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Abstract: The purpose of infrared image and visible image fusion is to preserve information 

in different modalities. In order to solve the redundancy of modal frequency domain 

information extraction and feature mapping, we propose a frequency decomposition and 

Gaussian-Based enhancement network for infrared and visible image fusion. Firstly, we 

design a frequency decomposition convolution, which divides the feature map to realize the 

independent modeling of different frequency information, so as to extract the deep-level 

features more accurately. In addition, we design enhancement module combined with 

Gaussian filter to enhance the feature expression and optimize the loss function. Finally, we 

introduce dual-discriminators to refine the differentiation of infrared and visible images, 

significantly enhancing global information expression and detail presentation in fused 

image. Experimental outcomes demonstrate that our fusion method can effectively integrate 

the dominant information of the two images. Notably, our method outperforms other 

advanced fusion algorithms by enhancing the performance of object detection tasks, 

particularly in terms of improving the accuracy of detecting cars and pedestrians. 

1. Introduction 

Visible images can retain rich texture details, while infrared images are able to effectively 

capture thermal radiation information in complex environments. With the advancement of image 

fusion technology, the information of these two model images has achieved complementary 

advantages, combining the target information from infrared images with the detail information from 

visible images, which improves the comprehensive performance of the image. However, most 

existing fusion algorithms focus on optimizing the fusion quality of images through complex 

network architectures and mathematical transformations, while ignoring the adaptability to specific 

tasks, which makes the fusion process difficult to apply to high-level visual tasks. Despite 

demonstrating certain effectiveness, existing fusion methods still face numerous problems. 
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1.1. A single discriminator network 

The single discriminator network uses only one discriminator to fuse images from one source 

image. This single input will cause information imbalance in the fusion result, which will be biased 

towards a certain type of source image and easily cause information loss. 

1.2. The feature mapping has redundant information 

During the feature extraction process of images through convolution, the feature mapping often 

captures similar image information, especially in multiple convolution layers, the network often 

extracts similar features repeatedly. Due to the local receptive field of the convolution kernel, the 

basic information in the image appear repeatedly in the channel, which leads to the accumulation of 

redundant information. 

To overcome the limitations of current challenges, we propose a new feature decomposition and 

dual-modality discriminator network for infrared and visible image fusion. In our proposed 

approach, the entire network framework uses frequency decomposition convolution (FDConv) to 

extract features across various ranges. However, in response to the modal differences in different 

images, we designed a discriminator with high-frequency and low-frequency enhancement to 

address the information imbalance problem caused by a single discriminator. Finally, the fusion 

results are balanced by content loss, gradient loss and similarity metric (SSIM) loss. We adopt a 

loss mechanism based on the relativistic average discriminator, which aims to train the 

discriminator to compare the authenticity of two images rather than simply distinguishing whether 

an image is real or fake. The contributions of this article mainly include: 

1.3. A new fusion network 

We propose a new feature decomposition and Gaussian-Based enhancement network, aiming to 

integrate and enhance information from different image frequencies. 

1.4. Frequency decomposition module 

We designed the frequency decomposition convolution (FDConv), which includes three modules: 

DeConv, EnConv and MeConv. The frequency decomposition and fusion of input features are 

performed through convolution, pooling and upsampling operations, aiming to reduce unnecessary 

information during the feature mapping process and help us obtain deep feature semantic 

information. 

1.5. Gaussian-Based enhancement module 

We designed frequency enhancement and frequency decomposition modules based on Gaussian 

filter to effectively retain the gradient information of infrared and visible images while enhancing 

the overall contrast of the image. The frequency enhancement module enhances infrared and visible 

images respectively, reducing the loss of features in the network. 

2. Related work 

Research methods are mainly divided into two categories: traditional and deep learning. 

Traditional methods include multi-scale transformation [1-3], sparse representation [4-6], subspace 

analysis[7-8], saliency detection[9-10]. These methods use unified transformation for all images, 

ignoring feature differences between images, which may cause information loss, and their fusion 
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strategies are not refined enough, hindering performance optimization. In addressing the issues with 

traditional methods, various new image fusion methods have been proposed. 

In 2018, Li et al.[11] presented a novel method, termed as DenseFuse, which is based on auto-

encoder framework. The encoding network of this fusion method consists of a fusion layer and a 

dense block. The use of dense block structure effectively captures the deep features and improves 

the image quality. However, these methods have relatively simple processing mechanisms for 

differences between modalities and are difficult to fuse complementary information from different 

modalities, which may lead to the fusion result being overly dependent on a certain modality or 

losing critical features. 

