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Abstract: Simultaneous Localization and Mapping (SLAM) technology can help mobile 

intelligent robots to understand and perceive scenes in unknown environments, so it is 

playing an increasingly important role in the fields of intelligent robots, intelligent cars, and 

so on. And because camera sensors have wide applicability, visual SLAM in dynamic scenes 

has become a relatively popular research direction in recent years. And the SLAM algorithm 

needs to be tested and validated, which requires choosing appropriate datasets based on 

different application scenarios. Therefore, this paper comprehensively introduces the 

excellent open-source data sets commonly used in the research of visual SLAM. Since deep 

learning networks are often used to improve the performance of the SLAM system, this paper 

summarizes the advanced techniques in recent years for solving the common problems of 

visual SLAM in dynamic scenes based on deep learning networks. 

1. Introduction 

With the development of science and technology, the application of mobile robots in our daily life 

is becoming more and more extensive. They can assist people in completing many tedious tasks and 

they can also replace humans to carry out operations in some dangerous and extreme environments. 

The Simultaneous Localization and Mapping (SLAM) technology is crucial for mobile robots, which 

can enable robots to understand and perceive the scene in an unknown environment, and conduct 

autonomous positioning and map construction. With the increase of demand, the working scenarios 

faced by mobile robots are also more complex, and even multiple robots need to cooperate with each 

other to complete the work[1]. This makes the challenges faced by visual SLAM technology more 

and more diversified, so the SLAM algorithm needs to be continuously optimized and improved. And 

most working environments have dynamic objects, and these moving objects may be misidentified 

as part of the environment, leading to significant deviations in pose estimation results and the 

constructed environment map from the real situation[2], This situation affects the efficiency of robots 

in unknown environments and may even cause major accidents. In recent years, deep learning 

networks are playing an increasingly important role in the field of computer vision. Visual SLAM 

systems usually take pictures as input, so deep learning networks can be combined with SLAM 

technology to efficiently eliminate dynamic interference. And the innovation and improvement of 

algorithms needs to be tested and validated, which requires the use of data sets that are close to the 

actual scene and have rich scenes. Therefore, this article first introduces the commonly used open-

Advances in Computer, Signals and Systems (2025) 
Clausius Scientific Press, Canada

DOI: 10.23977/acss.2025.090101 
ISSN 2371-8838 Vol. 9 Num. 1

1



source data sets in the field of visual SLAM, and comprehensively summarizes the excellent SLAM 

algorithms combined with deep learning in recent years. 

2. Common Datasets of visual SLAM  

Some excellent open-source datasets related to visual SLAM provide rich data resources for the 

research in this field and help researchers verify the performance of their new visual SLAM 

algorithms during development process. By testing on the datasets, the accuracy, robustness, and real-

time performance of the algorithms under different  environmental conditions can be evaluated, which 

greatly improves the efficiency of research. Currently, the datasets commonly used in visual SLAM 

are as follows: 

2.1. KITTI dataset 

The KITTI dataset[3] was jointly released by the Karlsruhe Institute of Technology (KIT) and the 

Toyota Technological Institute at Chicago (TTI-C). It was recorded over a distance of 39.2 kilometers 

and includes vehicles, pedestrians, and many common outdoor objects such as trees, houses, etc,as 

shown in figure 1. Additionally, detailed annotations were made for some three-dimensional entities 

appearing in the images. In the image containing the most entities, more than ten cars can be seen, 

which also provides rich scene data for researchers. 

 

 

Figure 1: Pictures of KITTI dataset[3] 

When studying large outdoor scenes such as urban streets and highways, the KITTI dataset is one 

of the most commonly used datasets in the field of visual SLAM. It obtains relevant data through a 

data collection vehicle equipped with two gray cameras and two color cameras, which form a stereo 

camera sensor capable of capturing gray and color images, respectively. The pixel values of the 

cameras are all 1.4 million. These excellent devices ensure that the image data provided by the KITTI 

dataset has good lighting, clear images, and rich textures. It also includes sensors such as LiDAR and 

inertial measurement units, which can meet the testing requirements of multi-sensor fusion SLAM 

algorithms. The application scope of the KITTI dataset is very wide. Not only is it widely used in 

academic research, but with the growing popularity of automatic driving, many intelligent automobile 

enterprises also use this data set to develop and test auto drive system, to simulate the real road 

conditions, so as to design a more safe and reliable auto drive system. 
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2.2. TUM RGB-D dataset 

The TUM-D dataset[4] was provided by the Technical University of Munich in 2012. The vast 

majority of visual SLAM research for indoor scenes selects the TUM-D dataset for simulation testing. 

