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Abstract: With the continuous development of multi-function radar technology, the number 

of radar tasks the seeker can perform is increasing. This has led to the environment state 

transitioning from a small space to an ample space, facing more complex radar jamming 

decision problems. Traditional reinforcement learning algorithms have insufficient 

processing capacity and limited learning ability, thus we adopted a deep reinforcement 

learning algorithm, combining its powerful perception and processing capabilities to 

improve the jamming effect further. At the same time, to solve the problem of low 

computational efficiency for deep reinforcement learning, the transfer learning algorithm 

is introduced by migrating the parameters of deep learning networks from other tasks to the 

radar seeker jamming decision, further improving the learning rate. 

1. Introduction 

Radar jamming decision-making (RJDM) is a crucial link in cognitive electronic warfare [1][2], 

and the outcome of the confrontation between radar equipment and jamming equipment may 

determine the victory of a war. With the continuous development of multi-functional radar and 

cognitive electronic technology, radar's working states and signal patterns have increased 

significantly [3], decreasing the accuracy and efficiency of traditional radar-jamming decision-

making algorithms. With the extensive application of artificial intelligence, reinforcement learning 

algorithms have been employed to address the issue of radar jamming decision-making. The work in 

[4] and [5] introduced the reinforcement learning (RL) method into RJDM by optimizing traditional 

analysis index parameters and selecting new evaluation criteria to construct the model. This new 

model achieves comprehensive, multi-dimensional, real-time data analysis and conducts multi-

functional radar simulations based on RL algorithms. B. Siwei proposed an RJDM method that 

combines random forests with neural network algorithms [6]. This method first defines the 

information parameters of the jamming system acquired in real time and analyzes the jamming 

patterns to summarize the signal parameters affected by the target. These parameters can form a set 

of indicators obtainable through surveillance, which reflect the information extraction and summary 

of the jamming purpose and target changes. [7], [8] and [9] adopted various methods, including Q-

learning, deep Q-learning (DQN), and their improved versions. M. Shaoqing also conducted in-depth 

studies on Q-learning and its improved algorithms [10]. Therefore, it can be observed that methods 

Advances in Computer, Signals and Systems (2024) 
Clausius Scientific Press, Canada

DOI: 10.23977/acss.2024.080701 
ISSN 2371-8838 Vol. 8 Num. 7

1



based on reinforcement learning and deep reinforcement learning have favourable effects on the 

RJDM problem in future electronic warfare. 

However, the issues above related to radar jamming decision-making are limited to functional-

level simulations, where the relationship between jamming patterns and radar states is described 

qualitatively for conducting jamming decisions without being able to quantitatively determine the 

impact of jamming on radar operation. Furthermore, most algorithms ignores the task's real-time 

requirements. Introducing deep reinforcement learning can address tasks with large spaces and 

multiple states. Still, with the addition of deep neural networks, the parameters within the network 

increase significantly, and the training time elongates. To address the above problems, this paper 

constructs a model of radar jamming decision-making at the signal level. The accuracy of signal-level 

modelling of the radar seeker is demonstrated through simulation experiments without applying to 

jam and observing the missile landing positions. Simultaneously, a DQN method combined with 

transfer learning is proposed. This method accelerates the convergence speed of the network by 

transferring the trained parameters from the LunarLander-v2 task in the gym.The main structure of 

this paper is arranged as follows: the first section builds an adversarial model, the second section 

introduces the DQN algorithm with transfer learning, the third section conducts simulation 

experiments, and the fourth section concludes the work of this paper. 

2. Construction of Adversarial Models 

2.1 Modeling of Multi-Function radar seeker 

2.1.1 Signal transmission modeling 

Typical multifunction radar transmits signals in the form of LFM (Linear Frequency Modulation) 

signal pattern, which can be represented as: 
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Where ck
 denotes the current pulse carrier frequency, tP

 indicates the peak power of the 

transmitter, tL
 stands for the combined loss of the transmitter, 

( )vtg 
 represents the transmitting 

antenna pattern (voltage gain), and ( )v t  represents the complex modulation function as follows: 
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where pT
 represents the pulse width, and mF

 represents the frequency modulation slope. Based 

on the above formulas, the coherent video signal pattern adopted in the system is as follows: 
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2.1.2 Receiving Signal Model 

The received signal mainly consists of target echoes, interference signals, various types of clutter, 

and receiver noise. This paper mainly considers the aspects of target echoes and interference signals. 
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With respect to a specific transmitted pulse, the RF signal received by the radar can be represented 

as follows: 

( ) ( ) ( ) ( )RF RF RF RFr t S t J t n t  
                                                  (4) 

where 
( )RFS t

 represents the echo signal received after the transmitted pulse is reflected  by the 

target, 
( )RFJ t

 represents the received interference signal, which is the combined interference signal 

formed by various active interference and passive interference, and 
( )RFn t

 represents the receiver 

noise. The band-limited noise signal is represented as: 

