
PGGAN: Probability Guided Generative Adversarial 

Network for Image Inpainting 

Chaoqun Donga, Yang Yangb,* 

School of Information Science and Technology, Yunnan Normal University, Kunming, China 
adouglasdcq1999@163.com, byyang_ynu@163.com 

*Corresponding author  

Keywords: Image Inpainting, Generative Adversarial Network (GAN), Deep Learning, 

Fourier Transform 

Abstract: Probability Guided Generative Adversarial Network (PG-GAN) aims to address 

key challenges in image inpainting, particularly in capturing structural information over 

long distances. Firstly, we design the IAModule, which provides semantic attention based 

on the distribution characteristics of input features, thereby enhancing semantic coherence 

in image inpainting. Secondly, we propose RR-SSIM Loss, a new loss function aimed at 

solving the problem of Structural Similarity (SSIM) that is difficult to capture long-distance 

structural information through sliding window calculations. Finally, we provide a new 

feature enhancement mechanism through channel dimension Fourier transform and design 

it as a HybridFFTModule. This module enhances the distinguishability of global 

representation through channel modeling, effectively adjusting the representation space of 

global information and further improving the effectiveness of image inpainting. In the 

experimental section, we validate the superior performance of PG-GAN on CelabA-HQ 

dataset. In summary, our PG-GAN provides a new and effective method for image 

inpainting, with broad application prospects. 

1. Introduction  

Image inpainting is an important topic in the field of computer vision, aimed at using known 

information in an image to fill in missing or damaged parts, thereby restoring the integrity and 

visual coherence of the image. With the rapid development of deep learning technology, significant 

progress has been made in image inpainting techniques. Especially with the introduction of 

Generative Adversarial Network (GAN), a new perspective and solution have been brought to 

image inpainting .  

The core challenge of the image inpainting task is how to generate restoration results that are 

both realistic and semantically consistent based on the contextual information of the image. 

Traditional image inpainting methods, such as texture synthesis or image block matching[1-5], 

although able to fill missing areas to some extent, often lack global consistency and semantic 

coherence. Deep learning based image inpainting methods, especially GAN based methods, can 

generate more realistic and natural inpainting results by learning the statistical features and 
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distribution patterns of images. 

However, existing GAN based image inpainting methods still have some limitations, as they may 

still result in unnatural or semantically inconsistent restoration results when dealing with complex 

scenes and textures. 

We proposes PG-GAN, which adopts a two-stage repair process and consists of two main parts. 

Firstly, the first stage network reconstructs coherent image structure priors. Benefiting for their 

powerful representation capabilities, these reconstructed structural priors contain rich global 

structures and rough textures. Then, guided by the reconstruction of prior information and the 

original defect image, a texture generator based on the generative adversarial network is used for 

upsampling and synthesizing texture details. 

Our contributions are summarized as follows: 

(1)In response to the limitations of non local attention mechanisms, we design the IAModule to 

provide semantic attention based on the distribution features of input features. 

(2)We propose RR-SSIM Loss, a method for perceiving long-distance structural information, to 

address the difficulty of SSIM in capturing such information through sliding window calculations. 

(3)A new feature enhancement mechanism is provided through channel dimension Fourier 

transform and designed as HybridFFTModule. This mechanism enhances the discriminability of the 

global representation through channel modeling, further serving as a representative space for 

effectively adjusting global information. 

2. Related work 

2.1. Image inpainting. 

Traditional image inpainting methods mainly include texture synthesis based methods and image 

block matching based methods. The method based on texture synthesis extracts texture information 

from known regions and applies it to missing areas to fill in the missing parts. This method works 

well when dealing with simple textures, but often performs poorly when dealing with complex 

scenes and textures. The method based on image block matching fills the missing part by searching 

for image blocks that are similar to the missing area. This method can maintain local consistency of 

the image, but there are shortcomings in terms of global consistency and semantic coherence. 

With the rise of deep learning technology, especially the widespread application of convolutional 

neural networks (CNN), image inpainting technology has ushered in new breakthroughs. Deep 

learning based image inpainting methods can automatically learn feature representations in images 

and use these features to restore missing parts.Several studies have been undertaken to address and 

enhance the quality of image inpainting, utilizing approaches such as convolutional neural networks, 

contextual attention, and partial convolution [6-12]. 

Compared with other methods, Generative Adversarial Network have received widespread 

attention in the field of image inpainting due to their powerful generative capabilities.In [13], gated 

convolution is employed to train a procedure for selecting multiple objects at each spatial point 

across all stages for every stream. Zheng et al. [14] introduce a pluralistic image completion 

approach that generates numerous plausible solutions for masked images. The Expression 

Conditioned GAN (ECGAN), proposed in [15], leverages both mask segmentation and expression 

labels to reconstruct expressive masked faces effectively. Li et al. [16] present the Mask-Aware 

Transformer (MAT), which excels in modeling long-range dependencies but falls short in rendering 

fine textures and becomes computationally infeasible for larger images. Wan et al. [17] combine 

transformers and CNNs to enhance both structure and detail. 
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2.2. Fourier transform 