This dataset includes RGB images with color information of the covered environment and depth 

images that can reflect depth information, both in the format of 640x480.  Moreover, when scaling 

the depth map, a pixel value of 5000 in the depth map represents the distance of 1 meter between the 

observed object and the camera. As shown in figure 2,the TUM RGB-D dataset simulates various 

types of indoor scenes. Among them, the fr3_walking series simulates an office scene with walking 

people as interference. The scene includes common static entities in indoor environments such as 

desks, computers, and chairs. At the same time, two experimenters perform large-scale dynamic 

behaviors such as walking, sitting down, and standing up, thereby achieving the simulation of a high-

dynamic scene. In contrast, the fr3_sitting series simulates a low-dynamic scene where the two 

experimenters perform small-scale local movements in the same scene. Furthermore, both of these 

two series include four different sub-datasets of camera motion poses: xyz, rpy, halfsphere, and static, 

which can well meet the testing and verification requirements of dynamic SLAM. In addition, for 

purely static scenes, relevant simulations were also conducted on the TUM dataset. 

  

Figure 2: Pictures of TUM RGB-D dataset[4] 

The data collection team of the TUM RGB-D dataset has also provided an automatic evaluation 

system on its official website. Researchers can upload the camera pose and trajectory data estimated 

by their SLAM systems. The evaluation system can calculate the absolute trajectory error (ATE), 

relative and relative pose error (RPE) between the provided data and the real data, and display them 

in both numerical and graphical forms. This provides great convenience for research in the SLAM 

field. 

It is worth mentioning that these two measurement indicators play a crucial role in the evaluation 

of the SLAM system. Among them, when calculating the ATE, the estimated robot poses are paired 

with the real poses according to the timestamps, and then the difference between each pair of poses 

is calculated. It can directly reflect the global positioning accuracy of the algorithm. The RPE is used 

to evaluate the drift degree of the SLAM system. The calculation methods of ATE and RPE for the 
ith  image are respectively: 

1
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Among them, S  represents the similar rotation matrix between the estimated pose iP
 and the real 

pose iQ
,  represents the time interval. 
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2.3. Bonn RGB-D Dynamic dataset 

The Bonn RGB-D Dynamic dataset[5] was provided by the University of Bonn in Germany in 

2019. Originally, it was collected by Emanuele Palazzolo and others to verify their proposed 3D 

reconstruction algorithm ReFusion, and later the author team published the data set. This dataset 

mainly focuses on the simulation of high-dynamic indoor scenes. This dataset was mainly collected 

using the Xtion Pro Live depth camera, and accurate point cloud data was collected from the 

experimental site using laser scanning equipment, providing a reference for researchers to evaluate 

the accuracy of the SLAM algorithm. 

  

Figure 3: Pictures of BONN dataset[5] 

Compared with the TUM RGB dataset, the dynamic interference in the Bonn dataset is more 

complex, and the behaviors shown by the experimenters in the images are also more diverse. Human 

movements are not only limited to simple actions such as walking and standing up, but also includes 

carrying objects and beating balloons, as shown in figure 3. These actions not only make the types of 

movements more diverse, but also cause some previously static objects to move under the influence 

of humans. At the same time, due to the rapid shaking of the camera and the fast movement of people, 

some images in the Bonn dataset become relatively blurry at certain moments. These interference 

factors also make the tasks of pose estimation and map construction in SLAM more complex in this 

dataset. Compared with other datasets for indoor dynamic scenes, it brings new challenges to SLAM 

algorithms. 

