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Abstract: In the operation of offshore oil support ships, due to the low accuracy of fault 

diagnosis for the side thrust system and the inability to accurately eliminate faults, 

untimely diagnosis combined with incorrect fault diagnosis can easily lead to serious safety 

hazards and economic losses. The aim of this study is to apply an intelligent platform based 

on Fault Tree Analysis (FTA) to improve the accuracy and efficiency of fault diagnosis in 

the lateral push system. This article first uses a data collection system to monitor key 

parameters in real-time, and combines CNN in deep learning algorithms to predict and 

diagnose faults, and then constructs a fault tree model for the lateral push system to 

identify the main fault modes and their causes. The experimental results show that after 

applying the intelligent platform, the accuracy of fault diagnosis has increased to 92%, 

which is more than 20% higher than the single fault tree analysis method. The diagnosis 

time has been shortened by 30%, significantly reducing the risk of ship shutdown. The 

intelligent platform based on FTA can effectively enhance the fault diagnosis capability of 

the offshore oil support ship's side push system, providing strong technical support for the 

safe operation of ships.  

1. Introduction 

In the operation of offshore oil support ships, the lateral thrust system, as a key power device, 

directly affects the maneuverability and safety of the ship. However, the current fault diagnosis 

accuracy of the lateral push system is generally not high, often resulting in failure to detect faults in 

a timely manner or incorrect diagnosis. This situation not only increases the risk of vessel shutdown, 

but may also cause serious safety hazards and economic losses. Therefore, improving the accuracy 

and efficiency of fault diagnosis in the lateral thrust system has become an urgent problem to be 

solved in the offshore oil industry.  

To address the above challenges, this article proposes an intelligent platform based on Fault Tree 

Analysis (FTA), aiming to significantly improve the performance of fault diagnosis through the 

combination of real-time monitoring and deep learning algorithms. By monitoring key parameters 
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in real-time through a data acquisition system and applying convolutional neural networks (CNN) 

for fault prediction and diagnosis, the main fault modes and their causes can be effectively 

identified. This method not only improves the accuracy of fault diagnosis, but also shortens the 

diagnosis time, thereby reducing the risk of ship shutdown and providing strong technical support 

for the safe operation of ships.  

The structure of this article is arranged as follows: the first part provides a detailed introduction 

to the research background and relevant literature review; the second part describes the data 

collection and fault diagnosis methods used; the third part presents the experimental design and 

result analysis; the final part is to summarize the research results and look forward to future 

research directions. Through systematic research arrangements, we strive to provide practical and 

feasible solutions for the safe operation of offshore oil support ships.  

2. Related Work 

In the field of machinery fault diagnosis, with the development of artificial intelligence 

technology in recent years, the application of various types of learning frameworks has been 

deepening. This article will summarize the current research progress in frameworks such as shallow 

machine learning, deep learning, and transfer learning, in order to better understand their practical 

applications in fault diagnosis. Cen J classified and summarized the current status of applications 

and research progress in machinery fault diagnosis[1]. Huang T proposed a new fault diagnosis 

method to consider the feature extraction and the time delay for the occurrence of faults[2]. Zhu J 

reviewed the current state of development of RNN methods in machinery fault diagnosis and 

presented their applications in terms of both RNN and combinatorial neural networks including 

RNN [3]. Furse C M reviewed the state-of-the-art of detection, localization, and diagnosis of faults 

in Electrical Wiring Interconnection Systems (EWIS) [4]. Feng L proposed an attribute shifting 

approach by proposing fault description based to solve the zero sample fault diagnosis problem [5]. 

Fernandes M aimed to review the recent advances in the use of machine learning methods for 

machinery fault diagnosis and fault prediction in manufacturing industry [6].  

