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Abstract: Based on the Pacejka magic tire formula, this paper establishes a nonlinear full 

model of a four-wheel independent drive and four-wheel independent steering car. Using 

the discrete step method, the paper solves the nonlinear implicit differential equations, 

simplifies the model, and determines its applicable scope. Finally, the paper compares the 

simulation results of three simplified models with those of the full model. The results show 

that under the corresponding applicable conditions, the results of the simplified models are 

very similar to those of the full model, allowing the full model to be replaced by the 

simplified model. 

1. Introduction 

The four-wheel independent drive and four-wheel independent steering (4WID-4WIS) electric 

vehicle has consistently been a focal point in automotive industry research. Each wheel is equipped 

with a hub motor that provides driving torque and a steering mechanism for adjusting the steering 

angle, resulting in excellent maneuverability and a wide variety of driving modes. The vehicle 

dynamics characteristics, with eight degrees of freedom, make the 4WID-4WIS vehicle control model 

fundamentally different from traditional four-wheel vehicle models. Common tire formulas used in 

vehicle dynamics include the Dugoff tire model, Pacejka tire model and etc. Among them, the Pacejka 

magic tire formula [1] uses trigonometric function combinations to fit tire characteristics. When the 

lateral acceleration is less than 0.4g and the yaw angle is less than 5 degrees, the Pacejka tire formula 

achieves extremely high fitting accuracy. The robustness of the Pacejka magic tire formula and the 

high confidence in the results it produces are reasons for its widespread use in the automotive industry 

and its adoption in this paper. 

The research on related control issues of 4WIS-4WID vehicles is extensive. Solea R, Filipescu A 

et al. [2] used sliding mode control to track and control the trajectory of car based on 4WIS vehicle 

model. Maoqi et al.[3] studied the maneuverability of 4WS vehicles equipped with wheel hub motors. 

Shi et al. [4] proposed a double-layer dynamic decoupling control system based on the 2-DOF model 
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of 4WS vehicles, addressing the issue of vehicle yaw instability. Chen et al. [5] studied the trajectory 

tracking problem of 4WIS-4WID vehicles and derived a control model based on the 2-DOF model. 

Liang et al.[6] combined active steering and direct yaw moment control to resolve the challenges of 

lateral control in 4WID-4WIS vehicles at high speeds. Liu et al.[7] proposed a fault-tolerant control 

method that improved the trajectory tracking performance and stability of 4WID-4WID vehicles. 

The dynamics of 4WIS-4WID vehicles have also been extensively studied by many scholars. Peng 

Hang et al.[8] established a nonlinear dynamic model for 4WIS based on the Dugoff tire model and 

transformed the nonlinear model into a linear model for MPC control. Fahimi[9] conducted control 

research on 4WS vehicle, establishing a 6-DOF (degrees of freedom) vehicle model based on the 

Pacejka tire model, and then simplifying it to a 3-DOF nonlinear model. Iervolino et al.[10] 

established a nonlinear vehicle full model based on the Pacejka tire model. Hang et al. [11], in order 

to study the stability control algorithm for 4WID-4WIS vehicles, simplified the vehicle model to a 2-

DOF model by ignoring pitch and roll motions. These studies have provided valuable insights and 

tools for understanding and controlling the complex dynamics of 4WIS-4WID vehicles. 

This paper aims to establish a nonlinear dynamic model suitable for 4WID-4WIS vehicles based 

on the Pacejka magic tire formula model, propose an algorithm solution process applicable to this 

model, and construct a full-model solution. Under different conditions, the full model is simplified, 

and the solution space of the simplified model is finally obtained. Additionally, this paper compares 

the differences between the simplified model and the full model. 

2. 4WID-4WIS Dynamic vehicle model 

Figure 1 illustrates the relevant variables of a 4WID-4WIS vehicle in both the inertial and vehicle 

coordinate systems. In the diagram, 𝑢, 𝑣  represents the velocities of the centroid along the 

longitudinal and lateral directions of the vehicle body, respectively; 𝛾 is the yaw rate of centroid, 

and 𝛽 is the yaw angle. 𝑢𝑖 , 𝑣𝑖(𝑖 = 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟) represent the velocities of tire centers along the 

longitudinal and lateral directions of the vehicle body, respectively;  𝑢𝑤𝑖 , 𝑣𝑤𝑖(𝑖 = 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟) 

represent the tire velocities along the longitudinal and lateral directions in the tire coordinate system, 

respectively. 𝐹𝑢𝑖 , 𝐹𝑣𝑖 are the forces acting on the wheels along the longitudinal and lateral directions 

of the vehicle body; 𝐹𝑤𝑥𝑖 , 𝐹𝑤𝑦𝑖 are the forces acting on the wheels along the longitudinal and lateral 

directions in the tire coordinate system, respectively; 𝛿𝑖 represents the steering angle of each wheel. 