2.4. EuRoC dataset 

The EuRoC (European Robotics Challenge) dataset[6] is an open-source dataset provided by ETH 

Zurich, specifically designed for research on drone flight navigation, Visual-inertial odometry (VIO), 

and SLAM. This dataset was collected by a small unmanned aerial vehicle（UAV） equipped with 

a binocular camera, IMU for visual inertial information acquisition, motion capture system, and laser 

scanner. EuRoC is also designed for indoor scenes. Unlike TUM and BONN datasets, the EuRoc 

dataset not only simulates scenes in offices, but also collects scene information in industrial factory 

building. Based on the complexity of the scene, this dataset collected five sequences for the factory 

environment. Among them, the MH_01_easy series has the least dynamic factors, while the 

MH_05_difficult series has the highest degree of dynamics and complexity. Researchers can choose 

scenarios based on their own experimental needs. Meanwhile, due to the inclusion of industrial 

scenarios in the dataset, both academic and industrial fields often use the EuRoC dataset for 

simulation and testing 

2.5. Oxford RobotCar dataset 

The Oxford RobotCar dataset[7]is a dataset for outdoor roads provided by the Mobile Robotics 

Group (MRG) of the University of Oxford in the UK. The acquisition tool of this dataset is a car, 
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which is equipped with a trinocular stereo camera, three monocular cameras, two 2D lidars, and a 3D 

lidar. In addition, the GPS system is also used to obtain the ground truth. In order to record more 

different road and weather conditions such as rain, night, and sunny days, the recording cycle of this 

dataset lasts for one and a half years. During this period, the author team drived the acquisition vehicle 

to travel on a road twice a week, and the total driving mileage exceeded 1000 KM. Therefore, the 

Oxford RobotCar dataset can simultaneously meet the research needs of large-scale scenes and long-

term periods. The appearance of this dataset provides more abundant real-world scenes for 

researching SLAM, scene understanding, and autonomous driving algorithms. 

In addition, there are also the Newer Collage dataset[8] for the campus scene, the Complex Urban 

dataset[9]for the urban scene, and so on. The existence of these datasets provides a solid foundation 

for the research and development and innovation of SLAM-related algorithms. These real and rich 

scene data facilitate the testing and improvement of algorithms by researchers, and play an important 

role in promoting the development of the SLAM field. 

3. Dynamic visual SLAM Based on Deep Learning 

One of the popular solutions to solve the problem of the decrease in the accuracy of the SLAM 

algorithm in dynamic scenes is to combine with the deep learning network. In recent years, the 

application of deep learning networks in the field of computer vision has become more and more 

widespread, and can accurately identify the entities in the image. The identification of dynamic 

objects combined with the prior information given by the deep learning network can greatly improve 

the anti-interference ability of the SLAM algorithm in dynamic scenes, and at the same time can 

guarantee the real-time requirement of SLAM. At present, the most widely used deep learning 

networks in the SLAM field mainly include: Mask R-CNN, YOLO series, etc. These networks often 

maintain high accuracy when performing image processing, but for SLAM, it still needs to be 

compensated by some other methods. This chapter will summarize the combination methods of these 

networks and SLAM by means of classification and induction. 

3.1. Dynamic visual SLAM combined with Mask R-CNN 

DynaSLAM[10] is one of the earliest algorithms that combines the traditional SLAM system with 

the deep learning network. This algorithm first directly eliminates the priori dynamic objects, and the 

movement of people may cause some priori static objects to also move, such as cups, tables and chairs, 

etc. These forced moving objects will also interfere with the pose estimation of the algorithm. At this 

time, DynaSLAM uses the multi-view geometry method for further detection and elimination. 

Usually, only detecting the feature points according to the dynamic mask often leads to the 

omission of the points at the edge of the dynamic object. These omitted dynamic points will also lead 

to the decrease of the accuracy of the SLAM algorithm. To solve this problem: 

Li[11]et al  judge by the distance and depth value between the feature points to further detect the 

feature points at the edge of the dynamic object. It effectively improves accuracy of the SLAM 

algorithm, and also has a good advantage compared to some other advanced algorithms. 

Zhang[12]et al optimize the mask at the edge through the Laplace edge detection method, and then 

further verify the movement of the object by through the epipolar Geometry. Compared with 

DynaSLAM, the ATE of this method is reduced by 36.6% on average. 

