
Research on Multi-stage Decision Optimization Models in

the Production Process

Yutong Zhang

School of Electronics and Information Technology (School of Microelectronics), Sun Yat-Sen

University, Guangzhou, 510006, China

Keywords: Statistical Testing, Integer Programming, Genetic Algorithms

Abstract: Product quality is crucial for a company's competitive edge. In the assembly

process, a single defective part can render the entire product substandard; even with all

parts in order, the finished product may still be defective. For non-conforming products,

companies can choose to scrap or disassemble them, incurring costs but recovering parts.

Additionally, companies bear the costs of replacing products returned due to quality issues.

This article analyzes and models multi-stage decision-making in product manufacturing,

aiming to provide effective solutions. By integrating optimization modeling with statistical

and managerial theories, including dynamic programming, integer programming, branch

and bound methods, and genetic algorithms, it addresses various scenarios faced by

companies during production: from part procurement and testing to assembly, and from

product sales to the handling of substandard products. An efficient, scientific, and

economical testing and production decision-making plan is designed to maximize profits

or minimize costs by optimizing these decision points. This not only helps companies

improve product quality, reduce production and rework costs, but also enhances their

market competitiveness.

1. Introduction

In the modern manufacturing industry, product quality is one of the core factors for enterprises to

maintain competitiveness. The production process relies on a variety of key components. During the

assembly process, if one of the components has a defect, the entire finished product will be directly

judged as unqualified; even if all components are qualified, the finished product may not pass the

inspection. For unqualified finished products, companies can choose to scrap or dismantle. The

dismantling process will not damage the components, but it will generate additional costs. In addition,

the company promises to unconditionally replace products returned due to quality issues, and bear

the logistics costs and reputation losses incurred. Against this background, how to scientifically and

reasonably formulate testing and decision-making plans has become an urgent challenge for

companies to solve.

In past research, many scholars have been committed to establishing different optimization models

to solve decision-making problems in the production process. For example, Chen L and others [1]

proposed a plant growth simulation algorithm to solve integer programming problems, which

searches for the global optimal solution by simulating the growth process of plants. Gad A G [2] used

Industrial Engineering and Innovation Management (2024)
Clausius Scientific Press, Canada

DOI: 10.23977/ieim.2024.070408
ISSN 2522-6924 Vol. 7 Num. 4

69

particle swarm optimization to solve integer programming problems, improving search efficiency

through collective intelligence. In addition, genetic algorithms, as an effective global optimization

method, have been widely used in production decision optimization. Lambora A and others [3]

reviewed genetic algorithms, pointing out their advantages in dealing with complex optimization

problems. Chen J and others [4] studied improved methods of genetic algorithms, increasing the

convergence speed and solution quality of the algorithms. These studies have provided strong tools

and theoretical foundations for production decision optimization.

Despite the progress made in the field of production decision optimization, there are still some

shortcomings. First, most studies focus on a single production stage and do not fully consider the

complexity of multi-stage decision-making in the production process. Second, existing models often

ignore the impact of uncertainties in the production process, such as market demand fluctuations and

the instability of raw material supply. In addition, some models rely too much on precise

mathematical expressions, neglecting the operability and flexibility in the actual production process.

In response to these shortcomings, this paper proposes a new method based on a multi-stage decision

optimization model. This study not only considers multiple stages in the production process but also

introduces a combination of dynamic programming and integer programming methods to more

comprehensively capture decision points in the production process. At the same time, this paper

introduces genetic algorithms to deal with uncertainties in the production process, enhancing the

model's adaptability and flexibility. In addition, this paper also verifies the effectiveness and

practicality of the proposed model through actual case analysis, providing enterprises with a scientific,

economical, and efficient production decision support tool.

2. The basic fundamental of Multi-stage Decision Optimization Model

2.1 Optimal Strategy Model Based on Integer Programming

Imagine a company that encounters six different production scenarios during its manufacturing

process due to differences in 'defective rates, purchase prices, and inspection costs of Components 1

and 2, defective rates, assembly costs, inspection costs, market selling prices, replacement costs for

non-conforming finished products, and disassembly costs of the finished products'.

This paper employs an integer programming solution strategy - the branch and bound method to

address the optimal cost-benefit problem. Initially, an analysis of the applicability of integer

programming and decision-making is conducted. The goal of the model is to identify the best

combination of testing and processing strategies to minimize total costs. The flowchart of the optimal

strategy for integer programming is shown in Figure 1 below.

