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Abstract: Based on the Pacejka magic tire formula, this paper establishes a nonlinear full
model of a four-wheel independent drive and four-wheel independent steering car. Using
the discrete step method, the paper solves the nonlinear implicit differential equations,
simplifies the model, and determines its applicable scope. Finally, the paper compares the
simulation results of three simplified models with those of the full model. The results show
that under the corresponding applicable conditions, the results of the simplified models are
very similar to those of the full model, allowing the full model to be replaced by the
simplified model.

1. Introduction

The four-wheel independent drive and four-wheel independent steering (4WID-4WIS) electric
vehicle has consistently been a focal point in automotive industry research. Each wheel is equipped
with a hub motor that provides driving torque and a steering mechanism for adjusting the steering
angle, resulting in excellent maneuverability and a wide variety of driving modes. The vehicle
dynamics characteristics, with eight degrees of freedom, make the 4WID-4WIS vehicle control model
fundamentally different from traditional four-wheel vehicle models. Common tire formulas used in
vehicle dynamics include the Dugoff tire model, Pacejka tire model and etc. Among them, the Pacejka
magic tire formula [1] uses trigonometric function combinations to fit tire characteristics. When the
lateral acceleration is less than 0.4g and the yaw angle is less than 5 degrees, the Pacejka tire formula
achieves extremely high fitting accuracy. The robustness of the Pacejka magic tire formula and the
high confidence in the results it produces are reasons for its widespread use in the automotive industry
and its adoption in this paper.

The research on related control issues of 4WIS-4WID vehicles is extensive. Solea R, Filipescu A
et al. [2] used sliding mode control to track and control the trajectory of car based on 4WIS vehicle
model. Maoqi et al.[3] studied the maneuverability of 4WS vehicles equipped with wheel hub motors.
Shi et al. [4] proposed a double-layer dynamic decoupling control system based on the 2-DOF model
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of 4WS vehicles, addressing the issue of vehicle yaw instability. Chen et al. [5] studied the trajectory
tracking problem of 4WI1S-4WID vehicles and derived a control model based on the 2-DOF model.
Liang et al.[6] combined active steering and direct yaw moment control to resolve the challenges of
lateral control in 4WID-4WIS vehicles at high speeds. Liu et al.[7] proposed a fault-tolerant control
method that improved the trajectory tracking performance and stability of 4WID-4WID vehicles.

The dynamics of 4WIS-4WID vehicles have also been extensively studied by many scholars. Peng
Hang et al.[8] established a nonlinear dynamic model for 4WIS based on the Dugoff tire model and
transformed the nonlinear model into a linear model for MPC control. Fahimi[9] conducted control
research on 4WS vehicle, establishing a 6-DOF (degrees of freedom) vehicle model based on the
Pacejka tire model, and then simplifying it to a 3-DOF nonlinear model. lervolino et al.[10]
established a nonlinear vehicle full model based on the Pacejka tire model. Hang et al. [11], in order
to study the stability control algorithm for 4WID-4WIS vehicles, simplified the vehicle model to a 2-
DOF model by ignoring pitch and roll motions. These studies have provided valuable insights and
tools for understanding and controlling the complex dynamics of 4WIS-4WID vehicles.

This paper aims to establish a nonlinear dynamic model suitable for 4AWID-4WIS vehicles based
on the Pacejka magic tire formula model, propose an algorithm solution process applicable to this
model, and construct a full-model solution. Under different conditions, the full model is simplified,
and the solution space of the simplified model is finally obtained. Additionally, this paper compares
the differences between the simplified model and the full model.

2. AWID-4WIS Dynamic vehicle model

Figure 1 illustrates the relevant variables of a 4WID-4WIS vehicle in both the inertial and vehicle
coordinate systems. In the diagram, u,v represents the velocities of the centroid along the
longitudinal and lateral directions of the vehicle body, respectively; y is the yaw rate of centroid,
and p is the yaw angle. u;, v;(i = fL, fr,rl,rr) represent the velocities of tire centers along the
longitudinal and lateral directions of the vehicle body, respectively; u,;, v,;(i = fl, fr,rl,rr)
represent the tire velocities along the longitudinal and lateral directions in the tire coordinate system,
respectively. F,;, F,; are the forces acting on the wheels along the longitudinal and lateral directions
of the vehicle body; F,,;, F,,y; are the forces acting on the wheels along the longitudinal and lateral
directions in the tire coordinate system, respectively; &§; represents the steering angle of each wheel.

