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Abstract: Mobile robots operating in dynamic environments are easily affected by moving 

objects, which results in significant discrepancies between the localization and mapping 

results provided by their SLAM systems and the actual conditions. To address this issue, this 

paper proposes a visual semantic SLAM approach for mobile robots in dynamic scenes. First, 

a lightweight instance segmentation network, Yolact++, is employed to segment and detect 

objects in the scene, removing feature points from the regions of the a priori dynamic objects. 

Furthermore, an LBP (Local Binary Pattern) algorithm that incorporates depth information 

is designed to prevent the misclassification of edge feature points from dynamic objects, thus 

preserving static features for the system's pose estimation. A series of simulation analyses 

validate the performance advantages of the proposed method. 

1. Introduction 

Today, with the widespread application of intelligent robots across various fields, Simultaneous 

Localization and Mapping (SLAM), a key enabling technology for autonomous navigation, has 

become a cutting-edge research hotspot. Among these, visual SLAM (vSLAM) using cameras as 

sensors has garnered significant attention. In recent years, several excellent vSLAM technologies 

have been proposed, such as direct methods like DTAM [1], LSD-SLAM [2], and DSO [3], feature-

based methods like ORB-SLAM2 [4], and point-line feature-based PL-SLAM [5]. These algorithms 

perform well in static environments, but in real-world applications, they are affected by dynamic 

objects in the scene, leading to substantial error accumulation during the localization process. To 

address the challenges posed by dynamic scenes, the main research directions are divided into 

traditional methods and deep learning-based approaches. Traditional methods, such as multi-view 

geometry constraints and optical flow, perform well in low-dynamic scenarios and have the 

advantages of real-time processing with low resource consumption. However, in complex dynamic 

scenes, traditional methods struggle to achieve optimal performance. On the other hand, deep 

learning-based semantic segmentation networks can identify prior dynamic objects in the input image, 

allowing the system to eliminate dynamic feature points in the target regions, significantly improving 

the system's robustness in dynamic environments. 

Based on this, we introduce the instance segmentation network Yolact++ [6] into the system's 
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frontend. By utilizing the semantic information from the detection and segmentation results, we 

remove feature points from dynamic regions in the image. The image segmentation masks provided 

by Yolact++ have relatively poor accuracy at the edges, which can lead to edge points being 

incorrectly classified as static feature points. To compensate for the mask's segmentation accuracy 

and prevent error accumulation, we design a dynamic mask edge feature point compensation strategy 

that integrates depth information with the LBP algorithm. 

The remainder of this paper is organized as follows. Section 2 provides an overview of related 

work. Section 3 presents the algorithm implementation process. Section 4 presents simulation studies 

and experimental results. Section 5 concludes the paper and discusses future research directions. 

2. Related Work 

Traditional methods to address the impact of dynamic scenes on system robustness often rely on 

mathematical and multi-view geometry techniques [7], such as Bayesian network models, clustering, 

and geometric constraints. Cheng et al. [8] designed a sparse motion removal (SMR) model based on 

the Bayesian framework, utilizing the similarities and differences between different frames. This 

model reduces the uncertainty in dynamic region detection and significantly improves the system's 

robustness in dynamic environments. Dai et al. [9] used the Delaunay triangulation algorithm to 

construct a sparse graph of map points, determining their correlation based on the relative positions 

between two points. They then classified the map points into different groups, assuming the largest 

group as the reliable static map points for pose estimation. Additionally, optical flow methods, which 

represent image motion, have also been favored by researchers. Derome et al. [10] proposed a motion 

object detection method based on dense stereo matching and optical flow estimation. To reduce the 

computational cost of optical flow estimation, a fast algorithm based on the Lucas-Kanade paradigm 

was used. Eppenberger et al. [11] combined dense optical flow with depth information to achieve map 

mapping and obstacle avoidance in dynamic scenes. However, traditional methods lack high-level 

understanding of the scene and cannot meet more advanced requirements. As a result, some research 

has started to introduce deep learning techniques. 

