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Abstract: Foundation models (FMs) are a class of deep learning models originating from 

natural language processing (NLP), trained on large-scale datasets through self-supervised 

techniques. After pre-training, these models can be fine-tuned with labeled data to 

accomplish a variety of downstream tasks. FMs have demonstrated outstanding 

performance across numerous NLP tasks and have been successfully applied in the fields of 

biology and medicine, exhibiting remarkable efficacy. However, despite the development 

of multiple FMs specifically tailored for genomics, referred to as genomic foundation 

models (GFMs), there remains a lack of systematic analysis of these models. This review 

provides an overview of the current applications and developments of GFMs, offering a 

comprehensive analysis of their strengths and weaknesses and categorizing their underlying 

principles. Given the inherent differences between DNA sequences and natural language, 

designing FMs suitable for genomics presents significant challenges. This paper aims to 

provide researchers with a detailed analytical report and valuable insights to guide the 

further development of high-quality GFMs. 

1. Introduction 

The Transformer model, introduced in 2017, catalyzed the creation of foundation models (FMs). 

FMs are large-scale pre-trained neural networks trained on vast amounts of data, which can be fine-

tuned to perform a variety of downstream tasks. During pre-training, FMs acquire general 

knowledge or representations, which are then applied to downstream tasks through transfer learning 

during the fine-tuning step. The fine-tuned models synthesize knowledge representations from both 

tasks, thereby enhancing generalization performance on downstream tasks. The BERT model, the 

first FM, was designed based on the Transformer encoder architecture and served as the inspiration 

for many subsequent models, including RoBERTa, BART, and T5. These models have become 

prevalent in state-of-the-art (SOTA) natural language processing (NLP) model development and are 

collectively known as large language models. Although the BERT model was introduced in late 

2018, these models gained broader recognition across various domains following the release of 

ChatGPT at the end of 2022. Additionally, they have been rapidly extended to different fields, such 

as text, images, videos, speech, tabular data, protein sequences, organic molecules, and 
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reinforcement learning. 

With the significant advancements of FMs in natural language understanding, there has been 

growing interest in applying FMs to understand and decode the genome. FMs, through numerical 

embeddings, can comprehend genomic sequences and be directly utilized for various genomic 

analysis tasks. These models can capture complex relationships and dependencies within DNA 

sequences, opening new avenues for understanding transcriptional regulation, non-coding genetic 

variants associated with human diseases and traits, and the functional effects of regulatory elements. 

Recent advancements in genomic language modeling have demonstrated its superiority in a range of 

downstream applications, including promoter prediction, DNA methylation prediction, chromatin 

state analysis, promoter-enhancer interaction prediction, TF-DNA binding prediction, and variant 

effect prediction, among others. These models provide researchers with powerful tools to 

understand the functional significance of different genomic elements and uncover critical biological 

processes and mechanisms. 

The rapid development of numerous genomic foundation models (GFMs) has deepened our 

understanding of the genome while also contributing to an information deluge. Although 

comprehensive reviews of FMs within the broader healthcare domain are available, their coverage 

of genomics remains relatively superficial. Investigations specifically related to GFMs have 

identified only two pertinent studies thus far: the first[1] primarily reviewed literature up to 2023, 

while the second[2] focused on the applications and development processes. This paper aims to 

complement existing GFM reviews by providing a clearer and more concise understanding of GFM 

development, key development factors, challenges, and the latest trends in GFMs. 

2. Development Review 

Understanding the development history of GFMs aids in deeply comprehending the current state 

of the field and gaining insights into future directions. In Table 1, we have listed the existing GFMs 

and summarized their core designs. Next, we will briefly introduce these GFMs in chronological 

order according to their model architectures (including: Transformer, SSM, and other architectures). 

2.1. Transformer-based architectures 

GFMs based on the Transformer architecture are widely adopted by researchers. In these studies, 

to enhance predictive performance and generalizability, researchers have explored various 

approaches such as pure DNA input, multimodal input, and proxy input from natural language to 

construct GFMs. Although the Transformer architecture has been recognized for its powerful 

contextual capturing ability, the computational cost introduced by its quadratic complexity and the 

limitation of context window size are significant constraints for its application. To mitigate these 

limitations, researchers have attempted sparse attention mechanisms, lightweight architectures, and 

efficient tokenization methods. GFMs based on the Transformer architecture can also be further 

categorized according to the Transformer component used into encoder-based models and decoder-

based models (including encoder-decoder models). The former excels at tasks requiring deep 

contextual understanding, while the latter is more adept at generative tasks. 

