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Abstract: This study aims to explore the production decision-making problem based on 

multi-stage stochastic dynamic programming to cope with the many uncertainties faced in 

modern production management. Firstly, the Bayesian sequential probability ratio test 

model is built to solve the problem of sampling and testing when purchasing spare parts, 

which effectively reduces the testing cost and improves the reliability of decision-making. 

Then, a multi-stage stochastic dynamic planning decision-making model is constructed, 

which integrally considers multiple stages and various cost factors in the production 

process to maximise the profit of the enterprise. The results show that the model can 

effectively deal with the stochastic demand and uncertainty in the production process and 

provide an optimal production decision-making solution for the enterprise. However, the 

solving efficiency of the model and its ability to handle large-scale data still need to be 

improved. Future research will be devoted to optimising the algorithm and expanding the 

application scope of the model to better adapt to the complex and changing production 

environment. 

1. Introduction 

In modern production management, production decisions are faced with many uncertainties, such 

as demand fluctuations, production capacity constraints, and changes in the market environment. 

These uncertainties make it difficult for traditional static optimisation methods to effectively cope 

with the dynamic changes in the production process [9], and therefore, optimisation methods based 

on dynamic planning have become an important tool to cope with such problems. Dynamic 

planning is able to deal with the time dimension and stochasticity in the decision-making process by 

means of staged decision-making, thus helping enterprises to make optimal production decisions in 

uncertain environments. 

Multi-stage stochastic dynamic programming (MSDP) further considers the interactions of 

different time phases in the production process, and can effectively cope with stochastic demand 

and uncertainty in the production process. In recent years, MSDP has been widely used in the fields 

of production scheduling and inventory management [8], showing its potential in complex 
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production environments. However, existing studies still face challenges such as solution efficiency 

and model complexity, therefore, this study aims to explore the production decision-making 

problem based on multi-stage stochastic dynamic programming and propose optimisation schemes 

to improve the accuracy of decision-making and implementation. 

2. Literature Review 

Since the 90's, the technical barriers between enterprises are getting lower and lower, and the 

position of cost in competition is getting more and more important. With the high speed 

development of information technology and the application of advanced manufacturing methods, 

the research, application and development of cost variance control methods have also shown a 

diversity and cross-trend [1]. The problem of cost variance control is also manifested in the 

application of multidisciplinary and multi-methods, such as fuzzy set theory [2], DSS technology [3] 

and neural network models [4], and a variety of intelligent methods and statistical variance control 

methods are combined to jointly carry out analysis and decision-making. The commonality of these 

methods is to seek the approximate optimal solution or satisfactory solution to meet the actual needs 

of the optimisation problem of complex manufacturing systems, rather than the exact optimal 

solution, which is a solution to the optimisation problem of complex manufacturing systems with 

application prospects [5], but these intelligent methods also have weaknesses such as slow 

convergence, easy to fall into the local optimal solution and difficult to handle the complex 

constraints, which require further in-depth research. 

Since the twenty-first century, science and technology, especially information technology, have 

undergone rapid development, the traditional product structure has changed dramatically, and a high 

degree of automation of production based on high technology and a variety of advanced 

manufacturing methods oriented to customer needs have been popularised [6,7]. Difficulties in 

applying statistical methods to real cost environments have been resolved gradually through the use 

of advanced computer information technology by means of system integration, intelligence and 

dynamics [7]. Therefore, the focus of this thesis is on the fact that the statistical environment for 

cost variance has changed today and many old methods have taken on new relevance in the new 

environment [10]. 

This paper combines the Bayesian theory of this type of statistical method with the dynamic 

programming method and uses MATLAB software to assist in calculations based on the actual cost 

environment for process analysis and decision making of cost variance data, and empirical analysis 

shows the feasibility and effectiveness of this method. 