Semantic segmentation is performed on the input image stream. After obtaining semantic 

information from the scene, it helps the system better classify dynamic and static features. Yu et al. 
[12] proposed DS-SLAM based on ORB-SLAM2, using SegNet for semantic segmentation of the input 

image. The segmentation results were then combined with an optical flow-based motion consistency 

check to remove dynamic features and retain static features for tracking. Dyna SLAM [13] used 

semantic information extracted by Mask R-CNN to detect prior dynamic objects and employed multi-

view geometry methods to detect non-prior dynamic objects. Although deep learning-based semantic 

segmentation and object detection networks have been evolving, they still struggle to balance speed 

and accuracy, with detection misses or suboptimal segmentation precision being a significant 

challenge. Jin et al. [14] designed a segmentation missing compensation algorithm by detecting the 

difference in masks between consecutive frames. Wang et al. [15] proposed a mask refinement 

compensation algorithm based on a constant-speed model and a depth-based region-growing 

algorithm to improve Yolact’s segmentation accuracy. Wei et al. [16] used a depth-based region-

growing algorithm to optimize point cloud maps and compensate for over-segmentation when 

constructing semantic maps, with the threshold for the region-growing algorithm obtained by random 

sampling within the mask region. Zheng et al. [17] introduced RLD-SLAM, which corrects images 

using an IMU or keyframes when the camera rotates, optimizing the performance of the YOLOv5 

object detection network. 
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3. Framework and Methods 

The visual semantic SLAM algorithm with edge feature point compensation for dynamic scenes 

developed in this paper is an improvement based on the ORB-SLAM2 algorithm, as shown in Figure 

1. The framework primarily includes modules such as semantic segmentation, feature point 

classification, pose estimation, keyframe selection, loop closure detection, Bundle Adjustment (BA) 

optimization, object tracking, and map building. 

 

Figure 1: Framework of Visual Semantic SLAM Algorithm with Edge Feature Point Compensation 

for Dynamic Scenes. 

3.1. Dynamic Feature Detection and Removal 

To accurately detect and identify prior objects in the input images while ensuring good real-time 

performance, we introduced the lightweight instance segmentation network Yolact++ into the 

system's front-end. This model has slightly lower segmentation accuracy compared to networks like 

Mask-RCNN, but it offers better real-time performance. Additionally, the Yolact++ model has been 

trained on the MS COCO dataset [18], which contains 80 categories, including common dynamic 

objects, and achieves a speed of 33.5 fps with a mAP of 34.1 on MS COCO. 

First, Yolact++ preprocesses the input RGB image by resizing it to 550×550 pixels before passing 

it through the backbone network for convolutional processing. The backbone network uses 

ResNet101, specifically from Conv1_x to Conv5_x, with the convolutional layers from Conv3_x to 

Conv5_x replaced by 3×3 deformable convolutions. The processed image is then passed to the 

Feature Pyramid Network (FPN) for convolution and downsampling. After processing by the FPN, 

the data is sent to both the prediction network and the prototype network. The prediction network 

outputs three results: class confidence, location offsets, and mask confidence. Based on this, the Fast 

NMS algorithm is applied to select the optimal ROI (Region of Interest) for each object. The mask 

for each class is obtained through convolution in the Protonet. Finally, the images from NMS and 

Protonet are assembled, cropped, and filtered with a threshold to produce the final output. 

To balance the system's real-time performance, we designed a semantic segmentation thread that 

operates synchronously with the tracking thread. After Yolact++ processes the current image, the 

semantic segmentation thread provides the semantic information of the current frame to the tracking 

thread. Based on the semantic information in the image, we classify objects that are typically in 

motion, such as people, as prior dynamic objects. The feature points in the regions of these objects 

are removed to avoid the introduction of dynamic feature points. For the i-th prior dynamic object, 

the feature points within its mask region form a feature point set 𝐹𝑃𝑜𝑏𝑗𝑒𝑐𝑡
𝑖 , which is treated as a 

dynamic feature point set during pose estimation and excluded from tracking. 

