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Abstract: Gene Regulatory Networks (GRNs) are central to understanding the mechanisms 

of gene expression regulation, yet their construction is challenged by node heterogeneity 

and complex regulatory relationships. Traditional methods often simplify GRNs into 

homogeneous graphs, overlooking the functional differences between genes and regulatory 

factors. To address this limitation, we propose a novel GRN construction method, HGRN, 

based on Heterogeneous Graph Convolutional Networks. By modeling GRNs as 

heterogeneous graphs comprising two types of nodes—genes and regulatory factors—along 

with multiple regulatory relationships, and incorporating a multi-channel graph convolution 

mechanism, our model can separately learn gene expression features and regulatory factor 

functional features while capturing high-order regulatory dependencies. Experiments on 

non-specific ChIP-seq datasets demonstrate that this approach outperforms traditional 

methods in predicting regulatory relationships, significantly improving the accuracy of 

GRN construction. This study provides a new perspective for the precise inference of gene 

regulatory networks and offers a powerful tool for elucidating disease mechanisms and 

predicting drug targets in biomedical research. 

1. Introduction 

The Gene Regulatory Network (GRN) is a complex system composed of molecules such as 

transcription factors (TFs) and target genes (TGs), along with their interactions [1]. Its core function 

is to coordinate biological processes within cells by regulating gene expression. GRNs precisely 

control the spatiotemporal expression patterns of genes through the binding of transcription factors 

to DNA or other gene products, thereby regulating critical biological processes such as cell 

differentiation, metabolism, and stress responses. This multi-layered regulatory mechanism enables 

cells to adapt to changes in internal and external environments, maintaining homeostasis in 

biological activities [2]. Research on GRNs not only deepens our understanding of the principles of 

life regulation but also holds significant value in applications such as drug target discovery, 

biomarker screening, and the design of personalized therapeutic strategies. 

Algorithms for constructing GRNs can be broadly categorized into supervised and unsupervised 
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methods. Supervised methods leverage known gene-regulator pairs as labels to train models for 

predicting novel regulatory relationships, with common approaches including Support Vector 

Machines (SVM) and neural networks. For instance, Mao et al. proposed GNNLink, a novel 

framework based on Graph Neural Networks (GNNs), for predicting GRNs from single-cell RNA 

sequencing (scRNA-seq) data [3]. GNNLink first preprocesses scRNA-seq data and then employs 

Graph Convolutional Networks (GCNs) as an interaction graph encoder to extract gene features and 

model dependencies between nodes. By transforming the GRN inference problem into a graph link 

prediction task using matrix completion, GNNLink predicts potential regulatory relationships 

between genes based on known GRNs and scRNA-seq data. 

In contrast, unsupervised methods do not rely on prior knowledge and primarily infer regulatory 

relationships by analyzing the statistical properties or topological structures of gene expression data. 

For example, GENIE3 [4], a regression-based method using random forests, was initially developed 

for bulk RNA sequencing data but has also been applied to scRNA-seq data. GENIE3 constructs 

multiple regression trees to predict the expression levels of each gene and infers regulatory 

relationships based on the importance of regulators in these predictions. Both approaches have their 

strengths: supervised methods offer higher accuracy but depend on labeled data, while unsupervised 

methods are more suitable for exploratory analysis of large-scale datasets. 

Traditional methods often simplify GRNs into homogeneous graphs, assuming that all nodes 

(genes, transcription factors) share identical attributes and functions, thereby overlooking their 

inherent differences in biological roles and regulatory mechanisms. This simplification limits the 

model's ability to represent complex regulatory relationships, particularly in distinguishing between 

different types of regulatory interactions such as activation and repression, as well as capturing 

higher-order topological structures like feedback loops and regulatory modules. To address these 

limitations, this paper proposes HGRN, a novel GRN construction method based on Heterogeneous 

Graph Convolutional Networks (HGCN). By modeling GRNs as heterogeneous graphs comprising 

two types of nodes—genes and regulatory factors—along with multiple regulatory relationships, 

and incorporating a multi-channel graph convolution mechanism, the model can separately learn 

gene expression features and regulatory factor functional features while explicitly modeling 

different types of regulatory interactions. This approach not only overcomes the limitations of 

traditional homogeneous graph assumptions but also captures long-range regulatory dependencies 

through high-order neighborhood aggregation, providing a new research direction for the precise 

inference and functional analysis of GRNs. 