2.1.1. Encoder-based models 

DNABERT is a BERT-based model designed to capture a global and transferable understanding 

of genomic DNA sequences. Through self-supervised learning and fine-tuning, the model 

demonstrated SOTA performance in tasks such as promoter prediction, splice site prediction, and 

transcription factor binding site prediction, and showed good cross-species generalization 
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capabilities. DNABERT offers an interpretable method, allowing direct visualization of nucleotide-

level importance and semantic relationships within the input sequences, providing new perspectives 

for studying genomic regulatory elements. However, DNABERT faces certain limitations in 

handling long sequences, particularly concerning the context window size, which affects the 

model's ability to capture long-range dependencies. 

Table 1: Summary of GFMs covered in this review. The abbreviations used in this table are: BPE 

(Byte Pair Encoding), MLM (Masked Language Modeling), NSP (Next Sentence Prediction), CLM 

(Causal Language Modeling), CNN (Convolutional Neural Network), RNN (Recurrent Neural 

Network), SSM (State Space Model). The release dates refer to the earliest available time, including 

preprint versions. 

Model name Tokenization method 
Pre-training 

task 
Model architecture Release date 

DNABERT Overlapping k-mer MLM Transformer 2020.09 

GeneBERT Overlapping k-mer MLM+NSP Transformer 2021.10 

GPN[9] Nucleotide-level MLM CNN 2022.08 

NT[3] Non-overlapping k-mer MLM Transformer 2023.01 

Species LM[4] Overlapping k-mer MLM Transformer 2023.01 

DNABERT-2[5] BPE MLM Transformer 2023.06 

HyenaDNA[7] Nucleotide-level CLM SSM 2023.06 

DNAGPT Non-overlapping k-mer CLM Transformer 2023.07 

GPN-MSA Nucleotide-level MLM Transformer 2023.10 

UTR-LM Nucleotide-level MLM Transformer 2023.10 

hgT5 Unigram T5 Transformer 2023.10 

MegaDNA Nucleotide-level CLM Transformer 2023.12 

Evo Nucleotide-level CLM SSM+ Transformer 2024.02 

Caduceus[8] Nucleotide-level MLM SSM 2024.03 

SpliceBERT[6] Nucleotide-level MLM Transformer 2024.04 

ChatNT Overlapping k-mer CLM Transformer 2024.05 

PlantCaduceus Nucleotide-level MLM SSM 2024.06 

CD-GPT BPE CLM Transformer 2024.06 

GeneBERT is a multimodal model that combines BERT and Swin Transformer to enhance 

genomic data analysis. Its primary contribution lies in leveraging both one-dimensional gene 

sequences and two-dimensional interactions between transcription factors and gene regulatory 

regions. By employing three pre-training tasks—Masked Language Modeling (MLM), Next 

Sentence Prediction (NSP), and Sequence-Region Matching—the model enhances its robustness 

and generalization capabilities. Compared to previous models that performed well only in specific 

cell types, GeneBERT better captures gene expression regulatory mechanisms across different cell 

types, demonstrating superior performance in downstream tasks such as promoter prediction and 

disease risk assessment. 

The NT[3] model shares a similar architecture with DNABERT but employs a larger model size 

(five times larger than DNABERT). It successfully generates transferable, context-specific 

nucleotide sequence representations using 3,202 human genomes and 850 genomes from various 

species. This approach achieved accurate predictions of molecular phenotypes in low-data 

environments and matched or exceeded the performance of specialized methods in 18 prediction 

tasks based solely on sequence representations. This study provides a significant foundation for 

accurately predicting molecular phenotypes from DNA sequences in genomics, showcasing the 

immense potential of FMs in bioinformatics. It also empirically demonstrated that increasing the 

model size can lead to better performance. 
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Species LM[4] is a species-aware DNA language model based on DNABERT, trained on 

genomic data from over 800 species spanning more than 500 million years of evolutionary history. 