3. Sampling and Testing Issues 

When enterprises purchase spare parts, in order to ensure product quality, they need to judge 

whether the defective rate of spare parts exceeds the nominal value promised by suppliers through 

sampling and testing. According to the requirements of enterprises, it is necessary to design a 

sampling and testing programme with as few tests as possible to determine whether the defective 

rate exceeds the standard or passes the test at 95% and 90% confidence level respectively. 

Enterprises need to ensure that the spare parts they purchase meet quality standards to ensure that 

the finished product is acceptable. The two main challenges faced by companies in the inspection 

process are as follows: 

Uncertainty of the defective rate: the supplier claims that the defective rate of spare parts does 

not exceed the nominal value of 10%, but the actual defective rate is unknown, and the enterprise 

hopes to determine whether the defective rate is in accordance with the standard through sampling 

and testing. 
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Limitations on testing costs: Companies want to make reliable decisions with as few tests as 

possible and avoid unnecessary spending on testing costs. 

In order to effectively solve the problem of determining the defective rate of enterprises in 

sampling and testing, the Bayesian Sequential Probability Ratio Test (SPRT) model has been 

developed. Bayesian inference provides a dynamic estimate of the defective rate, while the 

sequential probability ratio test (SPRT) utilises this estimate during the inspection process to make 

real-time acceptance or rejection decisions. This combination reduces unnecessary inspection 

samples. Enterprises can adjust the prior distribution of Bayesian inference as well as the error 

probability threshold of SPRT according to the needs of actual production, so as to cope with 

different production and inspection needs. The testing steps are as follows: 

3.1 Assumptions 

During the sampling process, the firm needs to make a dynamic decision based on the test results: 

whether to continue sampling, accept the batch of spare parts, or reject the batch of spare parts. Let 

p be the actual defective rate, which is claimed by the supplier 0 10%p p 
, so the following two 

assumptions are established: 

{
H0: p ≤ p0, Match Condition
H1: p > p0, Mismatch Condition  

                    (1) 

where p0 is the nominal value of the supplier's claimed defective rate. H0 indicates that the 

supplier's claimed defective rate does not exceed the nominal value; H1 indicates that the defective 

rate provided by the supplier exceeds the nominal value. 

Next, the sampling data is used to determine whether or not to accept the batch of spare parts. In 

case of uncertainty about the defective rate, the defective rate estimate is first updated by Bayesian 

inference and then combined with SPRT for decision making. 

3.2 Bayesian Inference Modelling 

In the process of using Bayesian inference, it can be assumed that the substandard rate of spare 

parts p obeys the Beta distribution, as the prior information on the unknown substandard rate 

[1].The Beta distribution is a commonly used distribution for dealing with proportional data such as 

substandard rates, and the conjugacy with the binomial distribution makes Bayesian updating 

calculations easier. The prior distribution is assumed to be: 

 0 0,p B  
                                    (2) 

0  and 0  denote firms' beliefs about low and high defect rates, respectively. 

As the sample testing proceeds, the number of substandard products in the n samples is observed 

to be X. According to the update rule of Bayesian inference, the posterior distribution of the 

substandard rate p is: 

0 0 ),(p X B X n X    
                            (3) 

We consider a number of different defective rate scenarios, covering situations ranging from 

below to above nominal values, in order to fully evaluate the system's strategy under different 

quality batches: 

Low Defective Rate (p < p0): 
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(1) Actual reject rate: Setting p=0.08, p=0.06 and p=0.04 is used to simulate a scenario where the 

actual reject rate is less than 10% of the nominal value. 

(2) Prior distribution: for the low defective rate scenario, the more conservative Bayesian prior 

distribution is used. Setting α0=1 and β0=9 indicates that companies have a strong belief in lower 

defective rates and tend to receive batches with defective rates below 10 per cent. 

High Defective Rate ( p > p0 ): 

(1) Actual reject rate: Setting p=0.12, p=0.14 and p=0.16 is used to simulate batches with reject 

rates exceeding 10 per cent. 