Fourier transform is a popular technique for frequency domain analysis. This transformation 

shifts the signal to a domain with global statistical properties and is consequently utilized for 

various computer vision tasks. Fourier transform is a classic application extensively used for 

domain generalization and adaptation because of its effective modeling of global information. For 

instance, [18] implement a Fourier-based data augmentation strategy to generate samples with 

diverse styles for domain generation. [19] propose to improve the normalization for domain 

generalization by recomposing its different components in the Fourier domain. In another 

application, the Fourier transform mechanism is utilized to design effective backbones, leveraging 

its ability to capture global information. For example, [20] is introduced to process partial features 

in the Fourier domain, enabling models to possess a non-local receptive field. Besides, [21] utilizes 

FFT/IFFT to extract Fourier domain features, serving as global filters for effective attention 

modeling. All the above works demonstrate the effectiveness of Fourier domain features in 

capturing global spatial statistics. 

3. PG-GAN 

 

Figure 1: PG-GAN 

Figure 1 shows an overview of Probability Guided Generative Adversarial Network (PG-GAN), 

which sets relatively coarse results as prior information and modulates latent vectors z into image 

space through a single decoder similar to a regular GAN. We use pretrained [7] to propose an 

Iterative Attention Module (IAModule) and design Random-Reshuffle SSIM Loss(RR-SSIM Loss) 

to obtain coarse predictions. The coarse prediction and mask images are sent to the 

HybridFFTModule to provide prior knowledge for the generation process. The prior information 

introduced by PG-GAN is based on the idea that pixels closer to the hole boundary have more 

certainty and higher confidence in filling information, while pixels located at the center of the hole 

should have more degrees of freedom and lower confidence. The HybridFFTModule controls 

probabilities based on the distance between pixels and hole boundaries, and learns probabilities 

during the adaptive process. The HybridFFTModule consists of SFFT and CFFT. SFFT performs 

Fourier transform on features in the spatial dimension, while CFFT performs Fourier transform on 

features in the channel dimension. 

3.1. IAModule 

The Iterative Attention Module is implemented based on the traditional EM algorithm.As shown 

in Figure 2, the feature map iteratively generates a compact set of bases through the expectation 

maximization algorithm, and runs the attention mechanism on this set of bases. Specifically, µ is 

initialized as a tensor with a shape of c×k. Feature map Xin is obtained from the output of the Unet 
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encoder, and then based on the EM algorithm, a for loop is used to update the initialized µini and 

posterior probability matrix Znk. The updated posterior Znk reveals the attention from the kth 

component to the nth feature point, which can also be seen as the similarity between n features and k 

components. After EM is completed, µout and Znk are multiplied to generate the attention feature 

map Xout. 

 

Figure 2: IAModule 

3.2. Random-Reshuffle SSIM Loss 

Before introducing the Random-shuffle SSIM Loss (RR-SSIM Loss) , we first review the 

principle and calculation process of SSIM. The proposal of SSIM is aimed at getting closer to the 

human eye's perception of image quality. Traditional image quality evaluation methods, such as 

mean square error (MSE) and peak signal-to-noise ratio (PSNR), are mainly calculated based on the 

differences between pixels, while SSIM considers the dependencies and perceptual phenomena 

between pixels. Therefore, in practical applications, SSIM can often more accurately reflect the 

visual quality of images. The calculation of SSIM is based on three key components: luminance 

l(x,y), contrast c(x,y), and structure s(x,y). These three parts together constitute the overall 

perception of image quality, as shown in formula (1): 

 )),(),,(),,((),( yxsyxcyxlfyxS                                                 (1) 

The luminance similarity l(x,y) is shown in formula (2), where μx and μy are the average 

luminance values of image x and image y respectively, and C1 is the coefficient to prevent the 

denominator from being zero. 
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The contrast c(x,y) is shown in formula (3), where σx and σy are the standard deviations of 

image x and image y respectively, reflecting the contrast information of the image. C2 is the 

coefficient to prevent the denominator from being zero. 
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The structural similarity s(x,y) is shown in formula (4), where σxy is the covariance, C3=C2/2. 
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The calculation process of covariance σxy is shown in formula (5). 
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Combine the above three components to obtain the commonly used SSIM calculation formula 

(6): 
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The proposal of RR-SSIM Loss was inspired by SSIM calculation. The calculation of SSIM is 

based on sliding windows, which means taking a window of size N × N from the image each time 

and calculating the SSIM index based on that window. Then traverse the entire image and take the 

average SSIM value of all windows as the SSIM metric for the entire image. This means that in the 

process of calculating SSIM indicators, the correlation of long-distance information was not taken 

into account. In other words, in a certain scene, even if it is far away, there is structural information 

that has not been captured. We propose RR-SSIM Loss, which involves randomly shuffling and 

recombining the GT and Pred images corresponding to the SSIM calculation. The SSIM metric is 

calculated using a sliding window and designed as a loss function to optimize the training process. 

The formula for calculating RR-SSIM Loss is shown in (7), and the process of randomly shuffling 

and reassembling images is shown in Figure 3. 