Figure 1: Optimal Strategy Modeling Diagram Based on Integer Programming

When the problem is relatively simple and involves fewer objectives, the branch and bound (B&B)

70

method is generally used to obtain the exact solution of integer programming. The core idea is to

decompose this NP-hard problem into solving a series of linear programming (LP) problems (each

LP problem is solvable in polynomial time), and track the upper bound (optimal feasible solution)

and lower bound (optimal linear relaxation solution) of the original problem in real-time during the

solution process. After branching, bounding is required, that is, a feasible domain range must be

determined. Since the decision tree grows exponentially, for example, a 4-level decision tree will

have 16 planning problems, which greatly increases the computational burden. Therefore, it is

necessary to specify a feasible range to reduce computational costs and obtain the optimal decision,

such as inspecting or not inspecting components, more quickly. The selection of the feasible domain

includes feasibility pruning (see Figure 2), that is, if the bound value of a sub-problem has already

exceeded the currently known optimal solution, then this sub-problem can be pruned, that is, no

further exploration is needed; optimality pruning, that is, if the optimal solution of a sub-problem

cannot be better than the currently known optimal solution, then this sub-problem can also be pruned.

Figure 2: Branch and Bound Illustration of Variable Decision Tree

Since each component has a certain defect rate, the quality of each component will directly affect

the overall quality of the final product. Therefore, the company needs to make optimal key decisions

at multiple stages of production based on the known defect rates of components and finished products,

such as whether to inspect components, whether to inspect finished products, and whether to

dismantle unqualified finished products for recycling usable components, in order to maximize profit

or minimize costs. This paper is based on dynamic programming and integer programming

optimization models, by defining decision variables, establishing objective functions and constraints,

and using sensitivity analysis to evaluate the economic benefits of different decision-making schemes.

The rationality of this method lies in the system's ability to quantify the impact of various decisions

on total costs and total revenue, providing data-driven decision support for enterprises [5] , ensuring

that while meeting production needs and ensuring product quality, the total cost of production is

minimized as much as possible, and cost-effectiveness is maximized.

First, consider establishing a unified profit objective function for different situations. Profit is

mainly composed of the following three parts:

1) Direct costs: Including explicit cost expenditures such as purchase costs, inspection costs,

assembly, and dismantling costs.

2) Replacement loss: Replacement loss caused by unqualified products that have not been

inspected.

3) Revenue: Revenue brought by the sale of qualified products.

Set decision variables. From the above analysis, it is known to be a binary decision problem, thus

there are the following decision variables:

x1, x2: Whether to inspect components 1 and 2 (0 or 1)

y: Whether to inspect finished products (0 or 1)

z: Whether to dismantle unqualified finished products (0 or 1)

Finally, consider the objective function to maximize profit, thus it has the following formula:

71

    

    
1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

Maximize 1 1 1

(1) 1 1

P sy p x p x c x c x

ay d x d x dy l y p x p x rz

      

         
 (1)

where p1, p2 are the defect rates of Component 1 and Component 2, c1,c2 represent the purchase

prices of Component 1 and Component 2, d1,d2 mean the inspection costs of Component 1 and

Component 2, a is the assembly cost, dd is the inspection cost of the finished product, s means the

market selling price, l represents the replacement loss, and r is the dismantling cost.

The constraints include:

1) Component inspection constraints: The decision set is an integer, either inspect or not inspect,

xi∈{0,1}, for all i=1,2.

2) Semi-finished product inspection constraints: The decision set is an integer, ensuring that semi-

finished products at each process are either inspected or not inspected, yj∈{0,1}, for all j=1,2.

3) Dismantling decision constraints: If the semi-finished product is inspected and found to be

unqualified, then decide whether to dismantle, z≤1−yj, for all j=1,2, z∈{0,1}.

The optimization problem and its constraints are:

    

    

 

 

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

Maximize 1 1 1

(1) 1 1

. . 0,1 , 1,2

0,1 , 1,2

1 , 1, {2, 0,1}

i

j

j

P sy p x p x c x c x

ay d x d x dy l y p x p x rz

s t x i

y j

z y j z

      

         

   

  

    
 (2)

This paper considers solving the problem using the branch and bound method based on Matlab,

and the following Figure 3 is the flowchart of the code:

Figure 3: Branch and Bound Algorithm Flowchart

2.2 Genetic Algorithm

In light of the aforementioned issues, considering the interactions and cumulative effects of

multiple components and semi-finished products across various processes, along with different defect

rates, inspection costs, assembly costs, and dismantling fees for m processes and n components, semi-

72

finished products, and finished products, significantly increases the dimensions and complexity of

optimization decisions. To address this challenge, this paper plans to decompose the inspection,

assembly, and dismantling steps in each process step by step, using stochastic programming and

multi-objective optimization methods to construct a multi-stage decision model. This model takes

into account all key factors in the production process, including multiple components and processes,

to ensure that while meeting quality requirements, costs are optimized and production efficiency is

improved. The model can adapt to uncertainties and changes in the production process, providing

specific decision support and helping enterprises make scientific and reasonable decisions in actual

operations [6], thereby finding the optimal balance point to maximize cost-effectiveness while

ensuring product quality.