2. Materials and methods 

2.1. Dataset 

In this study, experimental validation was conducted on a non-specific ChIP-seq dataset [5], 

specifically utilizing the TFs +1000 dataset as the benchmark. This dataset integrates high-

throughput experimental data such as ChIP-seq and RNA-seq, providing potential regulatory 

relationships between genes and transcription factors, making it a commonly used benchmark for 

evaluating GRN construction methods. Each sample in the dataset includes a gene expression 

matrix, transcription factor binding site information, and known transcription factor-gene regulatory 

pairs, offering rich node features and edge relationship information for the construction of 

heterogeneous graphs. 

2.2. The Construction of Heterogeneous Graphs for Gene Regulatory Networks 

To more accurately model the complex regulatory relationships within GRN, this study 
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constructs the GRN as a heterogeneous graph, which includes two types of nodes—TGs and TFs—
as well as multiple types of edge relationships. The TF-TG relationship represents the regulatory 

interaction between a transcription factor and its target gene, while the TF-TF relationship captures 

interactions between transcription factors, such as protein-protein interactions or cooperative 

regulatory relationships. Based on these definitions of nodes and edges, the GRN is modeled as a 

heterogeneous graph G=(V, E, T), where V denotes the set of nodes, encompassing both gene nodes 

and transcription factor nodes; E represents the set of edges, including TF-TG and TF-TF 

relationships; and T signifies the set of node types and edge types, which are used to distinguish 

between different categories of nodes and edges. By constructing the heterogeneous graph, the 

proposed method explicitly models the heterogeneity between genes and transcription factors, 

enabling a more nuanced representation of the regulatory network. 

2.3. Heterogeneous Graph Convolutional Network 

HGRN is a deep learning model based on a multi-channel heterogeneous graph convolutional 

network, designed to learn feature representations of genes and transcription factors within gene 

regulatory networks. We perform graph convolution operations on different types of edges 

separately and aggregate the convolution results across various edge types through summation. The 

core idea of GCN is to update node representations by aggregating features from a node and its 

neighbors. For a given regulatory relationship, the node feature update formula for the l-th layer of 

GCN is as follows: 
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are the normalized degree coefficients of nodes i and j, 

respectively,
( )lW is a learnable weight matrix, and is a non-linear activation function. 

3. Results 

To comprehensively evaluate the classification performance of the model, this study employs 

five widely used evaluation metrics: Accuracy, Precision, F1-score, Area Under the ROC Curve 

(AUROC), and Area Under the Precision-Recall Curve (AUPRC). Among these, Accuracy 

measures the proportion of correctly predicted samples out of the total samples and is calculated as 

follows: 

 
Accuracy
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  (2) 

Here, TP, TN, FP, and FN represent true positives, true negatives, false positives, and false 

negatives, respectively. However, in datasets with class imbalance, accuracy may not fully capture 

the model's performance. Therefore, this study further introduces Precision and Recall: Precision 

measures the proportion of correctly predicted positive samples among all samples predicted as 

positive, and its calculation formula is as follows: 
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To provide a balanced assessment of both Precision and Recall, this study employs the F1-score, 

which is calculated as follows: 
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The F1-score is particularly important in scenarios with imbalanced class distributions, as it 

effectively balances the trade-off between Precision and Recall. 