As shown in Figure 1, the relationship between the speeds and displacements in the vehicle
coordinate system and those in the X and Y directions of the inertial coordinate system can be
expressed by Equation (1). Here, vy and v, represent the velocities of the centroid in the x and y
directions; X and Y represent the displacements of the centroid in the x and y directions.
Considering vehicle dynamics, for 4 tires labeled as i = fI, fr,rl, rr, the forces acting on the tires
from the ground are expressed as shown in Equation (2).

vy = ucosfl — vsinfi
vy = usinf + vecosf
X = f vy dt +
Y = [ vdt
8 = lvdt 1)
Fui = Fluxi€0808; — Fp5ind;
Fyi = Fumising; + F,,p;co56;
My = =05 Fypy - Bp + Fopy - Ly
My, =05 Fp - By + Fopp - Ly
M. =—05:F, B.— F, L,
M, =05+ Fypp * By = Fypp Ly 2
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Figure 1: Schematic Diagram of 4WID-4WIS Vehicle Forces

According to Newton's third law, we derive Equation (3). In this equation, a,, and a, represent
the longitudinal and lateral accelerations of the centroid; M; is the torque exerted by the wheels on
the centroid ; F,, is the wind resistance acting on the vehicle body; m is the fully loaded mass of
the vehicle; Br and Brare the front and rear wheelbase; Ls and L are the distances from the centroid
to the front and rear axles; J, is the inertia moment of the entire vehicle around the centroid; Cj is
the drag coefficient; A is the vehicle lateral area; and p is the air density.

ma, = m(u—vy) =ZF, —F, —F
ma, = m(v+uy) = LF,;
¥ = M,
E, = Cpdpu®/2
Fr=f6G ©)

The relationship between input forces on tires of each wheel labeled as i = fI, fr,rl,rr and the
reactive forces exerted by the ground on the tires is represented by Equation (4). In Equation (4), w;
represents the rotational angular velocity of the wheel, T,; represents the input torque of the wheel,
i represents the rolling radius of the wheel, and J; represents the inertia moment of the wheel.

fi(":]z = Tai — Fyxi " Tt (4)

When considering influence of centroid acceleration on the vertical load of vehcle wheels. F,; is
the vertical load on wheel, L isthe wheelbase of the vehicle, and heg is the height of vehicle's centroid.

The relationship between the vehicle's centroid speed and tire speed derived from the vehicle
coordinate system is expressed in Equation (6). In this equation, u, v represent the component of the
vehicle's centroid speed along the vehicle coordinate system, and y represents the yaw rate of the
centroid.

Based on the results derived from Equation (6), the paper can further deduce the longitudinal speed,
lateral speed, and tire sideslip angle in the tire coordinate system. In Equation (7), u,,; represents
the longitudinal velocity component of the current tire, v,,; represents the lateral velocity component
of the current tire, and «,,; represents the tire sideslip angle.

_mgL, mMmayh,, Ma,Ll.i.,

ot =1 2L LB,
mgl, mayh,, ma.L.h,
A T T) LB,
_mgly mayh.,, maylih.,
Fen =750 2L LB,
mgl; mayh,, ma,Lih,
ET) 2L LB, (5)
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uf:=u_]v"Bf/2,Uf_| =U+Y'L}r]
U = Uty B /2,0, =v+y:Lp
Uy =uU—y-B/2, v =v -y L

wi=uty B /2= vy L, )
U, = w;cosd; + vising;
Vi = —u;sing; + v;cosd
Gy = arctan( v, /i) (7)