It should be noted that when classifying feature points according to the mask of prior dynamic 

44



 

objects, most prior dynamic objects are non-rigid targets. The masks provided by Yolact++ do not 

perfectly align with these non-rigid targets, leading to some edge feature points of prior dynamic 

objects not being correctly classified. To address this, we have designed an edge feature point 

compensation strategy specifically for prior dynamic objects. 

3.2. Dynamic Mask Edge Feature Point Compensation Strategy Using Depth Information and 

LBP Algorithm 

 

Figure 2: LBP Calculation Process. 

Local Binary Pattern (LBP) is an operator used to describe local features of an image, with 

advantages such as gray-scale invariance and rotational invariance. The original LBP operator is 

defined in a 3×3 neighborhood, where the gray value of the center pixel in the neighborhood serves 

as the threshold, and it is compared with the gray values of the eight neighboring pixels. If the gray 

value of a surrounding pixel is greater than the threshold, the pixel is marked as 1; otherwise, it is 

marked as 0. This process generates an 8-bit binary number. These 8 binary digits are arranged in a 

specific order to form a binary number, which represents the LBP value of the center pixel, as shown 

in Figure 2. 

Based on this, we integrate depth information into the LBP calculation. Typically, depth images 

provided by depth cameras reflect depth information in grayscale values. Therefore, when calculating 

the LBP value, we no longer convert the RGB image to grayscale but instead use the depth image 

directly. In this case, the LBP value of a pixel reflects the depth features around that point. The LBP 

feature that combines depth information is referred to as D-LBP. For the i-th prior dynamic object in 

the image, we randomly select several feature points from the object's 𝐹𝑃𝑜𝑏𝑗𝑒𝑐𝑡
𝑖  and read their depth 

values 𝑋𝑑𝑒𝑝𝑡ℎ in the depth image to calculate their respective D-LBP values 𝑋𝐷−𝐿𝐵𝑃. The outliers are 

removed, thus determining the depth range [𝑎, 𝑏]𝑑𝑒𝑝𝑡ℎ and D-LBP value range [𝑎, 𝑏]𝐷−𝐿𝐵𝑃  of the 

feature points on that object. In practical experiments, we found that to save computational resources 

and avoid interference from outliers, we only sample from 𝐹𝑃𝑜𝑏𝑗𝑒𝑐𝑡
𝑖 , which may not provide an 

accurate  [𝑎, 𝑏]𝑑𝑒𝑝𝑡ℎ and [𝑎, 𝑏]𝐷−𝐿𝐵𝑃. Therefore, in actual applications, we slightly expand the ranges 

[𝑎, 𝑏]𝑑𝑒𝑝𝑡ℎ and [𝑎, 𝑏]𝐷−𝐿𝐵𝑃 to improve accuracy. Yolact++ not only provides the object's mask but 

also the bounding box. Although the accuracy of the mask may not perfectly match the actual object 

region, the bounding box fully encompasses the object. Therefore, the edge feature points of non-

rigid objects will certainly lie within the bounding box. For the feature points within the bounding 

box of the i-th prior dynamic object, if the point is not in  𝐹𝑃𝑜𝑏𝑗𝑒𝑐𝑡
𝑖  and satisfies equation (1), it is 

considered to also belong to the  𝐹𝑃𝑜𝑏𝑗𝑒𝑐𝑡
𝑖 , i.e. 

𝑋𝑑𝑒𝑝𝑡ℎ
𝑖 ∈ [𝑎, 𝑏]𝑑𝑒𝑝𝑡ℎ  𝑎𝑛𝑑 𝑋𝐷−𝐿𝐵𝑃

𝑖 ∈ [𝑎, 𝑏]𝐷−𝐿𝐵𝑃                                 (1) 

45



 

4. Simulation Analysis 

This section presentss the simulation analysis of the algorithm on different datasets. All 

experiments were conducted on a laptop with the following configuration: CPU: i7-13700H, 16GB 

RAM, GPU: NVIDIA RTX4060, and the operating system: Ubuntu 20.04. 