Since the multi-stage optimal decision-making problem involves a set of parameters, using precise

solutions such as branch and bound will be too costly and is not conducive to improving enterprise

efficiency. Therefore, heuristic methods are considered to ensure accuracy while enhancing the

efficiency of the solution process. Specifically, a genetic algorithm is considered, which involves a

more extensive parameter decision space. Genetic algorithms improve the model's adaptability and

flexibility when dealing with uncertainties and multi-stage decision-making problems, enhancing the

optimization capabilities for complex production systems.

Genetic algorithms are heuristic search algorithms that simulate the evolutionary process in nature.

In the context of assembly production, especially in complex production environments involving

multiple processes and components, genetic algorithms provide an effective optimization tool that

efficiently searches a wide range of solution spaces. They not only improve search efficiency but also

enhance the exploration capabilities for the global optimal solution. This paper establishes a genetic

algorithm-driven multi-stage integer programming model to solve the aforementioned optimal

decision-making problem for m processes and n components.

Specifically, solving the multi-stage optimal decision-making problem can be translated into the

following steps in the genetic algorithm:

Step 1: Initialize the population: Randomly generate a set of candidate solutions as the initial

population. In this part, it is the selection of production strategies, i.e., whether to inspect components

and whether to dismantle parts. They can be regarded as the final results to be optimized.

Step 2: Fitness function evaluation: Calculate the fitness of each individual (solution), where

fitness represents the optimization objective function in this part.

Step 3: Selection operation: Select individuals from the current population based on fitness for

crossover and mutation operations. In assembly production, this corresponds to screening out better-

performing production plans.

Step 4: Crossover and mutation operations: Cross and mutate some genes of individuals with a

certain probability to increase the diversity of the population. In assembly production, this

corresponds to exploring more effective production methods, avoiding local optima, and increasing

the chances of finding the global optimal solution.

Let the quantity of finished products be n, and the fitness function be fi. Then the probability Pi

that it is selected is given by:

1

i
i n

k

k

f
p

f





 (3)

Probability of selecting the i-th individual:

' 1(1)r

ip q q  
 (4)

73

The formula for transforming gene values is:

 (5)

The mutation formula is:

 (6)

2

max

() ((1))bG
f G r

G
 

, 1 2, (0,1)r r U
, 𝐺 represents the current number of generations, 𝐺𝑚𝑎𝑥 is

the maximum number of generations, the objective function value 𝑓(𝑥) is transformed into the

fitness function value 𝐹𝑖𝑡(𝑓(𝑥)) , let:

 (7)

For optimization problems, they can be transformed into:

 (8)

The state variable 𝑥′ can be directly solved by ℎ𝑗(𝑥′) = 0; 𝑗 = 1,2 … 𝑙.

3. Results

3.1 Solving the Optimal Strategy Model Based on Integer Programming

For the convenience of solving the model, a constraint diagram of integer programming is shown

in Figure 4. The blue line represents a linear inequality, but here the x and y independent variables

are constrained to integer variables, so the feasible region becomes several discrete black dots within

the red line area(If it is linear programming, the feasible region is all the areas inside the blue line

segment).

Figure 4: Discrete Feasible Region Diagram of Integer Programming

74

Taking Situation 1 as an example, the optimal decision obtained by Matlab is [x1, x2, y, z]=[0,1,1,1],

which means Component 1 is not inspected, Component 2 is inspected, the finished product is

inspected, and unqualified finished products are dismantled.

The cost-benefit visualization graph is shown in Figure 5:

(a) Profit for Different Strategies (b) Max Profit for Each Scenario

Figure 5: Cost-benefit visualization graph

In order to eliminate the influence of multifactorial effects, a univariate analysis is attempted.

Based on the branch and bound parameters determined from the previous analysis, a model is

established and simulated in the Matlab environment. This model can be used to analyze the

interrelationships between factors. Finally, residual white noise testing is conducted, and it is

observed from Figure 6 that after differentiation, the majority of correlation coefficients fall within

the confidence interval, thus confirming the residual terms of the fitted model to be a white noise

sequence, which can be used for subsequent calculations.

Figure 6: Residual Test Diagram

3.2 Solving with Genetic Algorithm

This section aims to solve the multi-stage optimal decision-making problem for m processes and

n components. A problem with 1 process and 2 components can be regarded as a basic decision model.