DeepFuse[12] uses feature extraction layers in order to extract common low-frequency features 

from each input image. The fusion layer then fuses these features to generate a fused feature map, 

and finally the fused features are passed through the reconstruction layer to obtain the final fused 

image. U2Fusion[13] adopts the pretrained VGG-16 network for feature extraction, and the 

adaptive degrees allows the network to be trained. Sea Fusion[14] proposes a semantic-aware image 

fusion framework. In terms of the overall framework design, SeAFusion uses classic dual-branch 

feature extraction, and then reconstructs the spliced and fused image. This type of fusion method 

uses convolutional neural networks to achieve end-to-end feature extraction. 

The image fusion problem is modeled as a confrontational game problem between the generator 

and the discriminator to estimate the probability distribution of the target, thus implicitly 

completing the three steps of feature extraction, feature fusion and image reconstruction. 

FusionGAN[15] is the first time that GAN is used to solve the image fusion method, but this model 

only uses one discriminator and only uses the original visible image as the input of the discriminator, 

so the output result is biased towards infrared images. Later, Han et al.[16] proposed a generative 

adversarial network based on dual discriminators for image fusion, which mainly solved the 

problem that the images generated by a single discriminator are closer to visible images. 

GANMcC[17]  proposed an end-to-end fusion model based on generative adversarial networks with 

multi-classification constraints. This fusion method preserves contrast and texture details, solving 

the fusion imbalance problem of existing methods. Song et al.[18] presented a triple-discriminator 

generative adversarial network, effectively boosting the prominence of infrared targets while 

maintaining the fine details of visible images. 

3. Method 

3.1. Frequency Decomposition Convolution 

To solve the problem of feature mapping information redundancy, we designed frequency 

decomposition convolution (FDConv), which maps the input features to the frequency domain 

through three modules: DeConv, EnConv, and MeConv. 

X represents the input feature, the superscripts H and L represent the high-frequency feature and 

low-frequency feature respectively, and Y represents the output feature. The DeConv module 

processes features of different frequencies through pooling and convolution operations, 

decomposing the input feature X into high-frequency features and low-frequency features . In 

the EnConv module, the high-frequency feature  is decomposed into and  through 

convolution and pooling operations, the high-frequency feature  is decomposed into  and  

through convolution and upsampling operations. 

3.2. Gaussian-Based Enhancement Module. 

We uniquely integrated Gaussian filter technology to thoughtfully design the frequency 
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enhancement and decomposition module. The network architecture of our generator is shown in 

Figure 1. We separately enhanced the low-frequency ( ) and high-frequency ( ) components of 

both infrared and visible images. Gau (x,y) represents Gaussian filter, which is defined in Equation 

(4), and I(x,y) represents the input two-dimensional image. The specific implementation is shown in 

Equation (4) and Equation (4). 

                                             (1) 

                                        (2) 

                                                 (3) 

3.3. Discriminator network 

To address the modal difference problem of a single discriminator, we use dual discriminators, 

which input the visible image into the visible discriminator, and the visible image and the fusion 

image input sum discriminator. We perform low-frequency enhancement and high-frequency 

enhancement respectively. The network architecture is shown in Figure 1. For the sum 

discriminator, we perform frequency decomposition on the input image to obtain low-frequency 

features and high-frequency features. The following two discriminators perform the same operation. 

Firstly, the DeConv module is decomposed and then added to obtain the basic features ( ) and 

detail features ( ). Then, the low-frequency features ( ) and high-frequency features( ) are 

obtained by decomposition and addition of the EnConv module. Subsequently, the updated basic 

features and detail features are further decomposed by this module. Finally, the MeConv module 

processes the features, and the prediction result is obtained through a 5x5 convolution and a Linear 

layer.  

 

Figure 1: Framework of the fusion network. 

3.4. Loss function 

The methodology's loss formulation includes the loss for the generator, denoted as  , and the 

loss for the discriminator, denoted as . Subsequently, we will introduce them separately. The 

generator's loss function consists of three key components: the adversarial loss , the content loss 

, and the structural similarity index (SSIM) based measurement loss .  represents the 

loss between the generator and RaD. Our generator loss consists of two components, , which 

includes both  and , representing the contributions of each part. In the description, the 

adversarial loss between the generator and the visible discriminator is denoted as  , while the 
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adversarial loss between the generator and (another) discriminator is represented as . In the 

Equation (4), the , ,  represent the weight proportion of losses in each part. In Equation (5) and 

(6) ,  represents the visible image,  signifies the combined result of visible and infrared image, 

whereas  stands for the image resulting from the fusion process. 

                                            (4) 

                         (5) 

                         (6) 

Content loss. Inspired by SeAFusion, the content loss is defined as Equation                                                      

(7),  and  are tuning parameters. We define the intensity loss of infrared and visible images as 

Equation (8).  represents the Sobel gradient operator in Equation (9). 

                                                      (7) 

                                                     (8) 

                                           (9) 

The structural similarity index measures the loss. SSIM is based on ray similarity (𝑙(x, 𝑦)), 

contrast similarity (𝑐(x, 𝑦)), and structural similarity (𝑠(x, 𝑦)). The SSIM loss formula is defined as 

Equation (10). 

