accuracy for 12 gestures on NinaPro DB1. Zhang et al. [9] introduced the 

LSTM-MSA model, which integrates LSTM with a dual-stage attention mechanism, enhancing 

feature extraction and improving gesture prediction accuracy. The model achieved 91.36% accuracy 

for 17 gestures on the NinaPro DB5 dataset. 

Although CNN and LSTM have demonstrated outstanding performance in their respective fields, 

a single model may struggle to fully capture the multi-layered features and dynamic variations of 

data in complex application scenarios. As a result, researchers have proposed hybrid models that 

combine different deep learning models, leveraging their respective strengths to further enhance 

model performance. Prabhavathy T. et al. [10] developed a CNN-LSTM hybrid gesture recognition 

framework using VMD for frequency pattern identification and spectral analysis, achieving 98.04% 

accuracy for ten gestures, a 3% improvement over traditional CNN models. 

Wang et al. [11] proposed ALCNet, a CNN-LSTM hybrid model that uses stationary wavelet 

packet transform to decompose time-frequency information, achieving 81.80% accuracy on the 

NinaPro DB1 dataset. Liu et al. [12] introduced a CNN-Transformer hybrid model, combining CNN 

with AFB and MFA modules for local feature extraction and a Transformer for global context, 

achieving 99.02% accuracy on a custom dataset of nine gestures. 

Despite the aforementioned progress, several challenges remain. First, most models perform 

poorly when recognizing similar gestures, as they rarely address the issue of low distinction among 

such gestures. Second, some deeply stacked network models may experience degradation, and 

relying solely on one form of sEMG data (either time-frequency maps or raw sEMG signals) makes 

it difficult to fully leverage the multiple characteristics of sEMG data. 

To address these issues, this study proposes a dual-branch network model based on CNN and 

BiLSTM-Transformer (BiT) for sEMG gesture recognition. The model combines the BiT’s ability 

to model long-term temporal dependencies with CNN’s strength in detecting local patterns in time-

frequency maps, thoroughly exploring and extracting the spatiotemporal features of sEMG signals. 

By adopting a parallel structure instead of a stacked multi-layer network architecture, the model 

prevents the degradation problem. The parallel processing of sEMG time-frequency maps and raw 

data through CNN and BiT allows for the full utilization of the data's diverse characteristics, 

thereby improving gesture classification accuracy. 
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2. Methods 

2.1. CNN Branch 

CNN, widely used in image processing, are also commonly applied in sEMG gesture recognition. 

In this study, the CNN branch processes time-frequency maps, capturing both temporal and 

frequency information to highlight subtle muscle activities. While CNN excel at extracting local 

spatial features, in multi-channel sEMG tasks, feature extraction can be insufficient after several 

convolutional layers. To address this, a Hybrid Attention Block (HAB) is introduced to assign 

weights to different channels and spatial positions, enhancing attention to key features and reducing 

interference from irrelevant information. 

 

Figure 1: Hybrid Attention Block. 

As shown in Figure 1, the HAB uses a parallel approach to compute channel and spatial attention, 

which are fused through weighted integration to highlight the most important channels in the global 

information. The specific process is as follows: Suppose 𝑋 ∈ 𝑅𝐶×𝐻×𝑊  is the input feature map, 

where 𝐶, 𝐻, 𝑊 denote the number of channels, height, and width, respectively. The input feature 

map undergoes global average pooling (GAP) and global max pooling (GMP) operations, forming 

two feature vectors 𝑋𝑎𝑣𝑔, 𝑋𝑚𝑎𝑥 ∈ 𝑅𝐶×1×1. The calculation process of channel attention is as follows: 

max( (Re ( ( ))) (Re ( ( ))))C avgW FC LU FC X FC LU FC X 
                             (1) 

Where 𝑊𝐶 ∈ 𝑅𝐶×1×1 represents the channel attention weights, and 𝜎 is the sigmoid activation 

function. Then, through element-wise multiplication, the channel attention-enhanced feature map 

𝑋𝐶 ∈ 𝑅𝐶×𝐻×𝑊is obtained. 

C CX W X 
                                                                     (2) 

The feature map enters two parallel paths: channel attention and spatial attention, with spatial 

attention identifying key regions along spatial dimensions. Like channel attention, the feature map 

first undergoes GAP and GMP along the channel dimension. However, in this case, the global 

information of each spatial location is retained, generating two single-channel spatial feature maps 

𝑋𝑎𝑣𝑔_𝑠, 𝑋max_𝑠 ∈ 𝑅1×𝐻×𝑊. 

Next, to capture global spatial dependencies and generate attention weights for the spatial 

dimension, the two feature maps are concatenated along the channel dimension and input into a 

convolutional layer. Subsequently, the spatial attention weights are utilized on the spatial dimension 

of the original feature map through element-wise multiplication. The specific formula is presented 

below: 

_ max_( ([ , ]))S avg s sW Conv X X
                                                         (3) 
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S SX W X 
                                                                   (4) 

Where 𝑊𝑆 ∈ 𝑅1×𝐻×𝑊  represents the attention weights for the spatial dimension, and 𝑋𝑆 ∈
𝑅𝐶×𝐻×𝑊 is the feature map enhanced by spatial attention. Finally, as shown in Equation (5), the 

channel-enhanced feature map and the spatial-enhanced feature map are combined through 

weighted addition to generate the final output of the HAB. 