( ) Re ( ) cj tn t n t e                                                               (5) 

Therefore, in coherent video simulation, the noise at the receiver can be represented as 

( ) ( ) ( )d qn t n t jn t 
                                                            (6) 

In this model, 
( )dn t

 and 
( )qn t

 are independent Gaussian random processes with zero mean and 

variance 
2

N
 . The variance of the noise 

2

N
 can be calculated from the receiver noise coefficient FN

 

and receiver bandwidth f  as follows: 

2
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where K is the Boltzmann constant, and 0T
 is the reference temperature of the receiver, which 

0 290?KT 
. Combining the target echo signal and the receiver thermal noise signal, we finally obtain 

the radar received signal as: 
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2.1.3 Pulse compression 

In the commonly used radars at the present stage, a matched filter is typically employed to carry 

out pulse compression processing of signals. Suppose the transfer function of the matched filter is 

( )H f , the impulse response is ( )h t , and the input is ( )s t .  

0 ( )s t
 is the output result of the target signal after it has passed through a matched filter, which can 

be expressed as follows: 

2
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Taking the inverse Fourier transform of the transfer function ( )H f  results in its impulse response 
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function as: 

 *

0( )h t ks t t 
                                                                  (10) 

For the sampled digital signal, denoting the input signal after sampling and quantization as ( )s n , 

the unit impulse response of the matched filter can be represented as: 

*( ) ( )h n s n                                                                     (11) 

2.1.4 Constant False Alarm Handling and Detection Model 

Since the signals received by the radar comprise both target echo signals and clutter signals, not 

all processing steps in the signal processor can completely filter out the clutter signals. Thus, a 

threshold value is often set in the radar. The portions of the signal that are higher than the threshold 

value are retained, while those lower than the threshold value are filtered out. This threshold value is 

the false alarm probability. To achieve this aim, the false alarm threshold must be calculated in real-

time based on the received signal to adjust the radar detection threshold accordingly to obtain the 

desired false alarm probability [11].  

2.1.5 Measurement Information Extraction 

2.1.5.1 Extraction of distance information 

The target echo signal will have a time delay rt  due to the distance between the target and the 

radar, which can be expressed as ( ) 2 /t r R c . R  represents the relative distance between the target 

and the radar, and c  represents the speed of light. Thus, in the case of a known time delay, the 

distance between the target and the radar can be inversely deduced based on the time delay rt  of the 

echo signal. 

2.1.5.2 Extraction of angular information 

It has been mentioned above that since the radar adopts the sum and difference beam angle 

measurement method when measuring the angle, the pitch angle   and the yaw angle   of the target 

relative to the radar can be obtained based on the amplitude of the corresponding position of the target 

in the processed sum beam signal and the amplitudes of the corresponding positions of the target in 

the pitch difference beam signal and the yaw difference beam signal: 

( ) ( )
,

( ) ( )

F F
dF dF

d d 

   

 
 

 

  

 
 

 

                                             (12) 

2.1.5.3 Extraction of velocity information 

If relative motion exists between the target and the radar, the frequency of the target’s echo will 

undergo changes. The Doppler frequency shift df  caused by the relative velocity can be expressed as 

2 /d rf v 
. In the case where the Doppler frequency shift of the echo signal is known, the relative 

velocity between the target and the radar can be inversely deduced. 
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2.1.6 Guidance method 

The proportional guidance method refers to the fact that the angular velocity of the missile’s speed-

changing direction in space is proportional to the angular velocity of the target’s relative radar 

position angle rotation: 

M Tk   
                                                               (13) 

where M  denotes the angular velocity of the change in the direction of the missile’s velocity in 

space, k 

 is the proportional coefficient, and T  represents the angular velocity of the rotation of 

the target’s relative position angle to the radar, also known as the line-of-sight angular velocity. 

2.2 Environmental description 

In the model, the environment is the target radar seeker, and the seeker's observable states are 

composed of 8 variables: the horizontal coordinate on the ground plane, the vertical coordinate on 

the ground plane, altitude, the x-component of speed, the y-component of speed, the z-component of 

speed, roll angle, and pitch angle. After establishing the signal-level simulation model of the radar 

seeker, we can simplify the interference decision problem to the diagram shown in Figure 1. 

 

Figure 1: Diagram of radar seeker and jamming equipment countermeasures. 

In this process, S  represents the radar seeker's speed and position information at the current 

simulation time. After the jamming device takes action ta
, the radar seeker processes the echo 

information with added jamming signals, obtains the target's state information, and then outputs the 

seeker's speed and position information at the next simulation time according to the guidance rule. 

Meanwhile, it feeds back the reward function value 1tR   under the influence of jamming. 