To validate the performance advantages of the proposed algorithm, we used the TUM dataset [19] 

and the BONN dataset [20] to perform a comparative analysis of the simulation results of different 

algorithms. In the simulation, we used Absolute Trajectory Error (ATE/m) and Relative Pose Error 

(RPE/m) as the main metrics to evaluate the accuracy of different algorithms, where RPE is further 

divided into Relative Translation Error (RTE/m) and Relative Rotation Error (RRE/º). The Absolute 

Trajectory Error (ATE) represents the direct difference between the estimated pose and the ground 

truth pose, providing an intuitive reflection of the algorithm's accuracy and the global consistency of 

the trajectory. The Relative Pose Error (RPE) mainly describes the accuracy of the pose difference 

between two frames separated by a fixed time gap (relative to the ground truth pose), which is 

equivalent to directly measuring the odometry error. We then selected Root Mean Square Error 

(RMSE) to evaluate these errors. 

From Figure 3, we could clearly observe that on the TUM fr3/walking_xyz dataset and the BONN 

crowd3 dataset, our algorithm was able to effectively eliminate feature points in the dynamic object 

areas, thus preserving the static feature points in the scene and preventing the introduction of errors. 

 

Figure 3: Dynamic removal effects of different algorithms on the TUM and BONN datasets. The 

first row shows ORB-SLAM2, and the second row shows our algorithm. 

In addition, we selected four dynamic datasets from the TUM dataset: fr3/walking_xyz, 

fr3/walking_half, fr3/walking_rpy, and fr3/walking_static, and quantitatively compared the RMSE of 

ATE and RPE for different algorithms on these four sequences in Tables 1 to 3. It can be observed 

that our algorithm performs similarly to the other algorithms. This is because our algorithm only 

removes dynamic features based on the masks of prior dynamic objects, without considering some 

non-prior dynamic scenarios. However, with the edge feature point compensation algorithm we 

designed, we effectively removed all dynamic feature points generated by prior dynamic objects, 

ensuring that the algorithm performs well. DS-SLAM [12] combines SegNet with motion consistency 

detection methods to determine the motion status of prior dynamic objects, but its mask accuracy is 

poor. DynaSLAM [13] combines Mask R-CNN with multi-view geometry methods, but there are cases 

where fewer usable feature points are available. DN-SLAM [21] uses optical flow to optimize the 

masks obtained from coarse segmentation, but the optimization method of the masks is affected by 

both the coarse segmentation network and the optical flow. DynaTM-SLAM [22] matches the detection 

boxes of the same prior dynamic object and determines whether the object is moving based on the 

similarity within the detection box, but this method is overly reliant on the accuracy of the object 
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detection network. Additionally, compared to ORB-SLAM2, the proposed algorithm showed 

improvement in ATE on the TUM dataset. The degree of improvement is calculated using Equation 

(2), i.e. 

𝜂 =
𝛾−𝜙

𝛾
× 100                                                              (2) 

where, 𝜂 denotes the improvement in RMSE, 𝛾 and 𝜙 denoting the RMSE values for ORB-

SLAM2 and our algorithm, respectively. From Table 1, it can be observed that for these four high-

dynamic scene datasets, the improvement of our algorithm is over 94%. 

Table 1: RMSE comparison of Absolute Trajectory Error (ATE/m) for different algorithms on the 

TUM series datasets. 

Sequences 

ORB-

SLAM2 

DS-

SLAM 

Dyna 

SLAM 

DN-

SLAM 

DynaTM-

SLAM 
Ours 

Improvement 

(%) 

RMSE RMSE RMSE RMSE RMSE RMSE RMSE 

fr3_w_xyz 0.7521 0.0246 0.0155 0.015 0.0149 0.0151 98.00% 

fr3_w_static 0.39 0.0082 0.0069 0.008 0.0067 0.0079 97.97% 

fr3_w_rpy 0.8705 0.4438 0.0378 0.032 0.0287 0.0316 96.37% 

fr3_w_half 0.4563 0.0911 0.0257 0.026 0.0291 0.027 94.08% 

Table 2: RMSE comparison of Relative Trajectory Error (Translation part) (RPE/m) for different 

algorithms on the TUM series datasets. 