(2) Prior distribution: for the high defective rate scenario, the use of a stricter prior distribution 

α0 = 3 and β0 = 7 indicates that companies are cautious about high defective rates and are more 

inclined to reject high defective rate batches. 

3.3 Sequential Probability Ratio Test (SPRT) 

In order to dynamically judge whether to continue sampling or make acceptance/rejection 

decisions, the sequential probability ratio test is introduced. SPRT calculates the log-likelihood ratio 

[2] (LLR) after each sampling to judge the acceptance or rejection of spare parts and makes 

judgements based on the LLR values with set boundaries to ensure that the conclusion is reached in 

fewer number of tests, with the following formula: 

 
 

1

0

log
P X H

LLR
P X H

 
  

 
                                  (4) 

Where,
 0P X H

 and
 1P X H

 denote the probability of the number X of inferior products 

under 0H
 and 1H

 respectively. Based on the covariance of Beta and Binomial distributions in 

the Bayesian inference model, the probability can be expressed as: 
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(5) 

Where n is the number of samples and p1 is an assumed value set greater than the maximum 

permissible value of the product defect rate. Based on the calculation of the log-likelihood ratio, the 

rules for companies to make acceptance or rejection decisions are as follows: 

If LLR>logA, the defective rate is considered to be significantly higher than p0 and the batch of 

spare parts is rejected; 

If LLR < logB, the defective rate is considered to be no more than p0 and the batch of spare parts 

is accepted; 

If B < LLR < A, continue sampling until a definitive judgement is made. 

Where A and B are the upper and lower boundaries for decision making, the boundary values 

will be used to determine whether the log-likelihood ratio falls in the interval of acceptance, 

rejection, or continued detection to help companies make real-time decisions. The boundary values 

A and B are related to the probability of error α and β of detection with the following 

equations: 
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1
,

1
A B

 

 


 

                                 (6) 

Where   and 


 denote the tolerance of the enterprise incorrectly rejecting conforming 

batches, and the tolerance of the enterprise incorrectly accepting non-conforming batches, 

respectively. It is necessary to further dynamically adjust the parameters of the prior distribution to 

respond more flexibly to changes in the rate of defective products, choose more stringent rejection 

criteria, and further lower the thresholds, with the adjustment of   and 


 , and repeat the above 

steps for the simulation experiments. 

With a low defect rate (acceptance)
0.20, 0.25  

 at 95% confidence, the system is more 

likely to accept qualified batches; 

High defect rate (rejections) at 90% confidence
0.005, 0.02  

 , the system rejects failed 

batches more quickly. 

Setting the number of parametric simulations to 1000 and the maximum sample size to 100, the 

above model was solved using Matlab and the following results were obtained: 

In scenario 1, with a defective rate of >10 per cent: 

Table 1 Proportion of Acceptance at High Substandard Rates with Mean Sample Size 

Actual Defect Rate Acceptance Rate Average Sample Size 

0.12 

0.14 

0.00 

0.00 

10.00 

9.00 

0.16 0.00 8.00 

In Scenario 2, the defective rate is <10 per cent: 

Table 2 Proportion of Acceptance at Low Substandard Rates with Mean Sample Size 

Actual Defect Rate Acceptance Rate Average Sample Size 

0.08 

0.06 

0.92 

0.93 

1.00 

1.00 

0.04 0.95 1.00 

Analysing Tables 1 and 2, it can be seen that with an overall sample size of 100, Scenario 1 

would require a sample size of between 8 and 10 to reject the spare parts with 95 per cent 

confidence; Scenario 2 would require a sample size of 1 to accept the spare parts with 90 per cent 

confidence. 

4. Sampling and Testing Issues 

During the production process, companies need to make decisions about the quality of parts and 

finished products, including whether to test parts, whether to test finished products, and how to deal 

with substandard products. These decisions affect the cost, profitability, and quality management of 

the product. 