The research indicates that this model can effectively distinguish between transcription factor and 

RNA-binding protein motifs and background non-coding sequences, demonstrating its powerful 

flexibility and ability to capture conserved regulatory elements, surpassing the limitations of 

traditional sequence alignment. This model not only reconstructs in vivo binding motif instances 

more accurately but also considers the evolution of motif sequences and their positional constraints. 

These findings suggest that species-aware training significantly improves the sequence 

representation capability for gene expression prediction and motif discovery. 

DNABERT-2[5] is an extended version of DNABERT, replacing the traditional k-mer 

tokenization method with BPE as the new tokenization strategy, significantly enhancing 

computational efficiency and model performance. Additionally, the authors employed the ALiBi 

method, which removes strict input length limitations. They also recognized the lack of 

standardized benchmarks in the field of genomic understanding and subsequently created the 

Genomic Understanding Evaluation dataset, providing a comprehensive evaluation framework for 

future genomic models. 

GPN-MSA is a model based on the Transformer architecture (RoFormer), aimed at improving 

the prediction accuracy of variant effects across the genome. Similar to GPN, this model leverages 

cross-species whole-genome sequence alignments to effectively predict both coding and non-coding 

variants in the human genome. Through evaluations on multiple clinical databases (ClinVar, 

COSMIC, OMIM), experimental functional assays (DMS, DepMap), and population genomic data 

(gnomAD), GPN-MSA demonstrated outstanding performance in predicting the pathogenicity of 

variants. 

UTR-LM is a model based on the Transformer encoder, integrating sequence, secondary 

structure, and minimum free energy information through semi-supervised learning. The model 

successfully learned meaningful semantic representations related to the mRNA translation process. 

UTR-LM outperformed existing best baselines in tasks such as predicting mean ribosome loading, 

translation efficiency, mRNA expression level, and internal ribosome entry site, demonstrating its 

effectiveness in 5' UTR modeling. Furthermore, the study experimentally validated the model's 

predictive capabilities by designing 211 novel 5' UTR sequences with high translation efficiency. 

SpliceBERT[6] is a BERT-based model specifically designed for analyzing primary RNA 

sequences from 72 vertebrate species. By pre-training on a diverse set of species sequences, the 

model effectively identifies evolutionarily conserved elements. This approach not only enhances the 

sequence modeling capability for RNA splicing but also exhibits outstanding performance in 

several downstream tasks, such as zero-shot prediction of variant impacts on splicing, human 

branch point prediction, and cross-species splice site prediction. 

2.1.2. Decoder-based models 

DNAGPT is a GPT-based model designed to address the challenges of extracting information 

from DNA sequences and to adapt to various tasks and data types. DNAGPT enhances the classical 

GPT model by training on over 200 billion mammalian base pairs, incorporating binary 

classification tasks (DNA sequence order) and numerical regression tasks (guanine-cytosine content 

prediction), along with a comprehensive token language. This allows DNAGPT to handle a diverse 

array of DNA analysis tasks while accommodating both sequence and numerical data processing. 

Through evaluations on tasks such as genomic signal and region recognition, mRNA abundance 

regression, and artificial genome generation, DNAGPT has shown superior performance compared 

to existing models tailored for specific downstream tasks, demonstrating the advantages of the 

newly designed model architecture in pre-training. 
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MegaDNA is a model based on the Multiscale Transformers architecture. The study 

demonstrated this model's foundational capabilities in predicting key genes, the effects of genetic 

variants, regulatory element activity, and the classification of unannotated sequences. Additionally, 

it can generate new sequences up to 96K base pairs long, which include functional regulatory 

elements and new proteins associated with bacterial viruses. This work not only advances the 

development of genomic language models but also opens new possibilities for synthetic biology 

applications. However, the paper also highlights limitations in the model's optimization at the gene 

and codon levels for efficient self-replication. Future research needs to delve into ethical, safety, 

and regulatory frameworks to ensure the responsible application of generative models in synthetic 

biology. 