'

C SX X X  
                                                              (5) 

Here,𝛼, 𝛽 are tunable hyperparameters used to control the contribution ratios of channel attention 

and spatial attention, respectively. 

2.2. BiLSTM-Transformer Branch 

sEMG gesture recognition is a time series classification problem, and CNN alone struggle to 

capture long-term dependencies. LSTM networks are effective at modeling temporal dynamics 

using memory cells, but they rely only on past information. BiLSTM overcomes this by utilizing 

both past and future information, yet it still faces challenges with longer sequences and high 

computational complexity due to its step-by-step processing, limiting parallelization and training 

efficiency. Unlike BiLSTM, the Transformer architecture allows parallel processing of entire input 

sequences during training and inference, greatly improving computational efficiency, especially 

with long sequences. Its multi-head attention mechanism captures temporal dependencies at various 

levels, enhancing adaptability in gesture recognition tasks. However, relying solely on self-attention 

may cause the Transformer to lose the natural order of sequences, limiting its effectiveness in 

handling temporal data. 

To combine the strengths of both architectures while mitigating their limitations, the BiT branch 

integrates the advantages of BiLSTM and Transformer. This combination enables complementary 

strengths in local and global, short-term and long-term feature extraction, allowing the model to 

consider different patterns and features in sEMG data. This enhances the accuracy and efficiency of 

sEMG gesture recognition tasks. Gestures typically involve multi-phase dynamic changes, and the 

BiT branch can effectively model both local and global features of these actions, improving the 

recognition accuracy of complex gestures. 

2.3. Overall Architecture of the Model 

 

Figure 2: Overall Architecture of the Dual-Branch Network Model. 
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As shown in Figure 2, the dual-branch CNN and BiT network processes different types of sEMG 

data. The CNN branch uses sEMG time-frequency maps derived from Continuous Wavelet 

Transform (CWT) as input, with features extracted through several 3×3 convolutional layers. The 

number of filters increases from 32 to 256 as the network deepens. ReLU is used as the activation 

function, and L2 regularization (weight 0.001) is applied to prevent overfitting. After the third 

convolutional layer, the Hybrid Attention Block (HAB) is introduced with initial α and β values set 

to 0.5. GAP and GMP compress the feature maps, and batch normalization and a Dropout layer 

(rate 0.3) are applied before concatenating the pooled feature vectors. 

The BiT branch processes preprocessed sEMG data by first using a BiLSTM layer with 128 

neurons to extract temporal sequence features. Next, the BiLSTM output is passed through three 

Transformer encoder layers with four attention heads each to capture global dependencies. The 

features are then mapped to a higher-dimensional space through a fully connected layer with 512 

neurons, followed by a Dropout layer (rate 0.3) and layer normalization to prevent overfitting. 

Finally, the outputs from both branches are flattened into 1D tensors and concatenated to form a 

unified feature vector. This concatenated feature vector is passed through a fully connected layer 

with 64 units, and gesture classification is completed using the SoftMax activation function. 

3. Experimental Setup 

3.1. Dataset 

 The Ninapro dataset is an indispensable resource for the development of gesture recognition and 

prosthetic control technologies. This database was developed and maintained by the École 

Polytechnique Fédérale de Lausanne (EPFL) in Switzerland with the goal of providing high-quality 

sEMG data. In this study, the first dataset, Ninapro-DB1, was selected to evaluate the proposed 

model. DB1 contains electromyographic data collected from 27 healthy subjects, recorded using 10 

electrodes with a sampling rate of 100 Hz, covering the major muscle groups in the forearm and 

hand. Subjects followed a predefined experimental protocol, performing 52 different hand 

movements, including basic gestures, common gestures, and complex daily life activities. Each 

subject repeated each movement 10 times, ensuring diversity and reliability of the data.  

3.2. Data Preprocessing 

First, the action labels in the dataset were reassigned. The 52 actions were sequentially assigned 

labels in the range of 1 to 52, following the order of categories A, B, and C, ensuring that each 

action corresponds to a unique label. To retain useful components of the sEMG signal while 

removing DC offset, high-frequency noise, and power line interference, a 20Hz-450Hz fourth-order 

Butterworth band-pass filter and a 50Hz notch filter were applied to the sEMG signal. Subsequently, 

a μ-law transformation was used for non-linear processing of the sEMG signal. Many of the useful 

features of the sEMG signal are concentrated near zero; the μ-law transformation logarithmically 

amplifies the small-magnitude sensor outputs while keeping them consistent with larger sensor 

values. The formula for μ-law transformation is as follows: 

ln(1 )
( ) ( )

ln(1 )

i

i i

x
F x sign x








                                                         (6) 

Here, 𝒙𝒊 represents the input at the i-th sampling point, and in this experiment, the parameter μ 

was set to 256. 