In addition, Ma Guangfu proposed a finite frequency domain fault diagnosis strategy based on 

H/L ∞ unknown input observer, which processes the system into an augmented system containing 

sensor faults. Then, he divided the unknown input interference of the system into two parts: 

decoupleable and non decoupled [7]. Bin Shiyang proposed a machine learning based fault 

diagnosis method for the mechanical transmission system of wind turbines to accurately diagnose 

faults [8]. Jiang Qiang proposed a Bayesian Le Net network model based on a combination of 

Bayesian linear layers and Bayesian convolutional layers. He analyzed and processed the fault data 

of the flywheel components in the satellite attitude control system, and then used this model to 

simulate the faults [9]. Xi Tao proposed multiple fault diagnosis methods based on optimization 

algorithms, in response to the current inability to quickly and accurately diagnose faults in mining 

column hydraulic systems, by establishing simulation models to analyze single fault mechanisms 

[10]. With the continuous innovation of machine learning and deep learning methods, the accuracy 

and efficiency of mechanical fault diagnosis have been significantly improved. However, further 

research is still needed for different application scenarios in the future to promote the further 

development and practical application of fault diagnosis technology.  

3. Method 

3.1 Data Collection System and Key Parameter Monitoring 

The data collection system can timely obtain the operating status of the system by monitoring 
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key parameters in real time, providing basic data for subsequent fault analysis and prediction. 

Taking a certain offshore oil support ship as an example, the ship is equipped with an advanced data 

acquisition system that can monitor multiple key parameters including pressure, temperature, 

vibration, and current of the lateral thrust system [11]. The changes in these parameters often reflect 

the health status of the equipment and provide early warning of potential faults. If there are 

abnormal fluctuations in the pressure and temperature of the side push system, it means that there 

are problems such as leaks or component wear inside the system. The data collection system adopts 

a high-frequency data collection method, recording key parameters every second to ensure the 

capture of instantaneous changes in information. By combining deep learning algorithm CNN for 

data analysis, the system can learn from historical data and identify potential patterns of faults. This 

process not only improves the accuracy of fault prediction, but also shortens the time for fault 

diagnosis. To demonstrate the actual effectiveness of the data collection system, Table 1 shows the 

key parameter monitoring data collected for offshore oil support vessels under different operating 

conditions.  

Table 1: Key parameter monitoring data 

Operating Condition Pressure (bar) Temperature (°C) Vibration (mm/s) Current (A) 

Normal Operation 8.5 60 0.5 12 

Minor Fault 7.0 65 1.2 14 

Severe Fault 5.0 75 3.5 20 

Normal Operation 8.6 61 0.4 11 

Minor Fault 6.8 66 1.3 15 

These data reflect the changes in key parameters of the lateral push system under three states: 

normal operation, minor faults, and severe faults [12]. From the above monitoring data, it can be 

seen that as the degree of the fault worsens, significant changes have occurred in various key 

parameters, especially in pressure and vibration fluctuations, which can effectively indicate the 

health status of the system.  

3.2 Application of CNN 

The fault data of the lateral push system is usually multidimensional and time-dependent. CNN 

can effectively extract features through convolutional layers, capture local dependency relationships 

and spatial features in the data, which is crucial for identifying complex fault patterns. CNN does 

not require manual feature selection and can automatically extract important features from raw data, 

thereby reducing the time and cost of feature engineering. This feature is particularly suitable for 

the field of fault diagnosis [13], as its data often has irregularity and complexity. After collecting the 

data mentioned above, a CNN model is constructed, the ReLU function as follows: 

),0max()( xxF                                    (1) 

The pooling layer reduces the dimensionality of data and improves the robustness of the model 

by maximizing pooling downsampling (as shown in formula 2). 

niminmji XY  ,,, max
                                (2) 
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Next, the model training adopts the cross entropy loss function, and the calculation formula is: 

 
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N
L

                         (3) 

yi is the true label, iŷ  is the predicted value, and N is the sample size. Through the above steps, 

CNN can learn fault characteristics from key parameters monitored in real-time, improving the 

accuracy of fault diagnosis.  