Based on the longitudinal speed in the tire coordinate system, the tire slip ratio of the current
vehicle can be derived in Equation (8):

e er Pty T Uy < Uy
Ui
WiTe, — Uy
- i T = Wyi = U
., T, 15 u (8)
The magic tire model is used to calculate the longitudinal and lateral forces of a tire. The
expression for the longitudinal force is as shown in Equation (9-11):

=

k.= 'F.;'¢ L (9)
F., = (Dysin(Ciarctan(B,x; — E.(B.x; — arctan(B,x;)))))
X =k
€, = B,

D, = B,F, + B,F,
BCD, = (B3F, + ByF,)e B
B, = BCD./(C, X D,)
E, = BgF. + B:F, + By (10)
Gy = Gya, / Oya,
Gia, = cos(C sarctan(Bu.. @ — Eqy(Bay. a, — arctan(B,.. a,))))
Gy, = cos(Co arctan(Byy. ay — E o (Byy. ay — arctan(Bey. ay)))

Cas = bﬂ'
B = bicos(arctan(b,k))
ay = by
as; = —|a| + ay
E.. = b + bF, (12)
The expression for the longitudinal force is as shown in Equation (12-14):
B =5, Gy (12)
F,, = (Dysin(Cyarctan(B,x, — E,(B,x, — arctan(B,x,)))))
X, =
c:= Ag

Dy = A,F, + 4;F,
BCD, = Agsin(Asarctan(AgF,))

B, = BCD,/(C, X D,)
Ey = (AsF; + A7) (1 + Agsign(a)) (13)

Gyse = Gyre, /Gy,
Gy, = cos(Cparctan(By,.. k; — By (Bye. kg — arctan(B,,.. x;))))
Gy, = €05 (Cyparctan (By,. Kgye —
By (Byge Ky — arctan(By,. kgyi))))
Cyx = @
B,, = a,cos(arctan(a; (e — az)))

E}'K = a4 + “sﬂ

Ky = K+ Kyype

Ky = G + a7 8% (14)
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3. Establishment and Solution of Differential Equation Models

Based on the previously mentioned dynamic model of driving, the state variables, intermediate
variables, and control variables are defined as shown in Equations (15-17).

X= IX- ¥ W, VXJ V-,-,Y.wﬁ,mf,., Ehpps Wi I‘ (15)
[= [FXJ Fy, M, Fr.rf.'-Frxﬂn'J Feorts Frxrr]' (16)
U= [Tﬂr T_r’w Tf‘Il T;'w D_r’h Df?'-' DH: Drr] (17)

In these equations, x and y represent the coordinates of the vehicle's centroid in the inertial
coordinate system, ¥ denotes the yaw angle of the centroid, Vy and V, are the velocity
components of the centroid in the inertial coordinate system, y is the yaw rate of the centroid, and
wq, W, Wy, W represent the four wheels rotational speeds of the vehicle. T and D stand for tire
torque and tire angle, respectively. Fy, Fy, and M represent the forces acting on the vehicle's
centroid, while Fiq, Fixer, Fixrl, Fixer YEPresent the longitudinal forces of the four wheels. Based on
these definitions, the dynamic driving model of the vehicle can be expressed in the following form:

X =F(X,1,U);
I=gY(x,xU); (18)

The specific forms of these equations are shown in Equations (19-20):
¥ =V # cosW — Wy * sin¥
y = Vg #sin¥ + Vg = cos¥

P=y

. Tdfl - chﬂ * T
;rwﬂ

_ Tdfr - Frx,l‘r * Trp

G, = AL TET T

- _!wjr-

_Tart = Feari

Jr wrel

_ Tarr = Frarr * i
- Jywrr (19)
X1 = Hi(X3 Xe Xs)
AIfz = fa(X3, X4, Xs)
"?3 = f3(Xs)
Xy = fuXa X5, 11 (Ko, K5, Ky, K, Xy, X, Xg, Xo, K10, U))
Ys- = f5(X,,Xb,12(J;’;, :’I(a:XmXSerX?:XSnXa» X10,U))
}'.’,,- =fa(fa(ﬂr)&sjX:pXs-Xs-X?rijXe-Xm-U))
Xy = f(Us, (X X5, Xa, X5, X, X7, Uy, Us))
-’T‘I’B = fs(Uz-1'5(3"4--"}5:)'54:Xs-Xs-XB-Uz-Us))
Xg = fo(Us, Ig(Xy, X5, Kuy X, Ke, Ko, U, Uy))
Xio = fio(Us Iy (X4, X, Xoo Xs, Xey X0, Ui, Ug)) (20)