As shown in Figure 1, the relationship between the speeds and displacements in the vehicle 

coordinate system and those in the X and Y directions of the inertial coordinate system can be 

expressed by Equation (1). Here, 𝑣𝑋 and 𝑣𝑌 represent the velocities of the centroid in the x and y 

directions; 𝑋  and 𝑌  represent the displacements of the centroid in the x and y directions. 

Considering vehicle dynamics, for 4 tires labeled as 𝑖 = 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟, the forces acting on the tires 

from the ground are expressed as shown in Equation (2). 

                                 (1) 

                              (2) 
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Figure 1: Schematic Diagram of 4WID-4WIS Vehicle Forces 

According to Newton's third law, we derive Equation (3). In this equation, 𝑎𝑢 and 𝑎𝑣 represent 

the longitudinal and lateral accelerations of the centroid; 𝑀𝑖 is the torque exerted by the wheels on 

the centroid ; 𝐹𝑤 is the wind resistance acting on the vehicle body; 𝑚 is the fully loaded mass of 

the vehicle; Bf and Br are the front and rear wheelbase; Lf and Lr are the distances from the centroid 

to the front and rear axles; 𝐽𝑧 is the inertia moment of the entire vehicle around the centroid; 𝐶𝐷 is 

the drag coefficient; A is the vehicle lateral area; and 𝜌 is the air density. 

                         (3) 

The relationship between input forces on tires of each wheel labeled as 𝑖 = 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟 and the 

reactive forces exerted by the ground on the tires is represented by Equation (4). In Equation (4), 𝜔𝑖 

represents the rotational angular velocity of the wheel, 𝑇𝑑𝑖 represents the input torque of the wheel, 

𝑟𝑤𝑖 represents the rolling radius of the wheel, and 𝐽𝑖 represents the inertia moment of the wheel. 

                          (4) 

When considering influence of centroid acceleration on the vertical load of vehcle wheels. 𝐹𝑧𝑖 is 

the vertical load on wheel, 𝐿 is the wheelbase of the vehicle, and hcg is the height of vehicle's centroid. 

The relationship between the vehicle's centroid speed and tire speed derived from the vehicle 

coordinate system is expressed in Equation (6). In this equation, 𝑢, 𝑣 represent the component of the 

vehicle's centroid speed along the vehicle coordinate system, and γ represents the yaw rate of the 

centroid. 

Based on the results derived from Equation (6), the paper can further deduce the longitudinal speed, 

lateral speed, and tire sideslip angle in the tire coordinate system. In Equation (7), 𝑢𝑤𝑖 represents 

the longitudinal velocity component of the current tire, 𝑣𝑤𝑖 represents the lateral velocity component 

of the current tire, and 𝛼𝑤𝑖 represents the tire sideslip angle. 

                          (5) 
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                            (6) 

                                (7) 

Based on the longitudinal speed in the tire coordinate system, the tire slip ratio of the current 

vehicle can be derived in Equation (8): 

                           (8) 

The magic tire model is used to calculate the longitudinal and lateral forces of a tire. The 

expression for the longitudinal force is as shown in Equation (9-11): 

                                  (9) 

                  (10) 

                (11) 

The expression for the longitudinal force is as shown in Equation (12-14): 

                                  (12) 

                   (13) 

                  (14) 
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3. Establishment and Solution of Differential Equation Models 

Based on the previously mentioned dynamic model of driving, the state variables, intermediate 

variables, and control variables are defined as shown in Equations (15-17). 