3.3 Construction of Fault Tree Model for Lateral Push System 

The construction process of the fault tree model for the lateral push system begins with 

identifying the top event, namely the 'lateral push system fault', which is the core objective of the 

analysis. Next, the team will discuss and determine the main causes that may lead to the top event, 

usually divided into electrical and mechanical failures. In this step, expert knowledge and historical 

data are utilized to collect fault information related to the lateral push system, ensuring the 

comprehensiveness and accuracy of potential causes. Subsequently, each main cause will be further 

subdivided into specific sub events. For example, "power failure" can be extended to "power 

interruption" and "electrical component damage", while "mechanical failure" can be subdivided into 

"hydraulic system failure" and "transmission device failure". For each sub event, continuing to 

conduct in-depth analysis and identify possible root causes, such as "generator failure" and "switch 

failure" under "power interruption", as well as "oil pump failure" and "pipeline leakage" under 

"hydraulic system failure". Next, using logic gates to connect these events[14]. The AND gate 

indicates that all input events must occur simultaneously to cause the top event, while the OR gate 

indicates that only one input event needs to occur to cause the top event to occur. After completing 

the logical relationship, the complete fault tree structure is drawn to ensure clarity and logicality at 

each level. Figure 1 is a schematic diagram of the analysis of the number of faults in this article:  

Side push 

system 

failure

Power 

failure

Mechanical 

failure

Power interruption Component damage

Generator failure Switch failure

Oil pump failure Pipeline leakage

 

Figure 1: Schematic diagram of fault tree analysis 
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3.4 Implementation of Fault Mode Recognition 

Collecting real-time data from sensors and monitoring devices provides a foundation for 

subsequent analysis. Then proceed with feature extraction, using signal processing techniques to 

extract key features from the raw data in order to better reflect the system's state and fault modes. 

The extracted features are input into the CNN model for training, and by comparing the training 

data with known fault patterns, the model can learn the patterns and rules of different fault features 

[15]. After training, the model can be applied to actual monitoring data to achieve online fault 

recognition. When new data is input, the model will classify it based on the learned features to 

determine whether there are faults and their types. In order to better demonstrate the process of fault 

mode recognition, Table 2 lists different fault modes and their corresponding characteristic values:  

Table 2: Different fault modes and their corresponding characteristic values 

Fault Mode 
Feature 1 (Vibration 

Amplitude) 

Feature 2 (Temperature 

Change) 

Feature 3 (Current 

Fluctuation) 

Normal 

Operation 
0.5 mm 60 °C 12 A 

Minor Fault 1.2 mm 65 °C 14 A 

Severe Fault 3.5 mm 75 °C 20 A 

Equipment 

Failure 
5.0 mm 80 °C 25 A 

4. Results and Discussion 

4.1 Experimental Preparation 

This study collected the real fault data of the push-push system, including historical fault records, 

equipment status parameters, maintenance records, etc. Subsequently, a fault tree model based on 

FTA is constructed to clarify each fault mode and its impact. In this study, the fault diagnosis 

method of single fault number analysis is compared with the CNN method combined in this paper, 

and its performance under different data amounts is compared. Diagnosis accuracy and diagnosis 

time are selected as performance evaluation indicators, sensors and data acquisition systems are 

installed to monitor equipment status parameters in real time. In the process of data collection, the 

integrity and accuracy of the data were ensured, noise and outliers were eliminated, several 

experiments were conducted to reduce unexpected errors, and the reliability of the experimental 

results was ensured through statistical analysis of the results. 