ChatNT is a multimodal conversational agent model designed to tackle complex biological tasks 

using NLP technology. By transforming genomic prediction tasks into a text-to-text format, the 

authors enabled users to interact with the model using English commands, thereby lowering the 

barrier to entry and enhancing accessibility. Additionally, ChatNT can handle DNA, RNA, and 

protein sequences simultaneously, demonstrating potential applications in transcriptomics and 

proteomics. This represents a significant step towards the development of a general-purpose 

biological AI system. However, the paper also notes that the current model's performance remains 

limited for specific tasks and requires fine-tuning for each task, which may hinder the model's 

generalization ability. 

CD-GPT is a GPT-based model aimed at connecting different types of biological molecular 

sequences through the central dogma. The study's contribution lies in introducing a unified 

representation space and a shared multi-molecular vocabulary, effectively representing biological 

sequences and reducing their distance in the embedding space. Through extensive pre-training on 

comprehensive molecular-level data, CD-GPT exhibits outstanding performance in various 

predictive and generative tasks, including genome element detection, protein property prediction, 

and RNA-protein interaction identification. Moreover, the model can generate new protein 

sequences and perform reverse translation, showcasing its broad application potential in multi-

omics analysis. 

2.2. SSM-based architectures 

GFMs based on the State Space Model (SSM) architecture offer an alternative to Transformer-

based architectures. These models not only reduce the model size by several orders of magnitude 

while maintaining comparable performance, but they also outperform in certain tasks. Additionally, 

they exhibit lower time complexity and possess the capability to handle longer contexts, making 

them a promising research direction. 

HyenaDNA[7] is a model based on SSM that enables long-range genomic sequence modeling at 

single-nucleotide resolution. Compared to traditional Transformer-based models, HyenaDNA can 

handle up to 1 million context lengths, which is 500 times the capacity of previous models, 

significantly enhancing the ability to model long-range interactions in DNA. Additionally, 

HyenaDNA leverages the advantages of implicit convolution, offering lower time complexity and 

faster training speeds. In long-range species classification tasks, HyenaDNA has demonstrated 

outstanding performance and achieved SOTA levels in multiple benchmark tests. 

Caduceus[8] is a model based on SSM, designed to address key challenges in genomic sequence 

modeling, such as long-range token interactions, the influence of upstream and downstream regions, 

and DNA's reverse complementarity (RC). The authors developed the Caduceus model by 

extending the long-range Mamba blocks to support bidirectionality with BiMamba components and 

incorporating MambaDNA blocks that accommodate RC equivariance. This marks the first long-
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range DNA language model with RC equivariance and bidirectionality, significantly enhancing 

performance in downstream tasks. Notably, in long-range variant effect prediction tasks, Caduceus 

outperformed non-bidirectional or non-RC equivariant models by over tenfold. 

PlantCaduceus is an extension of the Caduceus model, pre-trained on the genomes of 16 diverse 

angiosperm species. This pre-training allows PlantCaduceus to achieve efficient cross-species 

predictions with limited annotated data. The study shows that PlantCaduceus excels in transcription 

and translation modeling tasks on the maize genome, dating back approximately 160 million years, 

surpassing traditional supervised learning models. Additionally, the model can identify deleterious 

mutations across the entire genome without the need for multiple sequence alignments, and 

demonstrates significant enrichment in prioritizing rare allele mutations. 

2.3. Other architectures 

In addition to purely Transformer-based and SSM-based GFMs, researchers have also explored 

models based on convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 

various hybrid architectures. These explorations provide important insights into the applicability 

and complementarity of different architectures. 

GPN[9] is a CNN-based model that effectively predicts the effects of whole-genome variants 

through unsupervised pre-training on genomic DNA sequences. Researchers trained this model on 

unaligned reference genomes of Arabidopsis thaliana and related species, demonstrating its 

superiority in predicting functional impacts of variants, surpassing existing prediction tools based 

on conservation scores. 

Evo is a hybrid model based on StripedHyena, combining Hyena and RoFormer. Evo was 

trained on 2.7 million prokaryotic and phage genomes, capable of zero-shot functional prediction 

across the three fundamental modes of the central dogma of molecular biology, performing 

comparably to leading domain-specific language models. Evo excels in multi-element generative 

tasks, capable of generating synthetic CRISPR-Cas molecular complexes and entire transposon 

systems. Leveraging information learned from whole genomes, Evo can predict gene essence at 

nucleotide resolution and generate coding-rich sequences up to 650 kb, several orders of magnitude 

longer than previous methods. Evo's advancements in multi-modal and multi-scale learning provide 

insights into better understanding and controlling biological complexity across multiple levels. 