                      (15) 

                        (16) 

                       (17) 

In these equations, x and y represent the coordinates of the vehicle's centroid in the inertial 

coordinate system, 𝛹  denotes the yaw angle of the centroid, 𝑉𝑋  and 𝑉𝑌  are the velocity 

components of the centroid in the inertial coordinate system, γ is the yaw rate of the centroid, and 

ωfl, ωfr, ωrl, ωrr represent the four wheels rotational speeds of the vehicle. T and D stand for tire 

torque and tire angle, respectively. 𝐹𝑋, 𝐹𝑌,  and 𝑀  represent the forces acting on the vehicle's 

centroid, while 𝐹txfl, 𝐹txfr, 𝐹txrl, 𝐹txrr represent the longitudinal forces of the four wheels. Based on 

these definitions, the dynamic driving model of the vehicle can be expressed in the following form: 

                                (18) 

The specific forms of these equations are shown in Equations (19-20): 

                            (19) 

                      (20) 

The dynamic driving model based on magic tire formula is a nonlinear implicit system of 

differential equations containing many trigonometric functions (Equations 18-20). Such a system 
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cannot be solved directly and requires numerical methods for step-by-step solutions. In this paper, a 

solution strategy as outlined in Table 1 is adopted. Given initial state and initial control, speeds, 

sideslip angles, slip ratios, and tire rotational speed change rates of each tire at current time step can 

be calculated first. Subsequently, vertical forces on tires and tire slip ratios can be computed. These 

quantities are then used in the Pacejka magic tire formula to calculate the forces acting on tires from 

the ground. Finally, the state variables at the next time step are computed based on the dynamic 

equations, and the time t is updated. Figure 2 presents the algorithm flowchart for the nonlinear model 

in this paper. The arrows indicate the interrelationships between the calculated quantities, with the 

starting point of the arrow representing the calculation condition and the endpoint representing the 

calculation result. For example, to calculate the longitudinal and lateral forces of the tires in the model, 

it is necessary to compute the vertical tire forces, wheel slip ratios, and tire sideslip angles beforehand. 

Table 1: Numerical methods for step-by-step solution strategy of nonlinear model on GPU 

The algorithm for solving the dynamic model based on the Pacejka magic tire 

formula 

Inputs: initial state variables, control variables, calculation step size h, and the 

calculation interval [a,b] 

Output: state variables under the given control variables 

Wen t<b: 

Based on the initial state variables, the relevant quantities of each tire are calculated: 

tire speeds, sideslip angles, tire slip rates, and vertical forces. 

The change rate of tire rotation speed is computed based on the initial state variables 

and control variables. 

The forces acting on the current tire are calculated by substituting the tire slip rate, 

sideslip angle, and vertical load into the magic tire formula. 

The computed tire forces are then substituted into the differential equations to solve 

for the next state variables. 

The calculated state variables are used as the initial state variables for the next 

calculation interval. 

 The time variable t is updated to t=t+h. 

End the calculation and return the state variables at each time step 

steering angle 

of tire
Tire torque

Tire rotation 

speed rate of 

change

Wheel slip 

ratio

Initial state of 

vehicle 

centroid

Initial tire 

speed

Tire speed / 

sideslip angle

Tire vertical 

force

Tire 
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lateral forces

Tire speed at 

next time 

step

Next state of 

vehicle 
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Figure 2: Algorithm flowchart for the nonlinear model distributed on GPU 

4. Model Simplification 

This paper adopts the strategy shown in Figure 3 to compare the solution spaces of the full model 

and simplified models based on the magic formula tire model. The paper primarily involves three 
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simplified models, including: the simplified model based on Taylor series expansion, the five-degree-

of-freedom two-wheel model based on the Pacejka magic formula tire model, and the model that 

ignores the yaw angle. 

 

Figure 3: Comparison of the model solution space  

1) The simplified model based on Taylor series expansion can transform the DAE model into ODE 

equations for solving. 

2) The five-degree-of-freedom two-wheel model based on the Pacejka magic formula tire model 

can be used in most cases where the left and right wheel angles do not differ significantly. 

3) In some four-wheel independently driven studies, the yaw angle is ignored. Similarly, this 

simplification is also demonstrated in this paper. 

4.1 The simplified model based on Taylor series expansion 

According to Taylor series expansion for multivariate functions, at the point (𝑥𝑘
1, 𝑥𝑘

2, … , 𝑥𝑘
𝑛), the 

following equation can be derived: 

                   (21) 

In this paper, the strategy is adopted to solve the differential equation by expanding the 

intermediate variable I at the initial value of the state variable and ignoring higher-order terms. 

Specifically, the state variable, control variable, and intermediate variable are defined as follows: 

                        (22) 

The intermediate variable used are: 

                 (23) 

Then, a relational expression can be derived as shown in (24). 

