
Efficient multi-scale traffic object detection method based 

on RT-DETR  

Songnan Zhang1,a,*, Xiang Peng1 

1School of Information and Electronic Technology, Key Laboratory of Autonomous Intelligence and 

Information Processing in Heilongjiang Province, Jiamusi University, Jiamusi, China 
azhangsongnan16@163.com 

*Corresponding author  

Keywords: Object detection, Transformer, Multi-scale network, Attention mechanism 

Abstract: Traffic object detection is a crucial technological application with significant 

development potential. To address the limitations of current methods in multi-scale object 

detection, this paper introduces an Efficient Multi-scale Traffic Object Detection method 

based on RT-DETR. Specifically, we have designed an Efficient Multi-scale Network that 

incorporates Multi-head Mixed Convolution (MMC), Multi-scale Aggregation (MA), and 

an Efficient Multi-scale Module (EMM). This method integrates convolutional techniques 

with transformers to minimize the computational overhead of the model while enhancing 

the effectiveness of multi-scale detection. Experimental results demonstrate that, compared 

to the original method, the Average Precision (AP) and the Small Object Average Precision 

(APs) of our method have improved by 1.2% and 1.1%, respectively, indicating a notable 

advantage over similar approaches. 

1. Introduction  

Object detection is a fundamental task in computer vision, aimed at identifying the location and 

category of various targets. In particular, traffic object detection focuses on vehicles, pedestrians, 

signs, and other relevant elements. This application is extensively utilized in real-world scenarios 

and constitutes a critical technique for enhancing traffic safety.  

Object detection methods are categorized into traditional methods and deep learning-based 

methods. Traditional methods primarily involve feature extraction and classification for detection. 

However, they predominantly rely on hand-designed features, which struggle to effectively handle 

multi-scale and multi-angle targets, resulting in poor detection performance and limited 

applicability. In contrast, early deep learning-based methods are primarily represented by Two-

Stage and One-Stage approaches. Two-Stage methods, exemplified by the Fast R-CNN[1] series of 

algorithms, significantly enhance detection speed compared to R-CNN, yet they cannot circumvent 

the Non-Maximum Suppression (NMS) process, which limits their effectiveness in dense object 

detection tasks[2]. One-Stage methods, represented by the YOLO series of algorithms, reformulate 

object detection as a regression problem, allowing for the simultaneous completion of classification 

and localization tasks in a single step[3]. However, these methods also face challenges in effectively 

addressing dense object detection scenarios.  
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Recently, Transformers from the NLP field have demonstrated powerful global modeling 

capabilities and have shown strong performance in computer vision tasks. As the first detector 

based on Transformers, DETR eliminates the need for the NMS process, achieving true end-to-end 

target detection[4]. Anchor-DETR associates anchors with query vectors to enhance the relevance 

of the model's predictions for each position during inference[5]. Deformable-DETR introduces 

deformable convolutions into both the encoder and decoder, thereby improving the model's ability 

to detect small targets[6]. PnP-DETR offers a flexible and scalable framework for target detection 

through its modular design, allowing users to select and combine different modules based on their 

specific needs to adapt to various detection task scenarios[7]. DINO-DETR enhances detection 

accuracy and effectively reduces the model training time by employing contrastive methods for 

denoising training and hybrid query selection methods for anchor point initialization[8]. RT-DETR 

features numerous lightweight designs based on the original DETR, resulting in faster detection 

speeds suitable for low-latency applications such as autonomous driving and video surveillance[9].  

Despite the ongoing advancements in these methods, several challenges persist in traffic object 

detection tasks. These approaches often lack effectiveness in multi-scale object detection, 

particularly for vehicles and pedestrians, and they tend to be computationally intensive, which 

complicates their applicability in real-world scenarios.  

In summary, this study proposes an efficient multi-scale traffic object detection method based on 

RT-DETR. To address the model's limitations in effectively detecting objects at multiple scales, an 

efficient multi-scale network is employed. This approach not only enhances the model's capability 

for multi-scale object detection but also reduces computational requirements. 

