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Abstract: Time-course single-cell RNA sequencing (scRNA-seq) data reflect gene 

expression changes over time, offering a valuable resource for exploring dynamic gene 

interactions and building dynamic gene regulatory networks (GRNs). However, most 

existing methods are typically designed for bulk RNA sequencing (bulk RNA-seq) data and 

cannot be directly applied to time-course scRNA-seq data. Addressing this issue, we present 

CGGRN, an approach based on convolutional gated recurrent unit (GRU) for inferring GRNs. 

CGGRN transforms time-course data into images, including raw pairwise gene images and 

neighborhood images, and aggregates them with time point information into a four-

dimensional tensor. The tensor is then fed into the convolutional GRU to capture features for 

each gene pair and reconstruct the GRN. We conducted trials on four time-course scRNA-

seq datasets using CGGRN, and the outcomes show that CGGRN surpasses existing models 

in constructing GRN. 

1. Introduction   

Gene regulatory networks are among the most important and common biological networks in 

biology. Their core function is to capture and describe the various complex processes that influence 

gene expression, thereby affecting the physiological state and behavior patterns of cells. A major 

objective of systems biology is the accurate depiction of these intracellular regulatory associations, 

effectively incorporating genes, transcription factors, and their interplays into a dynamic network 

architecture. By reconstructing gene regulatory networks, scientists can gain deeper insights into the 

fundamental mechanisms of gene function, further advancing the understanding of cellular functions 

and the study of complex disease mechanisms [1, 2]. 

High-throughput sequencing technologies and efficient cell separation techniques have laid a solid 

foundation for modern single-cell sequencing platforms. RNA sequencing (RNA-seq) technology has 

made in-depth studies of the entire transcriptome possible, driving many important biological 

discoveries and has become one of the widely used technologies in biomedical research. Common 

sequencing data are mainly categorized into bulk RNA-seq data and scRNA-seq data. Bulk RNA-seq 

technology performs high-throughput sequencing of RNA from millions of cells, providing the 

average expression level of each gene [3, 4], making it suitable for revealing the overall trends in 

gene expression. However, the limitation of bulk sequencing lies in its inability to accurately quantify 
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the RNA content of low-abundance cells and potential bias in results when heterogeneous cell 

populations are present in the sample. 

In contrast, scRNA-seq technology allows for the isolation of individual cells, transcript capture, 

and library construction for sequencing, enabling unprecedented resolution for analyzing the basic 

biological characteristics of cell populations and biological systems. It provides more precise, cell-

level information. The application of this technology has enabled researchers to unravel the 

heterogeneity and dynamic changes in gene expression at the single-cell level, significantly 

improving the precision and detail of GRN construction. By combining advanced computational 

methods, such as deep learning, the inference and analysis of GRNs have become more efficient and 

accurate, providing powerful support for uncovering the complex mysteries of life. 

In recent years, scRNA-seq technology has made considerable advancements, allowing for 

unbiased, reproducible, high-resolution, and high-throughput transcriptomic analysis of individual 

cells [5-7]. Unlike conventional bulk RNA sequencing, single-cell RNA sequencing captures gene 

activity at the resolution of individual cells, enabling the identification of transcriptomic features 

specific to various cell types in biological tissues. This technology provides a comprehensive view of 

gene expression heterogeneity between cells and facilitates the reconstruction of cell type-specific 

GRNs [8-11]. 

With the development of deep learning technology, more and more GRN reconstruction methods 

have emerged, particularly for single-cell sequencing data. However, many existing methods are 

mainly designed for static data, which makes them limited when handling time-course data and 

difficult to capture time features. As a result, some researchers have attempted to use pseudo-time 

methods to infer GRNs from scRNA-seq data, but these methods are not suitable for true time-course 

data and fail to fully consider the dependencies and dynamic changes between time points. Therefore, 

how to design methods capable of handling time-course data and effectively capturing the dynamic 

changes of gene regulatory networks remains a challenging problem. 

Researchers can use deep learning techniques to interpret data from complex distributions or 

interaction patterns, enabling the effective reconstruction of GRNs from single-cell time-course data. 

For example, the dynGENIE3 [12] method utilizes Ordinary Differential Equations (ODE) to describe 

dynamic changes in gene expression. The TDL [13] method proposed by Yuan et al. converts the data 

into image form and aggregates it with time points into a three-dimensional tensor as the model input. 

However, this method does not consider neighborhood context information, which may lead to false 

positives. dynDeepDRIM [14], while converting gene pairs into image form, also generates 

neighborhood images of gene pairs and inputs them along with time points into CNNs to predict 

interactions between gene pairs. However, this method requires considerable computational resources. 

Inspired by the above works, we propose a gene regulatory network method based on 

convolutional GRU. Initially, the data is transformed into images, including raw gene pair images and 

neighborhood images, which are then combined with time points into a four-dimensional tensor. This 

tensor is subsequently fed into a convolutional GRU to capture the time and spatial characteristics of 

the data and infer the gene regulatory network. The key contributions of this method are: 

(1) The data is converted into images, and a convolutional GRU model is employed to learn the 

time and spatial features, followed by the inference of the GRN. 

(2) CGGRN is compared with other existing methods across four distinct time-course datasets, 

and experimental results demonstrate that CGGRN outperforms current models in gene regulatory 

network inference. 

2. Proposed Framework   

We propose a gene regulatory network inference method based on convolutional GRU, named 
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CGGRN. The method first constructs the main images and neighborhood images of gene pairs, which 

are then aggregated with time point information into a four-dimensional tensor as the model input. 