2.3 Action description 

2.3.1 Amplitude Modulation jamming 

Radio frequency noise interference refers to the direct amplification of microwave noise that is 

emitted, and the mathematical model of this interference is represented as: 

 ( ) ( )cos 2 ( )n iJ t U t f t t  
                                                 (14) 
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The envelope 
( )nU t

 follows a Rayleigh distribution, the phase ( )t  follows a uniform distribution 

over [0, 2π] and is independent of 
( )nU t

. The carrier frequency if  is a constant value and is much 

larger than the ( )J t  bandwidth. Since ( )J t  is generally used for filtering and amplifying low-power 

noise, it is also known as direct-amplified noise. 

2.3.2 Frequency-modulated noise jamming 

Frequency-modulated noise jamming is currently the most widely used type of suppressive 

jamming signal, which has a wide interference bandwidth and is easy to achieve a large noise power. 

The mathematical model of the time-domain characteristic of frequency-modulated noise jamming is 

expressed as: 

 0( ) cos 2 2j FMJ t U f t K u t dt      
                                       (15) 

( )u t  is the frequency-modulated noise, which is a wide-sense stationary random process with zero 

mean, and   is a random variable that follows a uniform distribution on the interval [0, 2π] and is 

independent of ( )u t . 0U
 is the amplitude of the interference, jf

 is the center frequency of the 

interference, and FMK
 is the frequency-modulation slope. 

2.3.3 Agile noise jamming 

This is a new hybrid approach that combines the characteristics of deception and noise jamming. 

Its core idea is to combine forwarding-style jamming with random pulse jamming. The Agile noise 

jamming expression based on FM noise is expressed as: 

 
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                      (16) 

2.4 Reward Function Building 

In the signal-level simulation model built in this paper, we quantitatively construct the reward 

function based on the measurement error and the probability of detecting the ship at each moment of 

the radar. The first part is the reward function for the measurement error caused by the interference, 

which is the difference between the measurement information output by the radar seeker based on the 

echo signal and the actual information of the target; the more significant the difference, the better the 

effect of interference, the measurement information includes the distance, speed and angle 

information of the target; the second part is the detection probability of detecting the interference 

device by the seeker, of preventing the missile from detecting and detecting the interference device, 

the on-time of each interference device cannot be too early, too early on will make the target more 

obvious, so the on-time is also taken into account in the reward function. The reward function can be 

set as follows: 

1 2 3 4 1 on 1 2 on 2 3 on 3r k L k v k k bT b T b T           
                             (17) 

Where v  denotes the speed error value, L  denotes the distance error value,   denotes the 

pitch angle error value,   denotes the yaw angle error value, on 1T
, on 2T

, on 3T
 denote the initial 
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times of the three kinds of jamming patterns, and 1k
, 2k

, 3k
, 1b

, 2b
, 3b

 denote the proportional 

coefficients. After extensive experiments, a set of relatively reasonable values can be obtained as 

follows: 1k
, 2k

, 3k
, 1b

, 2b
, 3b

 = 0.02, 0.1, 20, 20, 0.2, 0.1, 0.1. 

3. Parametric Transfer-Based DQN 

3.1 DQN 

DQN is a combination of Q-learning algorithm and deep learning [12]. The Q-learning algorithm 

updates the state-action value function for each state using equation (27). 

( , ) ( , )Q s a r Q s a                                                               (18) 

Where s  represents the next state of the agent, a  represents the action taken in that state, and r  

represents the reward obtained from the state transition. DQN uses a deep learning network to output 

a value function for all actions in a given state, serving as the deep learning network's evaluation of 

the Q value. When updating the network, some small segments of information 
 1, , ,t t t ta r    from 

the experience pool are taken out as samples, and the label values used in equation (27) and equation 

(28) are used as the network's label values. 

1

,

max ( , ; ),
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By constructing a loss function 
2( ) ( ( , ))iLoss y Q s a  

, the network parameters are updated 

using gradient descent algorithm. 

3.2 Transfer learning 

As an advanced machine learning method, transfer learning aims to effectively handle related but 

different issues by utilizing the knowledge acquired in one domain, thereby improving learning 

efficiency and generalization ability. This approach not only speeds up the model training process 

but also improves the performance of the target domain model. For example, suppose a deep neural 

network has been trained on a large-scale cat and dog classification task. In that case, it can be 

adjusted and applied to other animal categories without starting from scratch for training, thus saving 

time and resources [13]. 

3.3 Parametric Transfer-Based DQN 

We can build the same network structure and train the network in a simple task (LunarLander-v2) 

to obtain converged parameters and then migrate the initial parameters to the complex task (RJMD) 

to accelerate the network training speed. The deep learning network structure adopted in this paper is 

as follows: input layer: 8 neurons for the eight states of the environment; hidden layer 1: 128 neurons, 

using the ReLU activation function; hidden layer 2: 64 neurons, using the ReLU activation function; 

output layer: 3 neurons, corresponding to the three discrete actions. The DQN algorithm combined 

with transfer learning is named T-DQN. The flowchart of the T-DQN algorithm is shown in Figure 

2. 
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Figure 2: The flowchart of the T-DQN algorithm. 