4.1 Data Pre-processing 

Firstly, we converted the data into an easy-to-use form and structured it so that it could be 

directly input into the model for calculation, ensuring that the units were all in dollars per piece. 

The processing steps are as follows: 

The defective rate, purchase unit price, inspection cost, assembly cost, etc. for each situation are 

converted into matrix or vector form to facilitate multi-scenario simulation. 
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Standardised treatment of all types of cost items, including dismantling costs, exchange losses, 

procurement costs of spare parts, testing costs, assembly costs in each case, to ensure uniformity of 

inputs 

4.2 Multi-stage Stochastic Dynamic Programming (SDP) based Decision-making Modelling 

A firm's specific production process contains multiple stages, each with different decisions and 

states. These decisions are made in multiple stages, and each decision not only affects the cost and 

revenue of the current stage, but also affects the state and decisions of the subsequent stages, and it 

is necessary to consider possible future states at each stage to make the optimal decisions in 

production and quality control to maximise the overall profit [3]. The steps to build a multi-stage 

stochastic dynamic planning model are as follows: 

Step1: Define Decision Variables 

Decision variables are defined for each stage of the production process of the enterprise (where 1 

means detection and 0 means no detection): 

{
 

 
x1 ∈ {0,1}: Whether to detect the spare parts t,

x2 ∈ {0,1}: Whether to detect spare parts 2,

yf ∈ {0,1}: Whether the finished product is tested,

z ∈ {0,1}: Whether to dismantle the unqualified finished product.

(7) 

Step2: Establish the Objective Function 

The profit of a business consists of three components: sales revenue, total production costs and 

exchange losses. The goal is to maximise profit by adjusting the inspection and dismantling strategy. 

Profit = Sales Revenue - Total Cost of Production - Exchange Losses. Each component is analysed 

below: 

Sales revenue (R).          
( ), (1, 2, ,6)56 1 fiR Q p i 

           (8) 

Where, fip
 is the rate of defective finished goods after assembly and Q is the production 

capacity, which indicates the maximum number of finished goods that a firm can produce per cycle. 

Total cost of production ( tC
).  

1 1 1 2 2 2( ) ( ) (1,2, ,6),t i i i i ai f fiC C iC x D Q x D Q C Q y D Q      
           (9) 

Among them, this part of the cost includes the cost of purchasing spare parts, the cost of testing 

spare parts, the cost of assembling the finished product, and the cost of testing the finished product:

1iC
and 2iC

represent the unit price of purchasing each spare part 1 and spare part 2, respectively; 1x

and 2x
represent the decision variables of testing spare parts 1 and 2, respectively; 1iD

 and 2iD
 

represent the cost of testing spare parts 1 and 2, respectively; aiC
 is the cost of assembling the 

finished product; and fy
 is the decision variable of testing the finished product. 

Loss on exchange ( lL
)               

(1,2, ,6),l i fi iL L p Q 

        
(10) 

Where iL
 represents the replacement loss of non-conforming finished products under different 

scenarios, the replacement loss is proportional to the number of non-conforming products and each 

non-conforming product will incur an additional replacement cost. 
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Cost of dismantling ( dC
)             

), (1,2, ,6D di fi iC zC p Q 
       (11) 

where z represents the decision variable of whether or not to dismantle the nonconforming 

finished product and diC
is the dismantling cost of the nonconforming finished product. If 

disassembly is chosen, additional disassembly costs are incurred. 

