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Abstract: Aiming at the problem that the existing road surface classification methods 

cannot accurately identify the conditions of winter road surface with low discrimination, 

we propose an improved winter road condition classification method based on hierarchical 

Transformer. Firstly, dynamic overlapping patch embedding is introduced, which can 

flexibly handle input features of any size and preserve the continuity of local detail 

information through dynamic position encoding and overlapping patch embedding. Then, 

frequency-based factorized attention is used to extract frequency features containing high-

level context information, enhancing the feature representation between image categories. 

Finally, a multi-level feature fusion method based on weight average strategy is proposed, 

by evenly allocating the dynamically upgradable weights to the output layers of each stage 

and performing multi-level fusion, the low-level features are projected to the high-level to 

continue learning, the feature representation is enriched, and the discrimination of the 

classification image is increased, thereby the classification performance is improved. 

Experiments are carried out on the WRF dataset of snow and ice road. The classification 

accuracy of the proposed method can reach 88.93% with only 3.8M parameters and 0.6G 

computational complexity, which is better than the current mainstream road classification 

methods. 

1. Introduction  

Image classification tasks provide technical support for the safety of autonomous driving. With 

the development of computer vision, in order to achieve efficient image classification, some scholars 

have proposed image classification methods based on deep learning. AlexNet is the first work of 

convolutional neural network applied to image classification, and its classification performance 

exceeds other traditional classification methods [1]. Later, Ho proposed that MobileNetv3 improved 

the classification accuracy by deepening the network depth and residual connection, but they were 

not effective for some fine-grained classification tasks with small discrimination of image categories 

[2]. To get rid of the convolutional limitations, Vision Transformer (ViT) utilizes image patches to 

process local information and model global context information [3]. However, traditional ViT 

processes images at a single scale. Some people have proposed the Swin Transformer method, which 
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uses the sliding window to obtain global and detail features [4]. Wang et al. proposed the PVTv2 

method with multi-scale hierarchical structure, which uses overlapping cut blocks to maintain local 

image continuity. The design of pyramid structure is conducive to realizing fine-grained dense 

classification tasks and improving the classification accuracy of images with low discrimination [5]. 

In order to further learn discriminative representations of images, some scholars use dynamic position 

encoding to equip the shallow and deep layers with local and global label affinity, respectively, to 

achieve efficient representation learning [6]. Due to the computational burden caused by attention in 

Transformers, some people use adaptive frequency filters to replace the standard self-attention, 

enhance the category discrimination from the perspective of frequency information, and achieve 

efficient representation learning with very low computational complexity [7]. Some scholars directly 

replace the original Transformer module with the pooling layer, and still achieve good classification 

results [8]. However, these methods have poor classification accuracy for some categories with low 

discrimination. 

In order to ensure that autonomous vehicles can accurately classify the current road state in winter, 

we propose an improved road state classification method based on hierarchical Transformer. The 

main innovations include dynamic overlapping position coding, factorized attention based on 

frequency domain and multi-level feature fusion method based on weight average strategy. 

Experiments show that this method can effectively improve the classification accuracy. 

2. Improved Road condition classification Method based on Hierarchical Transformer 

In northern winter, there are often some snow and ice roads with similar pavement conditions 

characteristics and low recognition, such as little ice, partial snow and a lot of snow. In this road 

scenario, automatic driving still has the problem of inaccurate classification of road conditions. To 

this end, we propose an improved road condition classification method based on hierarchical 

Transformer, and the overall framework is shown in Figure 1. The structure of each stage is similar. 

Firstly, Dynamic Overlapping Patch Embedding (DOPE) is used to flexibly adapt to different scales 

of input and maintain the continuity of local detail features. Then, the important frequency features 

are captured by Frequency-based Factorized Attention (FFA) to enhance the representation between 

categories. Then, in order to prevent the loss of some details in the process of network learning, a 

multi-level feature fusion method based on weight average strategy is used to fuse the output features 

of each stage, and the shallow features are mapped to the high-level full learning to obtain richer 

feature information. Finally, the classification head outputs the final classification result. 

 

 Figure 1: Architecture of improved classification method based on hierarchical Transformer. 