3. Key Development Factors 

Based on existing GFM literature, the key factors in developing GFMs can be divided into three 

main components (see Figure 1): selection of pre-training datasets, tokenization methods, and 

model architectures and pre-training tasks. 

3.1. Selection of pre-training datasets 

The choice of pre-training datasets is crucial in the development of GFMs, as it determines the 

scope of general knowledge the model can acquire. The quality and quantity of these datasets 

directly impact the quality of the model's embedded representations. However, selecting appropriate 

training data requires deep domain-specific knowledge, especially in genomics, where there are no 

universally recognized, curated datasets akin to those in NLP (e.g., the Pile) or protein research (e.g., 

UniProt). In selecting datasets, considerations should include quality control, data duplication, 

quantity of data, and the selection of the data context window. 
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Figure 1: This figure illustrates the critical factors to be considered when developing GFMs. These 

factors directly impact the applicability and generalization capability of GFMs and determine their 

fine-tuning performance on specific downstream tasks (evaluation benchmarks). The key factors 

include dataset selection, tokenization methods, model architectures, and the design of pre-training 

tasks. The arrows in the figure indicate the dependencies and sequential relationships among these 

factors. By rationally designing and optimizing these elements, GFMs can better adapt to various 

genomics-related tasks, providing more accurate and reliable predictions. 

Quality control: In protein research, quality control involves removing predicted pseudogenes or 

truncated proteins that no longer have a function. A recent study found that only 3.3% of bases in 

the human reference genome (the most commonly used GFM training dataset) are significantly 

constrained and likely functional. Typical genomic sequences used to train GFMs include a mix of 

functional and non-functional sites. A recommended solution is to apply base-pair level weighting 

to the training loss based on functional evidence. 

Data duplication: In NLP and protein domains, filtering out duplicate sequences is standard 

practice, aiding in improving training efficiency and reducing overfitting. Given the high proportion 

of repeat sequences in eukaryotes, solutions include down-weighting or down-sampling strategies. 

Quantity of data: To ensure sufficient data volume, one approach is to use sequence variants 

from the same species, although variations among individuals are typically limited. Another 

common method is to train across multiple species. 

Selection of the data context window: Many interactions in the genome are limited to nearby 

locations (<6 kb), such as the motifs of transcription factor binding sites. However, long-range 

interactions also exist in the genome, such as those between exons of the same gene or between 

enhancers and promoters, which can span up to 1 Mb. Such extensive context lengths pose 

computational and statistical challenges that researchers are actively working to overcome. 

Additionally, regardless of the chosen context length, partitioning the genome into independent 

units remains challenging. For instance, an enhancer for one gene may be located within the intron 

of another gene. 

3.2. Tokenization methods 

The tokenization methods currently employed in GFMs include overlapping k-mer, non-
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overlapping k-mer, BPE, Unigram, and nucleotide-level. 

Overlapping k-mer: This method effectively captures local sequence information but requires 

high computational and storage complexity due to the overlapping regions. 

Non-overlapping k-mer: This approach reduces computational resource expenditure but may 

lead to the loss of some crucial local sequence information. 

Byte Pair Encoding (BPE): BPE iteratively merges character pairs based on frequency 

distributions in the data, efficiently reducing the number of tokens and enhancing model training 

and inference efficiency. However, it may overlook certain semantic information. 

Unigram: This method tokenizes based on the frequency distribution of individual nucleotides, 

preserving all sequence information but generating a large number of tokens, which leads to high 

input dimensions and increased computational complexity. 

Nucleotide-level: This method decomposes the sequence into individual nucleotides, fully 

retaining the original information but resulting in extremely high input dimensions, thus incurring 

significant computational costs. 