The dynamic driving model based on magic tire formula is a nonlinear implicit system of
differential equations containing many trigonometric functions (Equations 18-20). Such a system

ey

Wy
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cannot be solved directly and requires numerical methods for step-by-step solutions. In this paper, a
solution strategy as outlined in Table 1 is adopted. Given initial state and initial control, speeds,
sideslip angles, slip ratios, and tire rotational speed change rates of each tire at current time step can
be calculated first. Subsequently, vertical forces on tires and tire slip ratios can be computed. These
quantities are then used in the Pacejka magic tire formula to calculate the forces acting on tires from
the ground. Finally, the state variables at the next time step are computed based on the dynamic
equations, and the time t is updated. Figure 2 presents the algorithm flowchart for the nonlinear model
in this paper. The arrows indicate the interrelationships between the calculated quantities, with the
starting point of the arrow representing the calculation condition and the endpoint representing the
calculation result. For example, to calculate the longitudinal and lateral forces of the tires in the model,
it is necessary to compute the vertical tire forces, wheel slip ratios, and tire sideslip angles beforehand.

Table 1: Numerical methods for step-by-step solution strategy of nonlinear model on GPU

The algorithm for solving the dynamic model based on the Pacejka magic tire
formula
Inputs: initial state variables, control variables, calculation step size h, and the
calculation interval [a,b]
Output: state variables under the given control variables
Wen t<b:
Based on the initial state variables, the relevant quantities of each tire are calculated:
tire speeds, sideslip angles, tire slip rates, and vertical forces.
The change rate of tire rotation speed is computed based on the initial state variables
and control variables.
The forces acting on the current tire are calculated by substituting the tire slip rate,
sideslip angle, and vertical load into the magic tire formula.
The computed tire forces are then substituted into the differential equations to solve
for the next state variables.
The calculated state variables are used as the initial state variables for the next
calculation interval.

| The time variable t is updated to t=t+h.
End the calculation and return the state variables at each time step

Initial tire Wheel slip Tire speed / Tire spged a
speed ratio [ |sideslipangle next time
‘ step
L
Initial state of Tire rotation - . Tire Next state of
- Tire vertical L .
vehicle | | speed rate of —— longitudinal / |——  vehicle
. force .
centroid change lateral forces centroid

|_|steering angle

of tire Tire torque

Figure 2: Algorithm flowchart for the nonlinear model distributed on GPU
4. Model Simplification

This paper adopts the strategy shown in Figure 3 to compare the solution spaces of the full model
and simplified models based on the magic formula tire model. The paper primarily involves three
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simplified models, including: the simplified model based on Taylor series expansion, the five-degree-
of-freedom two-wheel model based on the Pacejka magic formula tire model, and the model that

ignores the yaw angle.
m : m 1 ‘& s ’ Fu" Model
; 9 S~ Solution Space
Sref 2
o Simpliﬁed E] .| [Simplified Model
Model Solution Space

Simplified Model 1
m Au Simplified Model 2

Y

Figure 3: Comparison of the model solution space

1) The simplified model based on Taylor series expansion can transform the DAE model into ODE
equations for solving.

2) The five-degree-of-freedom two-wheel model based on the Pacejka magic formula tire model
can be used in most cases where the left and right wheel angles do not differ significantly.

3) In some four-wheel independently driven studies, the yaw angle is ignored. Similarly, this
simplification is also demonstrated in this paper.