Sequences 

ORB-

SLAM2 

DS-

SLAM 

Dyna 

SLAM 

DN-

SLAM 

DynaTM-

SLAM 

Ours 

RMSE RMSE RMSE RMSE RMSE RMSE 

fr3_w_xyz 0.4124 0.0333 0.0254 0.024 0.0191 0.0189 

fr3_w_static 0.2162 0.0102 0.0133 0.011 0.0088 0.0097 

fr3_w_rpy 0.4249 0.1503 0.0415 0.065 0.0356 0.0395 

fr3_w_half 0.355 0.0297 0.0394 0.035 0.0281 0.0289 

Table 3: RMSE comparison of Relative Trajectory Error (Rotation part) (RPE/º) for different 

algorithms on the TUM series datasets. 

Sequences 

ORB-

SLAM2 

DS-

SLAM 

Dyna 

SLAM 

DN-

SLAM 

DynaTM-

SLAM 
Ours 

RMSE RMSE RMSE RMSE RMSE RMSE 

fr3_w_xyz 7.7432 0.8266 0.6252 - 0.6006 0.6202 

fr3_w_static 3.8958 0.269 0.3 - 0.2510 0.2573 

fr3_w_rpy 8.0802 3.0042 0.9047 - 0.8228 0.9469 

fr3_w_half 7.3744 0.8142 0.8933 - 0.7443 0.8151 

Figure 4 demonstrates the effect of our edge feature point compensation strategy. As shown in 

Figure 4(a), although feature points on the moving pedestrian were removed based on the prior 

dynamic object mask, some feature points at the edges of the pedestrian were still retained. After 

incorporating the edge feature point compensation strategy, Figure 4(b) clearly shows that the feature 

points at the edges of the pedestrian were also correctly removed. 

To evaluate the individual contribution of each component in the dynamic removal algorithm, 

Table 4 compared the RMSE of Absolute Trajectory Error (ATE/m) using different methods on the 

TUM high-dynamic scene dataset. Here, "Y" indicates that only Yolact++ was used for image 

segmentation, while "Y+D" indicates the application of the dynamic mask edge feature point 
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compensation strategy that integrates depth information and the LBP algorithm on the Yolact++ 

segmentation results. It can be observed that relying solely on Yolact++, when the segmentation result 

is incomplete, affects the accuracy of the algorithm. The use of the edge feature point compensation 

strategy effectively removes the impact of dynamic object edge points on the algorithm's accuracy. 

 

Figure 4: Demonstration of the Edge Feature Point Compensation Strategy. 

Table 4: Ablation Study Results Comparison of Different Algorithms on the TUM Dataset. 

equences Sequences 
Y Y+D 

RMSE(/m) RMSE(/m) 

fr3/walking_xyz 0.015793 0.015144 

fr3/walking_rpy 0.03124 0.030661 

fr3/walking_half 0.027543 0.026522 

5. Summary and Outlook 

This paper presents a visual semantic vSLAM algorithm for dynamic scenes based on ORB-

SLAM2. By introducing the lightweight semantic segmentation network Yolact++, the algorithm 

provides prior dynamic object masks to remove dynamic features in the scene and retain high-

confidence static feature points. Additionally, to address the issue of incorrect classification of edge 

feature points due to insufficient mask accuracy, a dynamic mask edge feature point compensation 

strategy combining depth information and the LBP algorithm was designed. The feasibility and 

effectiveness of the proposed algorithm were validated through simulation studies with various 

datasets. 

In future work, we will further explore the use of semantic information combined with traditional 

methods to assist in better determining the true motion status in the scene, thus preserving as many 

usable static feature points as possible to improve the system’s accuracy. 
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