Each tokenization method has its own strengths and weaknesses, making it suitable for different 

genomic modeling and prediction tasks. Selecting an appropriate tokenization method requires 

balancing computational complexity, information retention, and model accuracy according to the 

specific needs of the task and the characteristics of the data. An optimal tokenization method can 

significantly enhance the performance and predictive capabilities of GFMs. 

3.3. Model architectures and pre-training tasks 

Currently, the architectures of GFMs primarily include Transformer-based architectures, State 

Space Model (SSM)-based architectures, and hybrid architectures. Transformer-based GFMs can be 

further divided into three categories: models based on Transformer encoders (similar to the BERT 

architecture), models based on Transformer decoders (similar to the GPT architecture), and full 

Transformer architecture models. SSM-based GFMs currently have two representative models: 

HyenaDNA, which is based on the Hyena hierarchy, and Caduceus, which is based on Mamba. The 

Transformer architecture leverages self-attention mechanisms but suffers from quadratic scaling 

issues. To address this, researchers have explored using SSMs as alternatives to Transformers, as 

SSMs can scale nearly linearly with sequence length, significantly improving the length and 

efficiency of sequence modeling. Additionally, there are hybrid architecture models that combine 

SSMs and Transformers, such as the EVO model. These hybrid architectures aim to integrate the 

advantages of different architectures to enhance overall performance. 

The pre-training tasks for GFMs mainly include Masked Language Modeling (MLM) and Causal 

Language Modeling (CLM). The MLM task involves randomly masking parts of the input sequence 

and then training the model to predict the masked content based on the context. This task is 

primarily used to capture bidirectional dependencies within sequences and is commonly applied in 

Transformer encoder-based GFMs. The CLM task, also known as autoregressive language 

modeling, trains the model to generate or predict the next word or token in a sequence from left to 

right, emphasizing forward dependencies within the sequence. This task is often used in 

Transformer decoder-based and SSM-based GFMs. Both tasks require the model to predict data 

components given a context, thereby forcing the model to learn low-dimensional representations of 

the data. MLM generally excels in obtaining better representations and transfer learning capabilities, 

while CLM performs better in generative tasks. 

4. Challenges and Future Directions 

The primary challenges and future directions for GFMs encompass three main areas: 
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interpretability, pre-training task design. 

4.1. Interpretability 

To elucidate how these models generate predictions, particularly in genomics, a variety of 

methods have been developed. For instance, unsupervised clustering of the final layer embeddings 

in GPN[9] revealed distinct clusters for different genomic categories, such as coding sequences, 

introns, and untranslated regions. Similarly, SpliceBERT's[6] unsupervised clustering of embeddings 

for canonical splice sites and non-splice GT/AG sites demonstrated clear clusters corresponding to 

these two groups, indicating that the model captures key contextual patterns that determine genomic 

functional elements. 

The attention mechanism in Transformer models aims to capture interaction patterns between 

input tokens. By interpreting attention weights or attention maps for a given input sequence, one 

can uncover the genomic features learned by the model. For example, in SpliceBERT[6], the 

attention weights between splice donors and acceptors were significantly higher than those between 

random site pairs, with even stronger interaction intensities in true donor-acceptor pairs.  

Nucleotide reconstruction methods have also been employed to discover sequence motifs learned 

by the model. This approach has been utilized in GPN[9] to reveal significant patterns in 

reconstructed nucleotide distributions, particularly at functionally important sites like coding 

sequences and splice donor/acceptor sites. Moreover, tools like TF-MoDISco have been used to 

identify novel transcription factor binding sites, where the discovered sequence motifs matched 

those in known databases. Similarly, sequence motifs reconstructed by Species LM[4] matched 

binding sites of DNA and RNA-binding proteins in species not seen during training. These studies 

suggest that GFMs can not only capture functional genomic patterns but also reveal species-specific 

sequence motifs and regulatory code evolution. 

It is important to note that while attention scores in Transformer models have been proposed as 

an interpretability method to address the black-box issue, several studies have shown that attention 

scores alone do not inherently possess interpretability. Other methods, such as attention flow and 

attention rollout, and layer-wise relevance propagation, have been successfully applied to interpret 

Transformer models, offering superior interpretability compared to mere attention scores. However, 

attention rollout methods cannot distinguish between positive and negative contributions, and 

attention flow methods are computationally complex. Layer-wise relevance propagation, by 

backpropagating the network's output prediction to the input layer, provides indications of feature 

importance and has demonstrated its superiority in Transformer models. Additionally, model-

agnostic methods like LIME, SHAP, and weighted SHAP offer potential pathways for interpreting 

Transformer models. 