The above process is analysed for the calculation of the finished product defective rate pf. The 

defective rate of the assembled finished product is determined by a combination of the defective 

rates of part 1, part 2 and the defective rate of the finished product itself. The inspection decision 

affects the calculation of the defective rate. The formula for calculating the defective rate for the 

finished product is derived as follows: 

1 1 2 21 1 1 1 )1( ( ))( ( ))(1F fip p x p x p      
                 (12) 

1iC
, 2iC

, 1iD
, 2iD

, aiC
, diC

, iL
, fip

 in Table 1 yield different values depending on the 

situation. Solving the above equation by association yields maximised profit with an objective 

function: 

max a t l DP R C L C   
                           (13) 

Step3: Finding Constraints 

The constraints on the model are as follows: 

{
x1 ∈ {0,1}, x2 ∈ {0,1}, yf ∈ {0,1}, z ∈ {0,1}

Q = Production capacity of enterprises     
    (14) 

Step4: Introducing Riskiness (additional conditions) 

On the basis of the above, firms are not only concerned with maximising profits but also 

consider potential risks when making inspection and dismantling decisions, and this risk awareness 

or decision-making preference can be described by the introduction of a risk control model or the 

psychological expectations of the decision maker. The above model is adapted as follows: 

Risk modelling of transfer losses 

Assuming that firms are somewhat risk averse to fluctuations in defective rates or swapping 

losses, firms may be more concerned about swapping losses from high defective rates, so the risk 

can be defined and weighted as swapping losses: 

(1,2, ,6)(1 ) ,T i fiL Q iL p  
                     (15) 

The adjusted objective function is: 

max a t T DP R C L C   
                        (16) 

Firms will not only consider normal swapping losses, but will also amplify them based on the 

level of risk aversion  . A high level of   indicates that a company is more sensitive to the 

potential risk of defective products and will make decisions that favour increased testing or 

dismantling to reduce potential losses. 

Risk modelling of finished product defect rates 

Firms may also be very sensitive to the rate of defective products and do not want too many 

defective products to enter the market. We can introduce a risk-control objective on the defective 

rate in the model: 
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2 , (1,2, ,6)a t fiP R C p i  
                         (17) 

Where
2

fip
 represents the square of the defective rate in different cases, this is done to highlight 

the negative impact on the firm when the defective rate is large, when there is no need to introduce 

the disassembly part directly in the defective rate squared term. Finding the above constraints, 

including risk constraints (defective rate constraints, swap loss constraints), in addition to adjusting 

through the objective function, can also be used to limit the enterprise's decision-making through 

the introduction of risk constraints, the constraints are as follows: 

max

max

fi

l

p p

L L




                                   (18) 

In this case, the firm sets a maximum acceptable defective rate maxp
 and a threshold maxL

 that it 

wishes to ensure that swap losses do not exceed. With this constraint, the firm is not only able to 

avoid excessive defective rates, even though the optimal model may result in a profit-maximising 

solution at higher defective rates, but also limits the losses at high defective rates and avoids 

excessive switching costs. 

On the basis of the above, considering the important condition of cyclicity, in each round of 

cyclic production, the firm adjusts its strategy for the next round based on the decisions and results 

of the previous round, in order to expect an optimal overall profit performance. The firm's goal is to 

ultimately maximise the total expected profit for the entire production cycle by adjusting the 

decisions in each round in multiple cycles of production and updating the maximum profit objective 

function. It can be expressed as: 

1

, ( 1,2, , )
T

t

t a

t

P P t T


 
                             (19) 

2

1 2max ( ) (56 1 (1 ) ( 1,2, ,6)) ,t t t t t

fi t i i fia f

t Q p C L pP Q p i     
        (20) 

Where 
t

aP
 represents the adjusted profit in round t. By the same description above the cyclic 

conditions are introduced: 1

tx
, 2

tx
, 

t

fy
, 

tz , which represent the decision variables at each stage 

in round t. None of the conditions change. Next, the defective rate and total cost will change, which 

are 
t

fip
 and 

t

tC
, respectively. 

In each round of production, the firm adjusts the decision variables to maximise overall 

profitability based on the previous round's production performance and current market conditions. 

The entire optimisation process can be carried out in the following steps: 

Set the initial decision variables, defective rate, and set the number of production according to 

Table 1; 

Calculate the total cost, defective rate, sales revenue, swap loss and adjusted profit for each 

round. 