4.1 The simplified model based on Taylor series expansion

According to Taylor series expansion for multivariate functions, at the point (xi, x2, ..., x}'), the
following equation can be derived:

f(xt 2, x™) = f(x;,xﬁ,---,xl.‘]+...z (:x‘—x;[,)f;.-(xi.xﬁ,"',x;] +..
1% )
- Z (x‘—x,‘;.)(xj—x* )f";(xk xZ,xl) + ot
) (21)

In this paper, the strategy is adopted to solve the differential equation by expanding the
intermediate variable | at the initial value of the state variable and ignoring higher-order terms.
Specifically, the state variable, control variable, and intermediate variable are defined as follows:

Ky = [xD':VD-wﬂrvxﬂrvyﬂIYOJwﬂlJJw,r'NJJWr.'DlwrNJ]
Uﬂ = [TﬂD'TfrDlTr'mJTv'r-DJDf.'D-Dfr-DJDr‘mJDrrO]
I=1y+1'(X) - (X—Xy) (22)

The intermediate variable used are:

F = [thf[JFt.rfrlFr.rrIlFr.rrﬂFryqur_}. fHFrj,r[JFt_:. rr]
[I{:J%l .rJV Y Wfllwfw r[lwerf err Df L-'DJ"J" YV YI’;]J

[C.t'f[lclfPIC.&""I.lCl‘]‘]"'C r 'C -fwc_g, el C_}. rr‘]
ZlFx,FY, M) (23)

Then, a relational expression can be derived as shown in (24).
F, = B.X; + Cy;
F=AF, = AnApfs (24)

Finally, the intermediate quantity I can be expressed in the form of Equation (25):
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0010000 Of
00010000 (25)
The differential Equation (19) can be written as:
v ¥ oo
0 -3 -2 000 ofy
L3 I v,
B T ¥
vl |z 0 = oo ooy
wel+lo o 0 o 0 0 of|lwy
" o 0 0 0 0 0 ofw
i 0 0 0 00 0 0wy
wel 108 0 o 0 0o oflw,
o a o 00
Wi
—L o o 1] a a )
m
o -~ o o o o o
m
1
b 0 -— 0o o0 0 0
s
e o o X o o o
Jwri
Ter
o 0 o0 o 0 0
Juwgr
o o o o o 2L o
Jwri
0 ] e o o0 o I
T
0
0
FX - F,—F; 2
Fr -an
M Jwsi
s Fexfl |+|_Tar|=o0
Frxfr Juepr
Feerl Tiari
Fearr -
_Tarr
(26)

By substituting Equation (25) into Equation (26), the Differential-Algebraic Equation can be
transformed into an Ordinary Differential Equation at the point (X,). Then, the following expression

can be obtained:

Ve CadpV, ¥ V,
= 2 -2 000 oy
Y 1’1:} z 1,.!2 ¥
a 'x ¥
i 5 0 5 00 0oy
wr |t 0 0 0 0 0 0 0f|lws
w 0 0 0 00 0 0w
fr 0 0 0 00 0 0wy
Wiy 0 0 0 0 0 0 oflw,
: 0 0 0 000
Wiy ]
- 0 0 o 0 0 0
m
1
0 -— 0 0 0 0 0
m
[ Lo 0 o0 o
Jz
ot
o o o L 0 0
Jueg1
o o o o I o o
)[w;‘r
Ty
o 0o 0 0 0o 2 @
}wrl
6 0 o0 o0 o o0
Jurr]
0
0
0
Tant
Jwfl
[ Bxre) +| T | =0
}wfr
~Tan
)rh'r.'
Tdrr
e (27)
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Finally, the state equation is simplified to the following form:
X=AX+BU+CG; (28)

Since the simplified model ignores higher-order terms after expansion, it has a certain applicable
range. For ¢ within the range (X, X),the error between the actual value and expanded value of |
can be denoted as:

R, = I —(Ig + I'(Xs) * (X—X,))| = %If”(s)l(k’—mf;

(29)
Given the upper limit of the error n,then:
1
— | _ 2 < e

R, == |1"()|(X~X,)> <m; 0)

If the step h = (X—X,), it can be concluded that:

n zjl

1) < 23 @

From the above equation, it is easy to know when the second derivative of the intermediate quantity
is greater than this value 2n/h”2, the results calculated from the simplified equation will exceed the
upper limit of the error. In this case, the simplified model can no longer be used, and the full model
should be employed for the solution.