4.2. Pre-training task design 

The design of pre-training tasks for GFMs presents significant challenges. Ideally, pre-training 

allows deep learning models to capture universal data patterns; however, in the worst case, it may 

result in a waste of computational resources. Recent studies evaluating various GFMs on human 

genome prediction tasks have found that their performance generally does not surpass that of non-

GFM baselines. These results are based on frozen embeddings, and a comprehensive evaluation 

involving full fine-tuning would provide more insights. Although GFMs are well-suited to 

demonstrate the value of transfer learning in less-studied organisms, delivering significant value in 

human genetics may require further innovation due to the availability of high-quality labeled data 

and well-designed models in this field. An important question is the extent to which the scaling 

hypothesis applies to GFMs—whether increasing the amount of unlabeled data and computational 
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power will continuously enhance model performance. 

5. Conclusion 

GFMs have ushered in new possibilities for genomic tasks and the decoding of the DNA 

language. These models have emerged as powerful tools capable of extracting complex patterns, 

facilitating applications such as adaptive assessment, sequence design, and transfer learning. While 

the breakthroughs are indeed promising, it is imperative to maintain a balanced perspective, 

critically evaluating the applicability and limitations of these models, particularly concerning the 

rationality of pre-training designs. We must avoid overstating the novelty of GFMs or introducing 

unnecessary terminology. 

Acknowledgements  

This work was supported by the Applied Basic Research Project in Yunnan Province (grant no. 

202201AT070042), the project funding of the "Support Program of Xingdian Talents", the National 

Natural Science Foundation of China (grant no. 61862067, U1902201), Yunnan Provincial Science 

and Technology Department-Yunnan University Double First-Class Joint Fund Key Projects (grant 

no. 2019FY003027) and National Key R&D Program of China (grant no. 2022YFC2602500), 

Yunnan Normal University graduate research innovation fund project (grant no. YJSJJ23-B128). 

References  

[1] Consens M E, Dufault C, Wainberg M, et al. To transformers and beyond: large language models for the genome 

[J]. arXiv preprint arXiv:2311.07621, 2023. 

[2] Benegas G, Ye C, Albors C, et al. Genomic Language Models: Opportunities and Challenges[J]. arXiv preprint 

arXiv:2407.11435, 2024. 

[3] Dalla-Torre, H., Gonzalez, L., Mendoza Revilla, J., et al. The Nucleotide Transformer: Building and Evaluating 

Robust Foundation Models for Human Genomics. bioRxiv preprint, 2023. 

[4] Karollus, A., Hingerl, J., Gankin, D., et al. Species-aware DNA language models capture regulatory elements and 

their evolu- tion. Genome Biology 25, 83, 2024. 

[5] Zhou, Z., Ji, Y., Li, W., et al. DNABERT-2: Efficient foundation model and benchmark for multi-species genome. 

arXiv preprint arXiv:2306.15006, 2023. 

[6] Chen, K., Zhou, Y., Ding, M., et al. Self-supervised learning on millions of primary RNA sequences from 72 

vertebrates improves sequence-based RNA splicing prediction. Briefings in Bioinformatics 25, bbae163, 2024. 

[7] Nguyen, E., Poli, M., Faizi, M., et al. HyenaDNA: Long- Range Genomic Sequence Modeling at Single Nucleotide 

Resolution. Advances in Neural Information Processing Systems vol. 36. Curran Associates, Inc. 43177–43201, 2023. 

[8] Schiff, Y., Kao, C.-H., Gokaslan, A., et al. Caduceus: Bi-directional equivariant long-range DNA sequence 

modeling. arXiv preprint arXiv:2403.03234, 2024.  

[9] Benegas, G., Batra, S. S., and Song, Y. S. DNA language models are powerful pre- dictors of genome-wide variant 

effects. Proceedings of the National Academy of Sciences 120, e2311219120, 2023. 

80