4.2 Experimental Results 

(1) Diagnostic accuracy 

Firstly, the diagnostic accuracy was tested by selecting a data volume of 1TB-20TB as the 

variable, and the accuracy under different methods was tested and recorded. Figure 2 shows the 

recorded results: 
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Figure 2: Diagnostic accuracy 

When comparing the accuracy of the intelligent platform based on Fault Tree Analysis (FTA) and 

Convolutional Neural Network (CNN) combined with a single FTA fault diagnosis method in the 

fault diagnosis of offshore oil support ship side thrust systems, we observed that the accuracy of the 

FTA+CNN method was significantly higher than that of the single FTA method under different data 

volumes. Specific data shows that within the data volume range of 1TB to 20TB, the accuracy of 

FTA+CNN is between 90.6% and 92.0%, while the accuracy of a single FTA is between 70.2% and 

71.8%. The fundamental reason for this difference is that the FTA method mainly relies on 

empirical rules and analysis of historical data, making it difficult to effectively capture complex 

nonlinear relationships and high-dimensional features. Therefore, it exhibits relatively stable but not 

flexible accuracy when processing large-scale data. The FTA+CNN method combined with CNN 

utilizes the powerful characteristics of deep learning to automatically extract key features from data, 

capture potential complex patterns, and significantly improve the accuracy of fault diagnosis.  

With the increase of data volume, the accuracy of FTA+CNN remains above 91%, indicating that 

this method has good robustness and adaptability in processing large-scale data. The accuracy of a 

single FTA is around 70%, and it hardly improves significantly with the increase of data volume, 

indicating its limitations in the big data environment. The intelligent platform combined with CNN 

can not only process massive data, but also identify more complex and hidden fault patterns through 

multi-level feature learning, thereby improving the accuracy of fault recognition. In addition, during 

the data processing, CNN effectively reduces the dimensionality and computational complexity of 

the data through the design of convolutional and pooling layers, making the model more efficient in 

inference.  

(2) Diagnosis time 

Under the same data volume of 1TB-20TB, diagnostic time tests were conducted on both 
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methods, and the test results are shown in Figure 3: 

 

Figure 3: Diagnosis time 

According to test data, the diagnostic time range of FTA+CNN is 14 seconds to 19 seconds, 

while the diagnostic time of a single FTA is between 20 seconds and 28 seconds. FTA+CNN 

showed faster response times on all test data points, indicating that the CNN model has high 

efficiency in processing data and can complete fault diagnosis tasks more quickly, with a time 

improvement of about 30%. As the amount of data increases, the diagnostic time of FTA+CNN 

remains relatively stable, fluctuating around 16 seconds in most cases, while the diagnostic time of 

a single FTA shows a gradually increasing trend, especially when processing large amounts of data, 

the diagnostic time is significantly prolonged, indicating its performance bottleneck under high load 

conditions. The FTA method mainly relies on manual analysis and historical data, and the 

evaluation of each potential failure mode requires a long time, especially when facing complex fault 

relationships, the demand for manual intervention and judgment increases. The intelligent platform 

combined with CNN greatly reduces the time for manual analysis through automated feature 

extraction and pattern recognition, and improves processing speed by utilizing parallel computing 

capabilities, thereby achieving faster fault diagnosis. In addition, CNN models can efficiently 

process large amounts of input data during the learning and inference process, reducing redundant 

calculation and analysis steps. 

Figures 4 and 5 show the failure rates for the two methods over a 30-day period, respectively: 
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Figure 4: Failure rate of the model in this paper 

 

Figure 5: Single FIA model failure rate 

When comparing the failure rate data of the two methods, FIA+CNN and FIA, over a period of 

30 days, it can be clearly seen that the failure rate of FIA+CNN shows an overall decreasing trend 

from the initial 0.024 to 0.012, whereas the failure rate of FIA is relatively stable and always stays 

between 0.036 and 0.048. This trend suggests that FIA+CNN exhibits better stability and 

effectiveness in fault rate control, possibly due to its combination of feature extraction and 

classification capabilities of convolutional neural networks, which enhances the system's ability to 

predict and recognize faults. In addition, the higher failure rate of the FIA approach may be related 

to its lack of support from deep learning models, making it perform less well than FIA+CNN in 

handling complex data. 
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5. Conclusion 