Specifically, for a gene pair ( , )m n , its image at time point t is denoted as t

m,nI , referred to as the main 

image. Additionally, neighborhood information of the gene pair is considered, mainly consisting of 

the gene’s own image and the neighborhood images of the gene pair, represented as t

m,mI , t

n,nI , and

 
1 2 r 1 2 r

t t t t t t

m,u m,u m,u n,v n,v n,vI ,I ,...,I ,I ,I ,...,I , where 1 2 ru ,u ,...u and 1 2 rv ,v ,...v refer to the top r genes that 

show significant covariance with the two genes in the pair. After generating the images, for each time 

point in the data, the main images and neighborhood images of the gene pairs are stacked to form a 

three-dimensional tensor. Then, the three-dimensional tensors of each time point are aggregated, 

ultimately forming a four-dimensional tensor, which serves as the model input. Next, the 

convolutional GRU method is employed, leveraging the strengths of both convolutional and recurrent 

neural networks to effectively capture the time and spatial features of the data. Ultimately, the gene 

regulatory network is inferred. 

3. Experiments and Analysis   

In this section, CGGRN is compared with other existing techniques using four time-course datasets 

from mice and humans. To ensure the randomness of data splitting, the entire dataset is randomly 

divided into training and testing sets with an 8:2 ratio. Within the training set, 20% of the data is 

further randomly selected as a validation set to monitor the model's performance in real-time, and the 

best model is saved based on the performance on the validation set. AUROC is chosen as the 

evaluation metric for model performance. The results demonstrate that CGGRN performs better than 

the existing methods. 

3.1 Datasets 

We selected four time-course scRNA-seq datasets from mice and humans, which are detailed in 

Table 1. These include the mouse embryonic stem cell datasets (mESC1 and mESC2) [15, 16], and 

the human embryonic stem cell datasets (hESC1 and hESC2) [17, 18]. The human embryonic stem 

cell and mESC1 datasets contain 36 transcription factors (TFs), while mESC2 contains 38 TFs. We 

classify TF-gene pairs as positive if significant peak signals are detected in the promoter region of 

the target gene, and negative if no significant peaks are observed. 

Table 1: Detailed information of time-course scRNA-seq datasets 

Datasets Points Genes Cells 

hESC1 5 26178 1529 

hESC2 6 19189 758 

mESC1 9 23481 3456 

mESC2 4 24175 2717 

3.2 Evaluation Metrics 

In this study, we use the area under the receiver operating characteristic curve (AUROC) to 

evaluate the model's performance. AUROC measures the overall performance of the classifier by 

calculating the area under the receiver operating characteristic curve, reflecting the model's 

classification ability at different classification thresholds. Specifically, the closer the AUROC value 

is to 1, the better the model's performance and the more accurate the classification. 
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3.3 Comparative Experiments and Analysis 

We assessed the effectiveness of CGGRN in inferring GRN on four time-course datasets and 

compared it with several existing methods, including dynGENIE3, TDL-3DCNN, TDL-LSTM, and 

dynDeepDRIM. dynGENIE3 describes the dynamic changes in gene expression by using ODE. TDL-

3D CNN and TDL-LSTM are two methods within TDL, which use 3D CNN and long short-term 

memory networks (LSTM), respectively, to predict the complex regulatory relationships between 

genes. The dynDeepDRIM method converts each gene pair into a main image and neighborhood 

image, and combines the time point information to integrate these into a four-dimensional tensor, 

which is then used as the input to a CNN for GRN prediction. 

The results of the comparison are shown in Figure 1, with different methods represented by 

different colors, the x-axis indicating the datasets, and the y-axis showing AUROC values. It is clear 

from the figure that CGGRN consistently delivers the highest AUROC values across the four time-

course datasets. Additionally, on the hESC2 dataset, CGGRN's AUROC value is approximately 3% 

higher than that of dynDeepDRIM. The experimental results demonstrate that CGGRN exhibits high 

accuracy and effectiveness in gene regulatory network inference, outperforming existing methods. 

 

Figure 1: Comparison of CGGRN with other approaches on four time-course scRNA-seq datasets. 

4. Conclusion 

Gene regulation in organisms is often dynamic and accompanied by time-dependent information. 

Nonetheless, most current gene regulatory network inference methods are mainly built for static data, 

making them ill-suited for time-course data. To overcome this limitation, we propose a GRN inference 

approach based on convolutional GRU. Specifically, we first generate the main images of gene pairs 

and neighborhood images, which are then aggregated with time point information into a four-

dimensional tensor, providing the model with spatial features and time features. These four-
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dimensional tensors are then passed as input to the convolutional GRU network, where the 

convolutional layers effectively capture the spatial features of the data, and the GRU layers learn the 

time features. Finally, we use the trained model to infer the GRN. To validate the effectiveness of the 

proposed method, we evaluated the performance of CGGRN on four single-cell time-course datasets, 

using AUROC as the evaluation metric. The experimental results indicate that CGGRN outperforms 

existing methods in GRN inference, demonstrating its advantages in handling time-course data. 

There is a causal relationship between transcription factors and their target genes, and this 

relationship is not static; it dynamically evolves with changes in the developmental stages of the 

organism. Therefore, how to effectively incorporate and model this causal relationship, and how to 

use it for precise gene regulatory network inference, is a direction worth exploring in our future 

research. 
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