4.2 The five-degree-of-freedom two-wheel model

Considering that under certain four-wheel steering conditions, the difference between yaw angles
of the left and right wheels is not significant, the yaw angles of the left and right wheels can be set as:
El ~ 5r (32)
In this situation, the model can be converted into a five-degree-of-freedom two-wheel
independently driven model, and the differential equation can be written as:
x =V, *cos¥ -V, # sin¥
y =V, #sin¥ 4+ V, * cos¥
Y=y
. _ FX - Fw - Ff
V.= o try

. F
%I:——}fsl:::

m
M
J=
Tdf - Ft.x’f * Tf

=

¥

Wy =
! jwf
Tar — Feap * 13

Jur (33)

@, =

4.3 The Model Ignoring Yaw Angle of Centroid

In the research of path planning or control for 4WID-4WIS vehicles™'?, the yaw angle of the
centroid is often ignored due to its small influence. Under such conditions:
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B~o0
X = VCOos@

¥ = vsing (34)
5. Simulation results and discussion
5.1 Presentation of Related Parameters

All the vehicle parameters in this paper are derived from the Austrian Research Promotion Agency
(FFG) funded "RoboCar" project. The main parameters are shown in Table 2. Among them, Lt is the
distance from the vehicle's centroid to the front axle, Lr is the distance from the vehicle's centroid to
the rear axle, J; is the moment of inertia around the z-axis, Cp is the drag coefficient, hcgis the height
of the centroid, rw is the rolling radius of the tire, and Jwi is the moment of inertia of the tire.

Table 2: Vehicle Parameters

L[m] | Li{m] L([m] Bim] | B(m] | M[kg] | J:[kg.m?]
1.29 | 43.9024 | -1080 -53095 2 0.1418 | 0.1659
Cd | AIm? | p[kg/ m?] | g[m/s?] | Heg[m] | Rw[m] | Jwi[kg. m?]
1.1 6.38 7.95 -0.06 0.1 -0.18 0.0059

5.2 Simulation results

(1) Comparison of the Solution Spaces between the Full Model and the Taylor Expansion Model

In the experiments conducted in this paper, the motor power of each wheel hub was set at 1kW,
and the desired torque was set at 10Nm. The calculation step of the full model was set to 0.005s.
Initially, the vehicle was set to drive straight until it reached a stable state, and then a step input was
given to the tire angles. A total of four experiments were performed, with the tire angles set to [5, 5,
0,0], [0, 0, -5, -5], [5, 5, -5, -5], and [5, 10, -4, -11], respectively.

The simulation results comparing the Taylor series expansion model and the full model are shown
in Figure 4. As can be seen from Figures 4(a) to 4(c), under the first three types of control, the
solutions based on the Taylor series expansion model almost overlap with those of the full model. In
such cases, the results calculated by the two models are consistent, and the results from the simplified
model can be used to replace those of the original model. However, as illustrated in Figure 4(d), when
a yaw angle control of [5, 10, -4, -11] is applied to the vehicle, the results calculated by the simplified
model do not align with the full model. Specifically, the final trajectory of the simplified model
deviates by approximately 5m to 7m in the x-direction, and the yaw rate and centroid speed derived
from the simplified model are smaller than those of the full model. Additionally, the centroid yaw
angle obtained from the Taylor series expansion model tends to be larger than those of the full model
and results in significant oscillations in the calculation. The final simulation result of the simplified
model is not fully satisfactory; under this control scenario, the simplified model exhibits significant
deviations and is no longer suitable for solving the problem.
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Comparison between the full model of front-wheel steering and Taylor expansion model Comparison between the full model of Rear-wheel steering and Taylor expansion model
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Figure 4: Comparison of Solutions between the Full Model and the simplified Model

(2) Comparison of Solution Spaces between the Full Model and the Two-Wheel Simplified Model