                               (24) 

Finally, the intermediate quantity I can be expressed in the form of Equation (25): 
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                      (25) 

The differential Equation (19) can be written as: 

                          (26) 

By substituting Equation (25) into Equation (26), the Differential-Algebraic Equation can be 

transformed into an Ordinary Differential Equation at the point (𝑋0). Then, the following expression 

can be obtained: 

                       (27) 
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Finally, the state equation is simplified to the following form: 

                              (28) 

Since the simplified model ignores higher-order terms after expansion, it has a certain applicable 

range. For 𝜀 within the range (𝑋0, 𝑋),the error between the actual value and expanded value of I 

can be denoted as: 

           (29) 

Given the upper limit of the error 𝜂,then: 

                         (30) 

If the step ℎ = (𝑋 − 𝑋0), it can be concluded that: 

                             (31) 

From the above equation, it is easy to know when the second derivative of the intermediate quantity 

is greater than this value 2𝜂/ℎ^2, the results calculated from the simplified equation will exceed the 

upper limit of the error. In this case, the simplified model can no longer be used, and the full model 

should be employed for the solution. 

4.2 The five-degree-of-freedom two-wheel model 

Considering that under certain four-wheel steering conditions, the difference between yaw angles 

of the left and right wheels is not significant, the yaw angles of the left and right wheels can be set as:  

                                     (32) 

In this situation, the model can be converted into a five-degree-of-freedom two-wheel 

independently driven model, and the differential equation can be written as:  

                         (33) 

4.3 The Model Ignoring Yaw Angle of Centroid 

In the research of path planning or control for 4WID-4WIS vehicles[12], the yaw angle of the 

centroid is often ignored due to its small influence. Under such conditions: 

51



 

 

                                   (34) 

5. Simulation results and discussion 

5.1 Presentation of Related Parameters 

All the vehicle parameters in this paper are derived from the Austrian Research Promotion Agency 

(FFG) funded "RoboCar" project. The main parameters are shown in Table 2. Among them, Lf is the 

distance from the vehicle's centroid to the front axle, Lr is the distance from the vehicle's centroid to 

the rear axle, Jz is the moment of inertia around the z-axis, CD is the drag coefficient, hcg is the height 

of the centroid, rw is the rolling radius of the tire, and Jwi is the moment of inertia of the tire.  

Table 2: Vehicle Parameters 

L[m] Lf[m] Lr[m] Bf[m] Br[m] M[kg] Jz[kg.m2] 

1.29 43.9024 -1080 -53095 2 0.1418 0.1659 

Cd A[m2] ρ[kg/ m2] g[m/s2] Hcg[m] Rw[m] Jwi[kg. m2] 

1.1 6.38 7.95 -0.06 0.1 -0.18 0.0059 

5.2 Simulation results 

(1) Comparison of the Solution Spaces between the Full Model and the Taylor Expansion Model 

In the experiments conducted in this paper, the motor power of each wheel hub was set at 1kW, 

and the desired torque was set at 10Nm. The calculation step of the full model was set to 0.005s. 

Initially, the vehicle was set to drive straight until it reached a stable state, and then a step input was 

given to the tire angles. A total of four experiments were performed, with the tire angles set to [5, 5, 

0, 0], [0, 0, -5, -5], [5, 5, -5, -5], and [5, 10, -4, -11], respectively. 

The simulation results comparing the Taylor series expansion model and the full model are shown 

in Figure 4. As can be seen from Figures 4(a) to 4(c), under the first three types of control, the 

solutions based on the Taylor series expansion model almost overlap with those of the full model. In 

such cases, the results calculated by the two models are consistent, and the results from the simplified 

model can be used to replace those of the original model. However, as illustrated in Figure 4(d), when 

a yaw angle control of [5, 10, -4, -11] is applied to the vehicle, the results calculated by the simplified 

model do not align with the full model. Specifically, the final trajectory of the simplified model 

deviates by approximately 5m to 7m in the x-direction, and the yaw rate and centroid speed derived 

from the simplified model are smaller than those of the full model. Additionally, the centroid yaw 

angle obtained from the Taylor series expansion model tends to be larger than those of the full model 

and results in significant oscillations in the calculation. The final simulation result of the simplified 

model is not fully satisfactory; under this control scenario, the simplified model exhibits significant 

deviations and is no longer suitable for solving the problem. 
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(a)                   (b) 