)Pred dReassemble,GT dReassemble(1- SSIMSSIMLossRR                 (7) 

 

Figure 3: RR-SSIM Loss 

3.3. HybridFFTModule 

Fourier transform and its variants perform well in the field of image enhancement, benefiting 

from their global representation capability. However, previous work has mainly been operated in 

the spatial dimension, which may lack inherent features in the channel dimension. We propose the 

HybridFFTModule, which mainly introduces the channel dimension Fourier transform for image 

inpainting. This transform is applied to the channel level representation and combined with the 
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spatial dimension Fourier transform to enhance the recognition ability of its global representation. 

 

Figure 4: HybridFFTModule 

As shown in Figure 4, the HybridFFTModule consists of SFFT and CFFT, and the input feature 

maps are operated on in two branches. The first branch is the SFFT part, which directly performs 

spatial Fourier transform on the feature map to generate corresponding amplitude spectrum and 

phase spectrum, performs convolution operation in the frequency domain, and then performs 

inverse transform. The second branch is the CFFT part, which first uses Global Average Pooling 

(GAP) to perform channel dimension Fourier transform on intermediate results with global 

representation, further optimizes them through 1x1 convolution, performs inverse transformation, 

and finally expands them to the original feature map size. 

4. Experiments 

4.1. Datasets 

We evaluated our proposed model on CelebA-HQ[22]. For CelebA-HQ, we use their original 

training and test splits.In addition, all experiments use the masks proposed in [7] for the training and 

testing of image inpainting tasks. 

4.2. Settings 

Our experimental environment is detailed in Table 1. 

Table 1: Experimental environment 

Item Setting 

CPU Intel Core i5-13600KF 

GPU NVIDIA GeForce RTX 4090 

RAM Kingston FURY Beast DDR4 3600 16G×2 

Hard disk TiPlus7100 1TB-PCIE4.0 

Deep learning frameworks Pytorch 1.13.1 Python 3.9.18 

Operating system Ubuntu 22.04 

4.3. Performance Comparison 

We compare with the following inpainting approaches: PC [7], TFill [23],PDGAN[24] and 

AOTGAN[25].In comparison, we demonstrate the superiority of the proposed method through 
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qualitative and quantitative analysis. 

4.3.1. Qualitative Analysis. 

The qualitative performance is reported in Figure 5. It can be clearly seen that our method 

performs well in overall color tone and other color information, structural information such as hair 

texture, and details such as smiling expressions. Our method better captures long-distance 

information and generates high-quality results. 

 

Figure 5: The results of our method compared to other methods on CelebA-HQ dataset. 

4.3.2. Quantitative Analysis. 

Table 2 shows the quantitative performance on the CelebA HQ dataset. The experimental results 

show that, overall, our method performs well in terms of PSNR, SSIM, and LPIPS under high 

proportion masks, and is not inferior to other methods under low proportion masks. 

Table 2: Numerical comparisons on the CelebA-HQ dataset. ↓indicates lower is better while↑ 

indicates higher is better. 

 Mask 

1-10% 10-20% 20-30% 30-40% 40-50% 50-60% 

PSNR↑ 

PC 27.69 25.11 23.10 21.71 20.22 18.45 

TFill 27.97 25.89 24.15 22.85 21.21 19.16 

PDGAN 28.52 26.07 24.20 22.74 21.41 19.17 

AOTGAN 28.01 26.03 24.34 22.69 21.30 19.30 

Ours 28.06 26.71 25.19 23.70 22.34 20.04 

SSIM↑ 

PC 0.932 0.905 0.856 0.846 0.819 0.779 

TFill 0.928 0.894 0.861 0.849 0.832 0.792 

PDGAN 0.940 0.870 0.826 0.842 0.724 0.775 

AOTGAN 0.929 0.903 0.866 0.855 0.828 0.787 

Ours 0.927 0.928 0.883 0.890 0.873 0.825 

LPIPS↓ 

PC 0.049 0.070 0.093 0.140 0.166 0.202 

TFill 0.049 0.066 0.083 0.111 0.125 0.173 

PDGAN 0.048 0.064 0.084 0.105 0.128 0.171 

AOTGAN 0.048 0.065 0.086 0.108 0.122 0.168 

Ours 0.051 0.062 0.078 0.096 0.116 0.152 
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5. Conclusion 

We propose Probability Guided Generative Adversarial Network to facilitate further fusion of 

semantic and detail information in the image inpainting task. We propose the IAModule to enhance 

the convolutional feature extraction capability, and introduces the Combined SSIM Loss, which 

shuffles and reassembles the original SSIM calculation process to enhance the ability to extract 

long-distance information during the inpainting process. In addition, PG-GAN is based on the 

concept that the closer the distance to the hole position, the higher the confidence, and the farther 

the distance to the hole position, the lower the confidence. It gradually modulates random noise 

using prior information. During the modulation process, PG-GAN uses the HybridFFTModule 

based on Fourier transform to optimize features in both spatial and channel dimensions. 

Experiments on datasets have shown that our PG-GAN can generate high-quality reconstructed 

content. 
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