Additionally, this study utilizes AUROC and AUPRC for threshold-independent performance 

evaluation. AUROC reflects the model's ability to distinguish between positive and negative 

samples across different classification thresholds, with values closer to 1 indicating better 

classification performance. However, in cases of severe class imbalance, the PR curve provides 

more meaningful insights than the ROC curve. Therefore, this study further incorporates AUPRC. 

By comprehensively considering the variations in Precision and Recall, AUPRC offers a more 

accurate reflection of the model's performance when positive samples are scarce. 

In this study, 5-fold cross-validation was employed to evaluate the model's performance. 

Specifically, the dataset was randomly divided into 5 subsets of equal size. In each iteration, one 

subset was used as the validation set, while the remaining 4 subsets served as the training set. This 

process was repeated 5 times, and the average results from these iterations were taken as the final 

performance metrics. This approach not only maximizes the utilization of limited data but also 

minimizes evaluation bias caused by data partitioning variations. During the training process, the 

number of epochs was set to 100 to ensure the model fully learned the data features. The results on 

the non-specific dataset are presented in Table 1. 

Table 1: Results on the Non-Specific ChIP-seq Dataset 

 AUROC Accuracy Precision F1 AUPRC 

hESC 0.8305 0.8305 0.7469 0.8551 0.8735 

hHEP 0.8382 0.8391 0.7592 0.8608 0.8777 

mDC 0.9731 0.9285 0.9257 0.9279 0.9664 

mESC 0.9541 0.9096 0.879 0.9133 0.9357 

mHSC-E 0.8998 0.8998 0.8334 0.9091 0.9167 

mHSC-GM 0.9266 0.9267 0.8725 0.9318 0.9361 

mHSC-L 0.9587 0.9589 0.9244 0.9606 0.9619 

Table 2: Comparison of HGRN with Other Models 

 hESC hHEP mDC mESC mHSC-E mHSC-GM mHSC-L 

HGRN 0.83 0.83 0.97 0.95 0.89 0.92 0.95 

GENELink 0.69 0.70 0.78 0.77 0.75 0.77 0.67 

GNE 0.63 0.62 0.67 0.69 0.56 0.62 0.59 

DeepSEM 0.53 0.55 0.56 0.56 0.59 0.61 0.60 

PCC 0.51 0.53 0.49 0.57 0.59 0.66 0.62 

MI 0.48 0.46 0.48 0.54 0.64 0.74 0.65 

SCODE 0.51 0.51 0.49 0.52 0.55 0.57 0.56 

GRNBOOST2 0.50 0.49 0.52 0.55 0.64 0.70 0.64 

GENIE3 0.48 0.47 0.52 0.56 0.63 0.70 0.65 
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To comprehensively evaluate the performance of our model, we directly compared our results 

with the method proposed by Chen et al [6]. The detailed results are presented in Table 2. The 

findings demonstrate that HGRN outperforms other models across all datasets. The strength of 

HGRN lies in its ability to effectively learn features under different regulatory types through 

heterogeneous graph convolutional networks. By leveraging the heterogeneous graph structure, the 

method can more thoroughly extract features from diverse regulatory relationships, playing a 

pivotal role in enhancing prediction accuracy. 

4. Conclusion  

This study proposes HGRN, a GRN inference method based on Heterogeneous Graph 

Convolutional Networks (HGCN). By modeling GRNs as heterogeneous graphs comprising diverse 

node types and multiple edge types, our approach effectively captures the inherent heterogeneity 

and complex interactions within biological systems. The multi-channel graph convolution 

mechanism enables the model to learn node-specific features and higher-order dependencies, 

overcoming the limitations of traditional homogeneous graph-based methods. Experimental results 

on non-specific ChIP-seq datasets demonstrate the superior performance of this method in 

predicting regulatory relationships, highlighting its potential for GRN inference. Future research 

could explore integrating additional biological prior knowledge and applying this framework to 

construct disease-specific GRNs, thereby providing deeper insights into gene regulation and its 

applications in biomedical research. 
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