MDP-SLAM was proposed by Zhang[13]et al in 2024. This algorithm uses the clustering method 

to divide the edge of the dynamic object, and then accurately expands the semantic mask provided by 

Mask R-CNN according to the division result, and finally accurately eliminates the dynamic feature 

points according to the semantic mask. In the high dynamic dataset f3_walking series, compared to 

ORB-SLAM2, the RMSE of the ATE of this algorithm is reduced from 94.25% to 98.31%. 
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3.2. Dynamic visual SLAM combined with YOLO series 

The YOLO series has relatively high detection speed and accuracy, but most of the YOLO series 

only have the function of target detection, that is, only the detection box of dynamic objects can be 

obtained, and the dynamic objects cannot be accurately segmented. If all the feature points in the 

dynamic frame are eliminated, a large number of static points will also be eliminated, which may 

affect the accuracy of positioning and even cause tracking failure: 

YKP-SLAM [14]uses K-means clustering to calculate the depth mean value, and judges the 

dynamic area according to the depth value in the dynamic detection boxes provided by YOLOv5,so 

as to achieve accurate screening of dynamic feature points. Compared with the traditional ORB-

SLAM2 algorithm, YKP-SLAM has increased the accuracy of the algorithm in high dynamic scenes 

by 96.45%. 

YG-SLAM[15]is to detect the dynamic objects in the image by combining the LK optical flow 

algorithm based on the detection result of YOLOv5. The prior semantic information of YOLOv5 can 

greatly improve the running speed of the optical flow algorithm and ensure the real-time nature of the 

algorithm. 

In 2023, Liu[16]et al proposed the YES-SLAM algorithm. This algorithm uses the Laplace 

algorithm in the YOLOv7 detection boxes to obtain the edge contour information of the dynamic 

object. Then use the four-neighborhood algorithm to cover and fill the dynamic region according to 

the RGB value of the pixel point, and finally obtain the accurate dynamic region. Compared with 

ORB-SLAM2, the ATE of YES-SLAM in high dynamic scenes has decreased by 96.8%. 

In addition, since YOLOv8 itself integrates the instance segmentation network, when YOD-SLAM 

[17]is processed, the segmentation mask provided by YOLOv8 is expanded through the depth 

information to ensure that the mask can accurately cover the dynamic object. Moreover, when the 

people walk too far and the segmentation network fails, the algorithm redraws the missing mask by 

combining the mask of adjacent frames and the central depth value. At the same time, when the priori 

static object is too close to the dynamic object, it is considered that this static object is not reliable. 

These compensation conditions make YOD-SLAM show excellent accuracy in dynamic scenes. 

3.3. Dynamic visual SLAM combined with other networks 

In addition to the Mask R-CNN and YOLO series mentioned above, there are also many excellent 

deep learning networks used to solve the problems of SLAM in dynamic scenes. For example, 

Chang[18]et al adopted the YOLACT instance segmentation network and combined it with the dense 

optical flow network to achieve the elimination of dynamic points;After obtaining the segmentation 

mask of YOLACT++,  Li[19]et al used the Mahalanobis distance and depth value to further judge the 

suspected dynamic feature points, and at the same time used the method of epipolar constraint and 

clustering to make up for the deficiency of the Mahalanobis distance. Hu [20] et al used the 

DeepLabv3(+) network to obtain the mask, and then used the method of multi-view geometry to 

verify the motion state of the object; Wen[21]et al calculated the moving speed of the feature points 

between two images and fused the calculation result with the segmentation result of the SegNet 

network, effectively eliminating the influence of dynamic feature points. 

4. Conclusions 

This paper first introduces some commonly used open-source datasets in the field of visual SLAM, 

briefly introduces the sensor parameters used in the collection of each dataset, and discusses in detail 

the scene characteristics of each dataset and the environmental information contained therein. At the 

same time, simple picture displays of the scenes in some datasets are carried out. Subsequently, this 
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paper introduces advanced SLAM algorithms based on Mask R-CNN, the YOLO series and other 

deep learning networks, and the combination of these advanced SLAM algorithms and deep learning 

network is introduced in detail. When dealing with the impact of dynamic disturbances on SLAM 

algorithms, if only deep learning networks are used, these dynamic points cannot be accurately 

eliminated, so it often needs to be combined with other methods, such as geometric methods, optical 

flow methods and other mathematical methods. With the rapid development of different sensors, 

SLAM systems will adopt the fusion of multiple sensors in the future, such as the fusion of inertial 

measurement units and visual sensors, so as to further enhance the perception ability of mobile robots 

to the environment. Moreover, most open-source datasets often use many kinds of sensors to collect 

data, so they can meet the experimental requirements of multi-sensor fusion. 
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