2. Related work  

2.1 Vision transformer 

Vision Transformer (ViT), as the first model to apply transformers to image classification, 

establishes a new paradigm for the use of transformers in computer vision[10]. ViT serializes 

images and demonstrates a strong capability for global modeling through its unique multiple self-

attention (MSA) mechanism. DeiT enhances the training efficiency of the model by introducing a 

method of instructor model distillation, which reduces the dataset required for training[11]. The 

Swin Transformer builds upon this by constraining the MSA to a fixed window, thereby reducing 

computational overhead while incorporating window bias. Additionally, the Swin Transformer 

enhances information exchange between windows through the use of window offset operations[12]. 

T2T-ViT introduces a novel approach to generating more expressive token sequences layer by layer, 

which mitigates the loss of local information associated with image slicing[13]. MaxViT combines 

local and global window attention mechanisms to further enhance the performance of the 

transformer[14]. Despite these advancements, these models continue to impose a significant 

computational burden. 

2.2 CNN-Transformer architecture in object detection 

DETR represents the first pure transformer architecture for object detection. While it 

revolutionizes traditional architectures, it faces significant drawbacks, including poor multi-scale 

object detection, slow model convergence, and substantial computational demands. These 

limitations are intrinsically linked to the transformer structure and influence one another, providing 

a reference point for potential model improvements. The attention mechanism inherent in 

transformer models offers robust and comprehensive global modeling capabilities, which are 

essential for capturing image context information. However, this advantage comes at the cost of 
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considerable computational effort, often resulting in redundant calculations. Addressing multi-scale 

object detection within this framework poses additional challenges. Deformable-DETR enhances 

the Transformer module by incorporating deformable convolution, representing a notable CNN-

Transformer architecture for object detection. Convolutional networks, with their varying kernel 

sizes, excel at extracting multi-scale information about targets while focusing locally on images, 

thereby reducing redundant computations within the Transformer architecture. This integration also 

helps to mitigate the inherent shortcomings of the transformer model. DAB-DETR [15], DN-

DETR[16] and DINO-DETR build upon the foundational architecture of Deformable-DETR, 

demonstrating its potential. However, the ability to acquire multi-scale features remains inadequate. 

As research progresses, efficient architectures that combine these approaches have emerged, 

including MobileViT[17], EfficientFormer[18] and SMMA[19]. These works ingeniously integrate 

Convolutional Neural Network (CNN) into the Transformer architecture through various 

approaches. This integration facilitates the consideration of both long-range dependencies and local 

feature acquisition in images. In summary, these contributions offer valuable insights for enhancing 

multi-scale object detection models. 

3. Method 

3.1 Framework of the algorithm 

As shown in Figure 1, the algorithm is mainly composed of three parts: feature extraction stage, 

encoder, decoder and detection head. In the feature extraction stage, Efficient Multi-scale Network 

is used and the structure is divided into four stages. In the first two phases, Efficient Multi-scale 

Module (EMM) is mainly deployed. The last two phases are Fusion Module (FM) and Swin 

Transformer Module (WMSA) in that order. 

 

Figure 1: Framework of the algorithm. 
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3.2 Muti-head Mixed Convolution 

 

Figure 2: Efficient Multi-scale Module. 

As shown in the Figure 2, for vector × ×C H WX R  , after Muti-head Mixed Convolution (MMC), 

the number of head is N. The vector is divided into n parts according to the spatial dimensions to get  

1 2{ , ,..., }nx x x x  , which are entered into the convolution and then spliced respectively, as shown in 

Equation (1): 

1 1× 1( ) ( ( ),... ( ))
n nk k k k nMMC X Concat DW x DW x

                                            (1) 

Where {1,3,5...,2 1}i ik k i    denotes the size of the convolution kernel corresponding to different 

heads, [1, ]i n , /n C N . 

Dividing the vector into different heads according to C is more conducive to learning the features 

of the target in different subspaces. Convolution operations of different sizes are performed on 

different vectors nx   to make full use of the characteristics of the convolution combination to obtain 

multi-scale features of the target. This method is easy to implement, not only combining 

Transformer and CNN successfully, but also easy to obtain the fine-grained multi-scale features of 

the target. 