The application of an intelligent platform based on Fault Tree Analysis (FTA) in the fault 

diagnosis of offshore oil support ship side thrust system shows that the diagnostic method combined 

with deep learning technology significantly improves the accuracy and response speed of fault 

recognition. The experimental results show that the FTA+CNN method has a stable accuracy of 

over 90% when processing large amounts of data, and the diagnostic time is reduced by about 30% 

compared to traditional FTA methods. This indicates that intelligent platforms can effectively 

respond to complex fault modes, provide reliable fault diagnosis results in a timely manner, and 

thus provide strong technical support for the safe operation of offshore oil support ships. Intelligent 

platforms based on FTA+CNN are expected to be further optimized, and more advanced deep 

learning models such as graph neural networks (GNN) or self attention mechanisms can be explored 

to improve the recognition ability of complex fault patterns.  

References 

[1] Cen J, Yang Z, Liu X, et al. A review of data-driven machinery fault diagnosis using machine learning algorithms 

[J]. Journal of Vibration Engineering & Technologies, 2022, 10(7): 2481-2507. 

[2] Huang T, Zhang Q, Tang X, et al. A novel fault diagnosis method based on CNN and LSTM and its application in 

fault diagnosis for complex systems[J]. Artificial Intelligence Review, 2022, 55(2): 1289-1315. 

[3] Zhu J, Jiang Q, Shen Y, et al. Application of recurrent neural network to mechanical fault diagnosis: A review[J]. 

Journal of Mechanical Science and Technology, 2022, 36(2): 527-542. 

[4] Furse C M, Kafal M, Razzaghi R, et al. Fault diagnosis for electrical systems and power networks: A review[J]. 

IEEE Sensors Journal, 2020, 21(2): 888-906. 

[5] Feng L, Zhao C. Fault description based attribute transfer for zero-sample industrial fault diagnosis[J]. IEEE 

Transactions on Industrial Informatics, 2020, 17(3): 1852-1862. 

[6] Fernandes M, Corchado J M, Marreiros G. Machine learning techniques applied to mechanical fault diagnosis and 

fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review[J]. Applied 

Intelligence, 2022, 52(12): 14246-14280. 

[7] Ma Guangfu, Gao Sheng, Guo Yanning. Fault diagnosis of a class of nonlinear systems with partially decoupled 

disturbances [J]. Control Theory and Applications, 2024, 41 (2): 240-248. 

[8] Bin Shiyang, Zhang Zhen, Tang Junjie, Tang Xichun. Research on Fault Diagnosis of Wind Turbine Mechanical 

Transmission System Based on Machine Learning [J]. Mechanical and Electronic, 2024, 42 (1): 11-15. 

[9] Jiang Qiang, Liu Enyu, He Xu, Zhang Wei. A Bayesian Network based Fault Diagnosis Method for Satellite Attitude 

System [J]. Computer Simulation, 2024, 41 (1): 64-68. 

[10] Xi Tao, Dong Mengmeng, Wang Lijing, Zhang Jianye. Research on Fault Diagnosis Method of Column Hydraulic 

System Based on SO-LSTM [J]. Machine Tool and Hydraulic, 2024, 52 (8): 196-201. 

[11] Chi Y, Dong Y, Wang Z J, et al. Knowledge-based fault diagnosis in industrial internet of things: a survey[J]. 

IEEE Internet of Things Journal, 2022, 9(15): 12886-12900. 

[12] Xiao Y, Shao H, Han S Y, et al. Novel joint transfer network for unsupervised bearing fault diagnosis from 

simulation domain to experimental domain[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5254-5263. 

[13] Li X, Yu S, Lei Y, et al. Intelligent machinery fault diagnosis with event-based camera[J]. IEEE Transactions on 

Industrial Informatics, 2023, 20(1): 380-389.  

[14] Jieyang P, Kimmig A, Dongkun W, et al. A systematic review of data-driven approaches to fault diagnosis and 

early warning[J]. Journal of Intelligent Manufacturing, 2023, 34(8): 3277-3304. 

[15] Miao Y, Zhang B, Li C, et al. Feature mode decomposition: New decomposition theory for rotating machinery 

fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2022, 70(2): 1949-1960. 

88