Therefore, m processes can be considered as an n-stage decision, each stage including n components,

and decisions are made on whether to inspect them. Thus, there will be no fewer than m+n variables

for the optimal decision.

Define decision variables:

75

 xi: Whether to inspect component i, i=1,2,…,n. 1 indicates inspection, 0 indicates no inspection.

 yj: Whether to inspect the semi-finished product after the j-th process, j=1,2,…,m. 1 indicates

inspection, 0 indicates no inspection.

 zj: Whether to dismantle the unqualified semi-finished product from the j-th process, j=1,2,…,m.

1 indicates dismantling, 0 indicates no dismantling.

The task for m processes and n components is to solve for maximum profit:

 (9)

where pi is the defect rate of the i-th component, ci represents the purchase price of the i-th

component, di means the cost of inspecting the i-th component, aj is the assembly cost for the j-th

process, dj is the cost of inspecting the semi-finished product of the j-th process, s means the market

selling price of the final product, l represents the replacement loss of unqualified products, and rj is

the cost of dismantling the unqualified semi-finished product from the j-th process.

The constraints include:

Component Inspection Constraint: The decision set is an integer, ensuring that each component is

either inspected or not inspected. xi∈{0,1}, for all i=1,…,n.

Semi-finished Product Inspection Constraint: The decision set is an integer, ensuring that the semi-

finished product of each process is either inspected or not inspected. yj∈{0,1}, for all j=1,…,m.

Dismantling Decision Constraint: If the semi-finished product is inspected and found to be

unqualified, then decide whether to dismantle. zj≤1−yj, for all j=1,…,m.

In summary, the multi-stage optimization problem and constraints are:

 (10)

Through optimization analysis, the current optimization result can be obtained as shown in Figure

7 below:

(a) Optimization is performed 100 times (b) Optimization is performed 500 times

Figure 7: The genetic algorithm optimization is performed with different execution times

By using the established genetic algorithm-driven optimal decision model to solve a specific case,

where m=2 and n=8. Here, only the function call for a specific situation is shown. In an already

determined situation, people can directly call this genetic algorithm model to find the optimized

76

production strategy. Schematic diagram of genetic algorithm search force optimization convergence

is presented in Figure 8.

Figure 8: Schematic diagram of genetic algorithm search force optimization convergence

According to the results of the program call, in the production process of 2 processes and 8

components, the optimal decision for maximizing production profit is (1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1,

1), which corresponds to whether to inspect each of the 8 components, whether to inspect the 3 semi-

finished products, whether to inspect the finished product, and whether to dismantle the unqualified

product, respectively.

4. Conclusions and outlooks

This paper presents an in-depth analysis and modeling of the multi-stage decision-making

challenges in the production process of electronic products, offering an effective solution. By

integrating optimization techniques with statistical and managerial methods, such as dynamic

programming, integer programming, branch and bound methods, and genetic algorithms, the model

addresses key production issues including component procurement, inspection, assembly, market

sales of finished products, and handling of defective items. The model is designed to maximize profits

or minimize costs, thereby improving product quality, reducing production and rework expenses, and

enhancing market competitiveness.

Its comprehensive, flexible, and risk-aware approach also makes it applicable to other

manufacturing sectors like automotive, machinery, and aviation, providing a practical and

economically beneficial decision-making framework.

References

[1] Chen L, Liu Q, Ye C, et al. A novel decision-making scheme for hospital emergency services based on plant growth

simulation algorithm [J]. International Journal of Internet Manufacturing and Services, 2024, 10(2-3): 112-131.

[2] Gad A G. Particle swarm optimization algorithm and its applications: a systematic review[J]. Archives of

computational methods in engineering, 2022, 29(5): 2531-2561.

[3] Lambora A, Gupta K, Chopra K. Genetic algorithm-A literature review[C]//2019 international conference on

machine learning, big data, cloud and parallel computing (COMITCon). IEEE, 2019: 380-384.

[4] Chen J, Zhao F, Sun Y, et al. Improved XGBoost model based on genetic algorithm[J]. International Journal of

Computer Applications in Technology, 2020, 62(3): 240-245.

[5] Ding Y , Shen G , Wan W .Research on a Multi-Objective Optimization Method for Transient Flow Oscillation in

Multi-Stage Pressurized Pump Stations[J].Water (20734441), 2024, 16(12).DOI:10.3390/w16121728.

[6] Kim J H, Lee Y, Kim W C, et al. Goal-based investing based on multi-stage robust portfolio optimization[J]. Annals

of Operations Research, 2022, 313(2): 1141-1158.

77