3.3 Muti-scale Aggregation 

To enhance information exchange among different heads, Multi-Scale Aggregation (MA) is 

performed following MMC processing, as illustrated in Figure 2. Initially, a channel is selected 

within each head to form a group, after which an up-down feature fusion operation is conducted 

within each group utilizing the inverse bottleneck structure to improve the representation of multi-

scale features. For vector × ×C H WX R , the number of groups is designated as /Groups C N  , and 

point-wise convolution is employed to facilitate the interaction of global information, with the MA 

calculated as shown in Equation (2): 
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Where [1, ]i M , [1, ]j N  , the number of head is N, /M C N . H W M

jH R    represents the j-th 

head with depth-wise convolution, i

jH  represents the i-th channel in the j-th head. aW  and bW  

denote weight matrices of point-wise convolution. 

3.4 Efficient Multi-scale Module 

As illustrated in the Figure 2, the Efficient Multi-scale Module (EMM) is employed to modulate 

both the MMC and MA, resulting in the final output feature map. The calculation process for 

generating Z from the vector 
C H WX R     is detailed in the accompanying Equation (3): 

( ( ))

v

s

Z Q V

V W X

Q MA MMC W X





                                                                 (3) 

where vW  and sW  denote linear transformations and denotes matrix dot product. Unlike 

traditional Transformers, EMA obtains Q  through a convolutional structure that modulates spatial 

and channel-specific values after element wise multiplication, while reducing computational 

overhead. 

4. Experimental results and analysis 

4.1 Settings 

The experiment utilizes the COCO2017 dataset, from which ten categories pertinent to traffic 

targets have been selected, including person, car, truck, and other common targets. The dataset 

comprises 35,784 training samples and 2,431 validation samples. The experimental metrics 

employed are AP , 50AP  and SAP . The Adam optimizer is utilized, featuring an initial learning rate 

of 0.0005, and a batch size of 8. The hardware environment is detailed in Table 1. 

Table 1: Hardware environment. 

Item Setting 

CPU Intel(R) Xeon(R) Gold 6338 

GPU NVIDIA GeForce RTX 4090 

RAM 32GB 

Deep learning frameworks Pytorch 2.2 Python 3.8 

Operating system Ubuntu 18.04 

4.2 Comparison with other methods 

To assess the effectiveness of this method, it was compared with other approaches under 

identical conditions, and the experimental results are presented in the accompanying Table 2. 

Among all algorithmic methods within the DETR class, the current method achieves the highest  

AP  of 0.549, which is approximately 1.2% greater than that of the original method, while the SAP  

roughly 1.1% higher than the original method as well. Although the AP  and SAP  metrics of the 

current method are slightly lower than those of YOLOv8, it requires significantly fewer epochs and 

GFLOPs to achieve basic convergence compared to YOLOv8. In contrast to DINO-DETR, the 

current method necessitates more epochs for convergence. However, it ultimately demonstrates 

superior overall performance. 
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Table 2: The results of comparison 

Model AP   50AP   SAP   Epoch GFLOPs 

YOLOv7[20] 0.533 0.533 0.313 100 104 

YOLOv8[21] 0.552 0.552 0.342 100 165 

Deformable-DETR 0.504 0.504 0.316 50 173 

DINO-DETR 0.531 0.531 0.323 30 279 

RT-DETR 0.537 0.537 0.329 40 136 

Proposed method 0.549 0.549 0.340 60 125 

4.3 Visualization 

We utilize visualization to assess the feasibility of this method in traffic scenarios, with the 

experimental results presented in the Figure 3. This figure includes the current mainstream methods: 

(a) Image to be detected (b) DETR (c) Deformable-DETR (d) DINO-DETR (e) RT-DETR (f) the 

proposed method. As illustrated in (f), our method demonstrates the fewest missed targets for 

pedestrians and traffic lights when compared to the other methods, showcasing its strong 

adaptability. 

 

Figure 3: Result of visualization. 

5. Conclusion 

In this paper, we propose an efficient multi-scale traffic object detection method based on RT-

DETR. Addressing the challenges associated with inadequate multi-scale object detection, we 

introduce an Efficient Multi-scale Network that incorporates MMC, MA and EMM. This method 

synergistically combines the strengths of Convolution and Transformer architectures to effectively 

capture multi-scale features of targets while minimizing computational overhead. Experimental 

results demonstrate that our approach exhibits significant advantages in traffic target recognition. 
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