2.1. Dynamic overlapping patch embedding 

Location information is an important cue to describe visual representations. In order to adapt to 
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the hierarchical network with different input sizes at each stage and maintain the continuity of local 

detail information, this paper proposes a dynamic overlapping cut embedding, as shown in Figure 2, 

which is mainly composed of Dynamic Position Encoding (DPE) based on deep-wise convolution 

and Overlapping Patch Embedding (OPE). This section will introduce these two parts in detail. 

 

Figure 2: Architecture of dynamic overlapping patch embedding 

2.1.1. Dynamic position encoding with deep-wise convolution 

Conditional positional encodings implicitly encode positional information through convolution 

operators, so that transformers can handle inputs of any size. Inspired by this, a dynamic position 

encoding based on Depth-wise Convolution (DW-Conv) is proposed to flexibly handle inputs of 

different sizes at different stages, and dynamically integrate position information into all tags. The 

rationale for choosing DW-Conv is that it can vary the width and height in the spatial dimension 

without changing the number of channels, which is friendly to arbitrary input shapes; The second is 

that deep convolutions are lightweight, which is also an important factor in the balance of 

computational accuracy. Finally, additional zero padding is added that can help a tag learn its absolute 

position by querying its neighbors step by step. The Dynamic Position Encoding (DPE) is formulated 

as follows: 

   ( )i i i iDPE x DWConv x x 
                                                   (1) 

where 𝑥𝑖  represents the input feature of stage i (1 ≤ 𝑖 ≤ 4) , DWConv represents the depth 

convolution with zero padding, the convolution kernel is 3×3, the number of input and output 

channels is equal, and 𝜎 represents the Sigmoid activation function. 

2.1.2. Overlapping patch embedding 

Traditional cutting methods divide the image into non-overlapping patches, as shown in Figure 3 

(a). This leads to the segmentation of some local features, such as the lumps of snow on the road 

surface, which can distinguish the road condition, reducing the learning ability of these important 

features. To this end, this study adopts the method of overlapping patch, as shown in Figure 3 (b). 

Firstly, zero-padding is used to ensure that the image edge feature information is fully extracted. Then 

the area of the patch is enlarged so that the adjacent patch can overlap half of the features (that is, the 

red dashed line in Figure 3 (b)) to maintain the continuity of the local features. 

 

Figure 3: Methods of patch embedding. 

Specifically, given an input image size of 𝐻 × 𝑊 × 𝐶, let the convolution step size be S, the kernel 

size be 2S-1, the padding size be S-1, and the number of output channels be 𝐶′, then the output size 

161



is 
𝐻

𝑆
×

𝑊

𝑆
× 𝐶′. Therefore, the specific process of DOPE is expressed as follows: 

  DOPE i iX Conv DPE x
                                                        (2) 

where Conv represents obtaining overlapping patches using a 2D convolution with a step size of 

4, a padding of 3, and a kernel of 7. 𝑋𝐷𝑂𝑃𝐸 represents the final output overlapping patch feature, 

which is used as the input of the encoder in this level. 

2.2. Frequency-based factorized attention 

Being able to extract discriminative features from images is of great significance to accurately 

identify the state categories of winter snow and ice roads. Some scholars believe that frequency 

information expression can mine the information ignored by human vision and strengthen the 

differences between learning categories. For the classification of road conditions in winter, we 

propose frequency-based factorized attention from the perspective of spectral correlation, as shown 

in Figure 4.  

 

Figure 4: Architecture of frequency-based factorized attention. 

2.2.1. Frequency filter 

The frequency filter includes two parts: grouped low frequency filter and grouped high frequency 

filter. 

Grouped low frequency filter: The low-frequency information contains a lot of semantic 

information. The low-frequency filter only allows signals below the cutoff frequency to pass through. 

The average pooling will be used as the low-frequency filter in this study. Since the cutoff frequency 

is different for different images, the input is grouped. Assuming m groups, the grouped low-frequency 

filter is performed as follows: 

 ˆ
DOPEX reshape X

                                                           (3) 

   ˆG m

s s iLF Concat BiL X
                                                   (4) 

where reshape stands for dimension transformation, m stands for dividing the input into m groups,  
ˆ

iX  stands for the i-th group, s s  stands for adaptive average pooling with output size 𝑠 × 𝑠, BiL 

stands for bilinear interpolation upsampling to ensure that the size of multiple groups of low-

frequency features is consistent. 