4. Experiment 

4.1 Parameter settings 

The settings for each parameter are shown in Tables 1 to 5. 

Table 1: Parameters for the radar seeker. 

Project Major Parameters 

Transmitter 

Center frequency:18GHZ 

Bandwidth:250MHz 

Maximum power:30KW 

Pulse width:100ns 

Antenna 
Beam width:0.2rad 

Angular range:(2/ ,-2/ ) 

Table 2: Parameters of the initial state of missiles and ships. 

Parameters missile ships 

magnitude of velocity 2500km/h 50km/h 

direction vector of velocity (0,1,0) ( 2 , 2 ,0) 

location coordinates (0,0,10km) (0,0,8km) 

radar Cross-Section - 10 

Table 3: Parameters of LFM Signal. 

Parameters Pulse width Bandwidth 

Pulse 

Repetition 

Period 

Transmission 

frequency 

Number of 

Pulse 

Emissions 

Value 10us 10MHz 100us 15GHz 16 

8



Table 4: Jamming parameters. 

Types of jamming 
Amplitude 

Modulation  

Frequency-

modulated  
Noise Agile  

Pulse width 50us 200us 10us 

Bandwidth 40MHz 1MHz 30MHz 

Center frequency 15GHz 15GHz 15GHz 

Table 5: Parameters of DQN. 

Parameters Learning rate 
  

Discount 

factor   

Capacity of D  Greed factor   

Value 0.2 0.8 1000 0.5 

4.2 Experimental results 

This paper employs five jamming strategies, namely, jamming decision without jamming patterns, 

jamming decision with random jamming patterns, jamming decision based on Q-learning, jamming 

decision based on DQN and jamming decision based on T-DQN.  

 

Figure 3: Diagram of Variation in Missile Landing Point Distance. 

 

Figure 4: Accumulated Reward Value Change Curve. 

From the Figure 3, when no interference measures are taken, the missile can cause damage to the 

target, and its landing point is within a range of 100 meters. This phenomenon indicates that the 

missile's guidance system performs well under normal circumstances. However, due to the noise in 

the received signal, there is a fluctuation in the landing distance of the missile. This fluctuation 

verifies the accuracy of the radar seeker signal level simulation, providing a reliable data basis for 

subsequent research. When a random interference strategy is adopted, it can be observed that this 

method has a particular impact on the guidance of the radar seeker. Still, the effect could be more 
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stable due to its large randomness. Specifically, random interference can deviate from the target 

successfully in some cases. Still, more specificity may be needed to reduce the hit rate effectively. 

Figure 4 shows the change in the cumulative reward value during the simulation. 

It can be seen that the final converged value function of DQN is larger than that of Q-learning. 

After introducing transfer learning, the convergence speed of the algorithm is significantly improved, 

and the reward values are basically kept consistent. The final optimal jamming strategy obtained is 

presented in Table 6. 

Table 6: The optimal jamming strategy. 

Time Q-learning DQN Time Q-learning DQN Time Q-learning DQN 

1 000 000 6 111 101 11 111 111 

2 000 000 7 111 111 12 111 111 

3 000 100 8 111 111 13 111 111 

4 100 100 9 111 111 14 111 111 

5 100 101 10 111 111 15 111 111 

 

Figure 5: Distribution Map of Missile Landing Points. 

From the Figure 5, it can be seen that the interference strategy obtained by using reinforcement 

learning significantly impacts the various damage indicators of the missile, making the missile's strike 

effect on the ship basically zero. This verifies the effectiveness of the reinforcement learning 

algorithm in the task of radar interference decision-making. 

5. Conclusion  

This paper first establishes a signal-level simulation model of the entire end-guidance process of 

radar seeker, including signal transmission, reception, signal processing, and measurement 

information output. Then, it conducts simulation experiments without interference, and the missile 

can hit the target with sure accuracy, verifying the accuracy of the established model. Based on this 

signal-level simulation model, the paper introduces a deep reinforcement learning algorithm for the 

interference decision of the radar seeker in the presence of interference equipment, significantly 

improving the efficiency and accuracy of the interference decision. At the same time, this paper 

integrates the idea of transfer learning, effectively transferring the neural network parameters trained 

on the LunarLander-v2 task to the interference decision task. This strategy enables the model to 

quickly adapt to new tasks and reduce the time and computing resources required for training from 

scratch. By leveraging existing knowledge, the algorithm further optimizes its performance in new 

environments, accelerating the convergence rate and ensuring the stability and reliability of the model 
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in actual applications. 
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