                                                  (10) 

In our approach, the Structural Similarity Index (SSIM) loss, , is formulated as specified in 

Equation (11). This formulation involves two constants,  and , which are defined as 

 and   , where L represents the dynamic range of the image pixel 

values, and 0.01 and 0.03 are the default threshold parameters for these two constants. 

=                                              (11) 

In Equation (12), our discriminator loss includes visible discriminator loss  and sum 

discriminator loss . where  is defined as Equation (13), and  is defined as Equation (14). By 

evaluating the input images against the fused result, the discriminator iteratively optimizes the loss 

function, pushing the generator towards achieving higher quality image fusion outcomes.  

 = +                                                                  (12) 

                          (13) 

                          (14) 

4. Experiments  

4.1. Setup 

In the following experiments, we used EN, SD, AG, MI, and SF as evaluation metrics. A 
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qualitative and quantitative comparative analysis was conducted on the TNO dataset. The TNO 

dataset include various image types such as near-infrared, far-infrared, and thermal-infrared, along 

with diverse scenarios including nighttime field operations and military activities.  

Our entire network was trained using the PyTorch framework on an NVIDIA GeForce RTX 

4080 GPU. During the preprocessing stage, we configured both the batch size and training iterations 

to 16. We employed the AdaBelief optimizer for training our network, initiating the learning rate at 

10⁻⁴. The stride for each image was set to 14, and each patch had a fixed size of 120 × 120. 

4.2. Performance Comparison  

To prove the robustness of our method, we used seven advanced fusion methods, including 

FusionGAN[15], Densefuse[11], IFCNN[19], LRRNet[20], DATFuse[21], IRFS[22], and 

SemLA[23] for subjective and objective analysis with our method. The above fusion results were 

evaluated subjectively and objectively. 

Qualitative analysis. The qualitative performance is reported in Figure 2. It is worth noting that 

FusionGAN method has the best effect on texture preservation, and IFCNN method has the best 

effect on infrared target fusion. However, both methods are biased towards a certain type of source 

image, while image fusion hopes to provide complementary information to achieve a more 

comprehensive description of the target. For grass, tree branches, and people's clothing in different 

scenes in the picture, our method retains texture information and infrared information better than 

the other seven methods. 

 

Figure 2: The fusion results of our method compared to other methods on the TNO dataset. 

Quantitative analysis. Table 1 demonstrates the quantitative performance of all fusion methods. 

The experiment show that this method performs best on the four indicators of EN, SD, AG and SF, 

followed by the MI. It can be seen that our method significantly outperforms other methods in terms 

of texture details and visual fidelity. 

Table 1: The quantitative resultsof our method compared to other methods on the TNO dataset. 

Methods EN SD AG MI SF 

FusionGAN 7.050 37.471 3.899 1.531 8.290 

DenseFuse 6.487 26.690 2.727 2.297 6.987 

IFCNN 6.872 36.169 5.019 2.465 13.059 

LRRNet 6.994 39.375 3.521 2.517 9.112 

DATFuse 6.560 29.841 3.745 3.164 10.072 

IRFS 6.753 34.169 3.489 2.209 9.745 

SemLA 6.832 36.133 3.747 2.147 11.665 

Ours 7.061 44.454 6.033 2.798 15.412 

68



4.3. Ablation experiment 

The performance of our fusion method relies on dual discriminators, Gaussian modules, and 

FDConv module.In this section, we conduct a series of ablation studies to verify the effectiveness of 

the specific module designs. The results of the ablation experiments on the TNO dataset are shown 

in Table 2. 

Table 2: The ablation experiment results on the TNO dataset. 

 EN SD AG SF 

Ours 7.061  44.454  6.033  15.412  

w/o D 6.858  40.991  3.708  9.512  

w/o Gau 5.998  24.762  1.699  4.206  

w/o Deconv 7.048  42.484  4.794  12.641  

w/o Enconv 6.610  34.483  2.713  6.612  

w/o Meconv 6.843  46.531  4.398  11.020  

5. Conclusion 

We propose a new feature decomposition and Gaussian-Based Enhancement network. 

Considering the potential redundancy in feature mappings, we have devised a frequency 

decomposition convolution module to manage and reduce it. Employing a frequency enhancement 

and decomposition strategy based on Gaussian filter, we first conduct low-frequency enhancement 

on infrared images to highlight their overall structure and thermal radiation characteristics, while 

applying high-frequency enhancement to visible images to sharpen their detailed textures and edge 

information. Subsequently, utilizing frequency decomposition techniques, we decompose these 

enhanced images into distinct frequency components.  

However, our method has limitations in the case of inconsistent exposure, which leads to the 

imbalance of image contrast and affects the visual quality of the image. Therefore, we hope to 

adjust the image locally and design an adaptive brightness module to perform different processing 

on the brightness features of different regions. 
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