Grouped high frequency filter: High-frequency information can preserve detailed information, 
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which is crucial in image classification. Convolution can be used as a typical high-frequency operator, 

which can retain important high-frequency components and filter irrelevant low-frequency 

components. For each image, the high frequency cutoff frequency is different, and the high frequency 

component can determine the quality of the image, so here, the high frequency filter is also divided 

into m groups, and convolution layers with different kernels are used to simulate the cutoff frequency 

in different high frequency filters and suppress the expression of low frequency noise. The operation 

details are as follows: 

    ˆ ˆm m

k k
i

GHF Concat BiL Conv X X GLF

    
                                (5) 

where 𝐶𝑜𝑛𝑣𝑘×𝑘  represents the depthwise separable convolution with kernel k×k, m groups of 

denoised high-frequency features are obtained by this method, and finally the denoised high-

frequency features are obtained by concatenation. 

2.2.2. Factorized attention 

In order to obtain the important frequency features with global context information, frequency-

based factorized attention is proposed to enhance the expression ability of high and low frequency 

features. For the input frequency fusion feature 𝑋𝑓 ∈ 𝑅𝐻×𝑊×𝐶, firstly, the key K and value V of the 

frequency component are calculated through the linear layer. The formula is expressed as follows: 

m m

fX GLF GHF 
                                                          (6) 

  , , ;LHQ K V reshape Linear X W
                                              (7) 

where Linear represents the learnable linear layer, W represents the weight parameters of the linear 

layer, and reshape Q, K, V into (𝐻𝑊, 𝐶). Then, the similarity of frequency features K and V is 

obtained by normalization and matrix operation. Finally, the important frequency features are selected 

by querying. The formula is as follows: 

    , , ( )TQ
X reshape FFA Q K V reshape Softmax K V

d

 
    

                      (8) 

where, FFA represents the factorized attention, and X represents the important frequency features 

of the output. Then, X were processed by residual connection, normalization and feed forward neural 

Network (FFN) to enhance the local detail features. Let the Transformer encoder depth of the model 

be N, then the output features of each layer can be expressed as: 

  ˆ
iX FFN Norm X X X   

                                               (9) 

where 0 ≤ 𝑖 < 𝑁, 𝑋𝑖
𝜏represents the output features of the Transformer encoder in each stage that 

contain important frequency information, Norm represents normalization. 

2.3. Multi-level feature fusion method based on weight average strategy 

In order to prevent the loss of detail information of shallow features in the process of layer-by-

layer learning of the model, we propose a multi-level feature fusion method based on weight average 

strategy, which mainly includes two parts: projection layer and fusion layer, as shown in Figure 5. 

The purpose of this method is to collect low-level information from shallow features and enrich deep 
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feature information.  

Projection layer: In this study, the projection layer is chosen for the first three stages, specifically, 

the nonlinear projection is instantiated by the Linear-GELU-Linear structure. Then, the features of 

the first three stages are reshaped and adaptively pooled, which is guaranteed to be consistent with 

the output feature dimension of the last layer, so that the output features of the four stages are fused 

next. Here, only the outputs of S (𝑆 = 𝑁 − 1) stages are projected, and the N-th (𝑁 = 4) output 

feature 𝑋𝑁−1
𝜏  is only flattened and reshaped, so the formula is expressed as follows: 

     1i N
i S

X Proj X f X 




  
                                                  (10) 

     i iProj X Linear f X 
                                                  (11) 

where  𝑋′ represents the set of features after the feature projection of each layer. 𝑋𝑁
𝜏  represents the 

output feature of the fourth stage, f represents the flattening, Proj represents the projection layer, 

Linear represents the Linear projection based on Linear-Gelu-Linear,   represents the matrix 

operations that reshape, pool, and flatten. 

Fusion layer: We adopt the weighted average strategy to fuse the output layer with the output of 

the previous layers, and map the shallow features to the deep layer to continue learning. During 

training, the weights are distributed equally to each output layer, then normalized and updated 

dynamically, and sum to 1, whose absolute value indicates the importance of each layer for the 

classification task. Then the eigenvalues corresponding to each layer of the stacked matrix are 

summed to output the final fused features for classification. Given that the classification network has 

a total of N (N=S+1) stages, including S projection layers and an output layer, the formula of multi-

level feature fusion method based on weight average strategy is defined as follows: 

  1 1i i N N

i S

O F X w X w X 



      
                                               (12) 

where F represents the fusion layer, fusing multi-level projection features, 𝑋𝑖
′ represents the i-th 

feature matrix in 𝑋′ , 𝑤𝑖  represents the weight assigned to each of the S projection layers, 𝑤𝑁 

represents the weight assigned to the output layer of the last stage, these weights are initialized as 1/N 

by parameterization method, and are dynamically updated during the training. Its absolute value 

represents the importance of each layer feature for the classification task, and O represents the output 

fusion feature.  