 
(c)             (d) 

Figure 4: Comparison of Solutions between the Full Model and the simplified Model 

(2) Comparison of Solution Spaces between the Full Model and the Two-Wheel Simplified Model  

Here, the motor power of each wheel hub was also set at 1kW, with a desired torque of 10Nm, and 

the calculation step of the full model was set to 0.005s. Initially, the vehicle was allowed to drive 

straight until it reached a stable state, and then a step input was given to the tire angles. Since the two-

wheel model cannot be compared with scenarios where all four wheel angles are different, a total of 

three experiments were conducted, with the tire angles set to [5, 5, 0, 0], [0, 0, -5, -5], and [5, 10, -4, 

-11]. The final simulation results comparing the two-wheel simplified model and the full model are 

shown in Figure 5. As can be seen from Figures 5(a) and 5(b), the trajectories obtained by the full 

model and the simplified model differ little, with position deviations in the x and y directions less 

than 0.5m and deviations in the centroid speed less than 0.1m/s. However, as illustrated in Figure 5(c), 

when a steering angle control of [5, 10, -4, -11] is applied to the vehicle, the results calculated by the 

simplified model deviate more from those of the full model, with a trajectory deviation of 

approximately 1m and a centroid speed deviation of around 1m/s. Regarding scenarios where the four 

wheel angles differ significantly, the two-wheel model is not suitable. It can be seen that the two-

wheel model can only be used for cases where the left and right steering angles differ slightly.  
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(a)                   (b) 

 
(c) 

Figure 5: Comparison of Solutions between Two-Wheel Simplified Model and Taylor Series 

Expansion Model 

(3) Comparison of the Full Model and the Simplified Model for the Yaw Angle of Centroid  

For the simplified model that ignores the yaw angle of the centroid, the same motor power, torque, 

and calculation step as those used previously are employed. When the tire angles are set to [5, 5, 0, 

0], [0, 0, -5, -5], [5, 5, -5, -5], and [5, 10, -4, -11], the results are shown in Figure 5. Since this model 

only ignores the yaw angle of the centroid, the calculations of other quantities remain the same in 

addition to final trajectories. Therefore, only the final trajectories are compared here. As shown in 

Figures 6(a) to 6(c), the trajectories calculated by the two models are identical for front-wheel steering, 

rear-wheel steering, and four-wheel steering models with small differences in yaw angles. However, 

when a steering angle control of [5, 10, -4, -11] is applied to the wheels, as shown in Figure 6(d), a 

deviation of about 5m in the x-direction of the final trajectory is observed. In this case, the yaw angles 

of the centroid cannot be ignored, or the final trajectory will have a significant deviation.  
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(a)                  (b) 

 
(c)                          (d) 

Figure 6: Comparison of Solutions between the Model Ignoring Yaw Angle of Centroid and Taylor 

Series Expansion Model 

6. Conclusion 

1) This paper establishes a 4WID-4WIS vehicle full model based on the magic formula tire model. 

The establishment of the full model is the foundation for solving and simplifying the model, and this 

paper also provides a numerical solution algorithm for this model. 

2) This paper simplifies the model based on the magic formula tire model. Following the idea of 

simplifying the intermediate variables, the nonlinear implicit differential equations are reduced to 

discrete explicit differential equations. Simulation results prove that when the model is within the 

applicable range, the final solution of the simplified model is not significantly different from the 

results of the full model, and the results of the simplified model can be used to replace the results of 

the full model.  

3) This paper derives a two-wheel model with five degrees of freedom based on the simplification 

of the full model. The simulation results of this model show slight differences from the solution of 

the full model. When the control applied to the vehicle's tires differs significantly, this simplified 

model cannot be used anymore, and the full model should be used for solving. For issues such as path 

planning and trajectory tracking for 4WID-4WIS vehicles, where the model can be simplified without 

requiring high solution accuracy, this simplified model can be used. 

4) This paper also compares full model with a simplified model that ignores yaw angle of center 
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of mass. For the simplified model, its solution results are approximately the same as simulation results 

of full model. However, when the yaw angle is large, yaw angle cannot be directly ignored, and the 

error of the results derived from the simplified model will significantly increase. In such cases, the 

results calculated by the simplified model cannot replace the results calculated by the full model. 
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