Testing and dismantling decisions are adjusted based on adjusted profit and risk control factors. 

Record the profit and defective rate for each round as a reference for the next round of 

production. 

Terminate the loop when profits converge or the maximum number of loops is reached. 
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By setting up a multi-stage stochastic dynamic programming and discussing the values of these 

decision variables while taking into account all the scenarios that arise, the enterprise can decide 

whether or not to test part 1, part 2, the finished product, and whether or not to dismantle the 

non-conforming finished product under each stage. These decisions affect the calculation of all 

types of costs in the production process, which in turn affects the final profit of the firm. 

4.2 Multi-stage Stochastic Dynamic Programming (SDP) based Decision-making Modelling 

Based on the model developed above, the initial decision variables, risk aversion coefficients, 

cyclic conditions, maximum number of cycles, and tolerances need to be set first, and the results are 

as follows: 

{
 
 

 
 
Production capacity Q =  1000

Risk aversion coefficient λ
1
(enterprise sensitivity to switching losses) = 1.5

Risk aversion coefficient λ
2
(sensitivity of enterprises to fluctuation) = 1.0

Maximum number of cycles max_loops = 50 
Tolerance = 0.01

   (21) 

Cyclic production process steps (same logic as Figure 1): 

 

Figure 1. Cyclic production process steps 

Step 1: Initialise the parameters including production capacity Q, swap loss factor 1 , reject rate 

factor 2  and initial decision history; 

Step 2: Enter the loop and iterate through the production rounds 

Step 3: Iterate through the decision combinations, detecting part 1, part 2, and the finished 

product, and deciding whether or not to disassemble the nonconforming product. 

Step 4: Calculate the profit, calculate the profit for each round based on each decision and update 

the optimal decision. 

Step 5: Check the convergence condition and terminate the loop if the change in profit is less 

than the set threshold. 

Step 6: Output results, output the optimal decision and final profit. 

Combined with the data in Table 1, the above model was solved using Matlab to derive the 

decision-making options and the corresponding bases in different cases, and the results are as 

shown in Table 3: 
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Table 3 Table of Decision-making Options and Corresponding bases in Different Scenarios 

Gauge Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Situation 6 

Decision-making 

Programme 
[0,0,1,1] [0,0,1,1] [0,0,1,1] [1,1,1,1] [0,1,1,1] [0,1,0,0] 

Margins 23075.90 21535.20 20799.50 20900.00 23385.00 23702.11 

Defective Rate 2.71 per cent 4.88 per cent 2.71 per cent 2.00 per cent 1.90 per cent 1.43 per cent 

Total Costs 31000.00 31000.00 31650.40 32480.00 31076.00 31142.62 

Sales Revenue 54482.40 53267.20 54482.40 54880.00 54936.00 55201.30 

Replacement and 

Recovery Costs 
162.60 292.80 813.00 600.00 190.00 142.63 

Note: Total costs, sales revenue, replacement and recovery costs, and profit are shown in dollars in the table. 

5. Summary  

In this study, the production decision-making problem is discussed in depth through the 

establishment of a multi-stage stochastic dynamic planning model, which provides an optimal 

decision-making solution for enterprises in complex and changing production environments. The 

results show that the model can effectively deal with the uncertainties in the production process and 

improve the accuracy and implementation of decision-making. However, there are still some 

limitations in the current study, such as the solving efficiency of the model needs to be further 

improved, and there may be some computational bottlenecks when dealing with large-scale 

production data. Future research will be devoted to optimising the model's algorithm to enhance its 

applicability and efficiency in large-scale production scenarios. In addition, more complex factors 

in actual production, such as supply chain fluctuations and equipment failures, will be explored to 

be included in the model to further expand the application scope of the model and provide more 

comprehensive and accurate production decision support for enterprises. 
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