 

Figure 5: Architecture of multi-level feature fusion based on weight averaging strategy. 
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3. Experiment and Analysis 

This study conducts experiments based on PaddlePaddle framework. The graphics card is an RTX 

2080 Ti. The batch size is set to 32 and the epoch is set to 300. In this section, the ablation experiments 

and comparison experiments with other advanced methods are carried out using the WRF dataset 

containing winter snow and ice road. 

3.1. Dataset and evaluation metrics 

WRF dataset is a winter road dataset containing 5061 images proposed by Tongji University in 

Shanghai, which contains road images under various weather conditions in cold regions in winter. 

The dataset classifies the road condition into six categories: dry, waterlogged, partially covered, 

melted snow, snow and muddy road surface. 

In this experiment, the number of parameters (Params), computational complexity (Flops), and 

classification accuracy (Acc) are selected as evaluation indicators.  

TP TN
Acc

TP FP FN TN




                                                             (13) 

where TP represents a true example, FP represents a false positive example, FN represents a false 

negative example, and TN represents a true negative example. 

3.2. Ablation experiments 

In this subsection, four sets of ablation experiments are set up to prove the effectiveness of the 

proposed Dynamic Overlapping Slice Embedding (DOPE), Frequency-based Decomposition 

Attention (FFA) and Multi-level feature fusion based on Weight Average strategy (WAFF) methods. 

Table 1 shows the results of the experiment. Experiment 1 represents the experiment based on the 

original model of PVTv2. In Experiment 2, OPE in Experiment 1 is replaced by DOPE method, and 

the Acc is improved by 3.26%. In Experiment 3, our proposed FFA method was used to further 

replace the linear attention method in the original model, and the results show that Acc was improved 

by 3.65%, which proved that FFA method had better performance than linear attention. In Experiment 

4, WAFF method is added based on Experiment 3, the results show that our method can achieve an 

accuracy of 88.93% using almost the same Params and Flops as the original model, and the 

classification accuracy is improved by 8.42%. In summary, the analysis proves the effectiveness of 

the proposed method. 

Table 1: Ablation experimental results of the proposed method on the WRF dataset. 

Experiment DOPE FFA WAFF Params (M) Flops (G) Acc (%) 

1    3.6 0.57 80.51 

2    3.6 0.58 83.77 

3    3.7 0.58 86.26 

4    3.8 0.60 88.93 

3.3. Comparison with other mainstream classification methods 

In this section, the effectiveness of the proposed method is demonstrated by comparing it with 

other mainstream road condition classification methods. Table 2 shows the results of the comparative 

experiments. The classification accuracy of the improved road condition classification method based 

on hierarchical Transformer proposed in this study is significantly higher than that of other methods, 
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and the Parmas and Flops are only 3.8M and 0.60G, which are far lower than most other methods, 

and can be used as a lightweight classification model. Although Parmas and Flops are slightly higher 

than PVTv2, the Acc is 8.32% higher than that of PVTv2. Compared with the best STViT method, 

we still surpass its classification accuracy by 5.08% with a lower Parmas and Flops. This fully proves 

the effectiveness and superior performance of the proposed method. 

Table 2: Experimental results comparing the proposed method with other classification methods. 

Methods Params (M) Flops (G) Acc (%) 

ResNet101 44.7 7.92 81.53 

InceptionV3 27.2 5.71 81.57 

Swin Transformer 29.0 4.51 80.15 

STViT 52 9.86 84.85 

PVTv2 3.6 0.57 80.51 

Ours 3.8 0.60 88.93 

4. Conclusion 

Aiming at the problem that the current road condition classification method for autonomous 

driving cannot accurately identify the winter road condition with low discrimination, we propose an 

improved winter road surface classification method based on hierarchical Transformer to improve the 

classification accuracy of winter ice and snow road. Through experiments on the WRF dataset, the 

classification method proposed in this paper is superior to the existing mainstream classification 

methods in terms of computational overhead and accuracy, which provides technical support for safe 

driving of autonomous driving in winter.  
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