Here, the motor power of each wheel hub was also set at 1kW, with a desired torque of 2Z0Nm, and
the calculation step of the full model was set to 0.005s. Initially, the vehicle was allowed to drive
straight until it reached a stable state, and then a step input was given to the tire angles. Since the two-
wheel model cannot be compared with scenarios where all four wheel angles are different, a total of
three experiments were conducted, with the tire angles set to [5, 5, 0, 0], [0, O, -5, -5], and [5, 10, -4,
-11]. The final simulation results comparing the two-wheel simplified model and the full model are
shown in Figure 5. As can be seen from Figures 5(a) and 5(b), the trajectories obtained by the full
model and the simplified model differ little, with position deviations in the x and y directions less
than 0.5m and deviations in the centroid speed less than 0.1m/s. However, as illustrated in Figure 5(c),
when a steering angle control of [5, 10, -4, -11] is applied to the vehicle, the results calculated by the
simplified model deviate more from those of the full model, with a trajectory deviation of
approximately 1m and a centroid speed deviation of around 1m/s. Regarding scenarios where the four
wheel angles differ significantly, the two-wheel model is not suitable. It can be seen that the two-
wheel model can only be used for cases where the left and right steering angles differ slightly.
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Comparison between Full Front-Wheel Steering Model and Simplified Two-Wheel Model ~ Comparison between Full Rear-Wheel Steering Model and Simplified Two-Wheel Model

Velooty of Sl Tl Mol
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Figure 5: Comparison of Solutions between Two-Wheel Simplified Model and Taylor Series
Expansion Model

(3) Comparison of the Full Model and the Simplified Model for the Yaw Angle of Centroid

For the simplified model that ignores the yaw angle of the centroid, the same motor power, torque,
and calculation step as those used previously are employed. When the tire angles are set to [5, 5, 0,
0], [0, 0, -5, -5], [5, 5, -5, -5], and [5, 10, -4, -11], the results are shown in Figure 5. Since this model
only ignores the yaw angle of the centroid, the calculations of other quantities remain the same in
addition to final trajectories. Therefore, only the final trajectories are compared here. As shown in
Figures 6(a) to 6(c), the trajectories calculated by the two models are identical for front-wheel steering,
rear-wheel steering, and four-wheel steering models with small differences in yaw angles. However,
when a steering angle control of [5, 10, -4, -11] is applied to the wheels, as shown in Figure 6(d), a
deviation of about 5m in the x-direction of the final trajectory is observed. In this case, the yaw angles
of the centroid cannot be ignored, or the final trajectory will have a significant deviation.
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Figure 6: Comparison of Solutions between the Model Ignoring Yaw Angle of Centroid and Taylor
Series Expansion Model

6. Conclusion

1) This paper establishes a 4WID-4WIS vehicle full model based on the magic formula tire model.
The establishment of the full model is the foundation for solving and simplifying the model, and this
paper also provides a numerical solution algorithm for this model.

2) This paper simplifies the model based on the magic formula tire model. Following the idea of
simplifying the intermediate variables, the nonlinear implicit differential equations are reduced to
discrete explicit differential equations. Simulation results prove that when the model is within the
applicable range, the final solution of the simplified model is not significantly different from the
results of the full model, and the results of the simplified model can be used to replace the results of
the full model.

3) This paper derives a two-wheel model with five degrees of freedom based on the simplification
of the full model. The simulation results of this model show slight differences from the solution of
the full model. When the control applied to the vehicle's tires differs significantly, this simplified
model cannot be used anymore, and the full model should be used for solving. For issues such as path
planning and trajectory tracking for 4WID-4WIS vehicles, where the model can be simplified without
requiring high solution accuracy, this simplified model can be used.

4) This paper also compares full model with a simplified model that ignores yaw angle of center
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of mass. For the simplified model, its solution results are approximately the same as simulation results
of full model. However, when the yaw angle is large, yaw angle cannot be directly ignored, and the
error of the results derived from the simplified model will significantly increase. In such cases, the
results calculated by the simplified model cannot replace the results calculated by the full model.
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