To fully extract sEMG features, a sliding window with a window size of 250 ms and a step size 
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of 62.5 ms is applied to segment the sEMG signal. After window segmentation, CWT is applied to 

each signal segment within the window, converting the time-domain signal into a time-frequency 

domain representation. The segmented signals are used as inputs for the BiT branch, while the 

CWT-processed signals are fed into the CNN branch. 

3.3. Experimental Parameters 

The dual-branch CNN-BiT model was implemented using PyTorch on an Intel Core i5-12400 

CPU and NVIDIA RTX 3060 GPU, running on Windows 10. The dataset was split 8:2 into training 

and test sets. Categorical cross-entropy was used as the loss function, with the Adam optimizer, and 

a batch size of 64. The model was trained for 200 epochs, starting with a learning rate of 0.001, 

which was halved every 50 epochs to improve convergence and generalization. 

3.4. Evaluation Criteria 

After the model training is completed, the classification accuracy of the classifier is calculated 

based on the recognition results from the test set. Let the average classification accuracy be denoted 

as Accuracy, the number of correctly classified samples as N, and the total number of samples as T. 

The formula is as follows: 

100%
N

Accuracy
T

 
                                                            (7) 

4. Results and Analysis 

This study evaluated the contribution of each component to the overall model performance 

through experiments combining various branches and modules. The results, summarized in Table 1, 

show that adding the HAB significantly improved the CNN branch's accuracy, increasing it from 

81.72% to 83.38%.The experiments showed that the performance of the CNN and BiT branches 

individually was much lower than the dual-branch model. When both branches were used together, 

the accuracy increased to 88.06%, highlighting the benefits of multimodal feature fusion. Adding 

the HAB module further improved accuracy to 89.23%, demonstrating its role in enhancing feature 

representation and creating a synergistic effect with the fusion architecture. These findings 

emphasize the importance of each component and their combined impact on improving model 

performance. 

Table 1: Impact of Different Modules on Classification Accuracy. 

 CNN BiT HAB Acc/% 

1  – – 81.72 

2  –  83.38 

3 –  – 84.91 

4   – 88.06 

5    89.23 

As shown in Table 2, the dual-branch CNN-BiT model achieves the best classification accuracy, 

thanks to its ability to process richer information and more diverse features compared to single-

feature models. By using a dual-path architecture—CNN for time-frequency maps and BiT for raw 

sEMG data—the model combines time-frequency and temporal features effectively. The CNN 

branch, with its HAB module, enhances critical feature focus through parallel channel and spatial 

attention, reducing redundancy in high-dimensional data and improving feature distinction. This 
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combination increases the model's ability to differentiate similar gestures, leading to improved 

classification accuracy. 

Table 2: Comparison of Classification Accuracy between the Proposed and Other Models. 

Methods Number of gestures Acc/% 

CNN[13] 50 66.60 

RNN with weight loss[14] 53 79.30 

ALCNet[11] 52 81.80 

MS-CNN[5] 52 85.00 

MVCANet[15] 52 87.98 

Ours 52 89.23 

Figure 3 shows the confusion matrix for the dual-branch model’s recognition of 52 gestures, with 

rows representing true labels and columns representing predicted labels. The main diagonal 

indicates correct classifications, where darker colors show higher accuracy. The distinct coloring 

along the diagonal suggests that the model accurately recognizes most gestures. Notably, the model 

excels at differentiating between similar gestures, such as gesture 6 (Ring extension) and gesture 20 

(Adduction of extended fingers), and gesture 30 (Large diameter grasp) and gesture 49 (Power disk 

grasp). This high performance is due to the model’s comprehensive extraction of spatiotemporal 

features from both time-frequency maps and raw signals, allowing it to effectively capture local and 

global features. The confusion matrix highlights the model’s ability to handle complex 

classification tasks involving similar gestures by enhancing feature distinction. 

 

Figure 3: The confusion matrix for the classification of 52 gestures. 

5. Conclusion 

To fully exploit the diverse characteristics of sEMG signals and improve the differentiation 

between similar gestures, this paper proposes a dual-branch network model based on CNN and BiT 

for gesture recognition. By combining the strengths of both CNN and BiT branches, the model 

thoroughly explores and utilizes the time-frequency and temporal features of sEMG signals. The 

CNN branch, equipped with a HAB, processes the time-frequency maps generated by Continuous 

Wavelet Transform, enhancing feature distinction in both channel and spatial dimensions. The BiT 

branch, integrating BiLSTM and Transformer, captures the long-term temporal dependencies of 

92



sEMG data and extracts global features. The parallel structure of the dual branches effectively 

avoids the degradation problem commonly seen in deep networks while improving the model’s 

ability to distinguish similar gestures, resulting in a significant increase in gesture classification 

accuracy. Experimental results demonstrate that the proposed model outperforms most mainstream 

models in terms of classification accuracy. Comparative experiments on different branch and 

module combinations further validate the model's effectiveness. In conclusion, the dual-branch 

network model based on CNN and BiT proposed in this paper offers a novel solution to the task of 

sEMG gesture recognition, boasting high classification accuracy and powerful feature extraction 

capabilities, and provides valuable insights for future research and applications. 
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