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Abstract: Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for
profiling gene expression at the individual cell level, enabling the discovery of cellular
heterogeneity that traditional bulk RNA sequencing cannot capture. However, technical
limitations such as low transcript capture efficiency, amplification biases, and limited
sequencing depth have led to pervasive dropout events, where true gene expression is
obscured by excessive zero counts. This review systematically examines and compares the
principal imputation methods developed to address these challenges in scRNA-seq data
analysis. We categorize these approaches into two broad groups: model-based methods and
deep learning methods. Model-based techniques utilize probabilistic models or matrix
factorization to exploit similarities among cells and genes—either independently or in
combination—to predict and restore missing values. In contrast, deep learning methods
leverage the capabilities of autoencoders, graph neural networks, and other innovative
network architectures, including generative adversarial networks, to capture complex
nonlinear relationships within high-dimensional, noisy data. While model-based approaches
offer greater interpretability through explicit statistical assumptions, they are often limited
by their sensitivity to noise and data sparsity. Deep learning strategies, although
computationally intensive and less interpretable, excel in recovering intricate data
structures in large-scale datasets. By providing a comprehensive overview of these
imputation strategies, this review aims to guide researchers in selecting the most
appropriate methods for their specific datasets and downstream analyses, and to suggest
future directions for improving imputation accuracy and integrating multi-omics data.

1. Introduction

Single-cell RNA sequencing (scRNA-seq) technology has rapidly advanced in recent years,
providing unprecedented resolution for analyzing gene expression at the cellular level.[1] Unlike
traditional bulk RNA sequencing, which only captures the average expression level across a cell
population, scRNA-seq enables the profiling of individual cells, thereby revealing subtle differences
and complex heterogeneity among cells. This capability has enormous potential in fields such as
tumor immunology, developmental biology, and neuroscience, facilitating the discovery of novel
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cell types, elucidating cell state transitions, and reconstructing cell developmental trajectories.
However, due to technical limitations such as low transcript capture efficiency, reverse transcription
and amplification biases, and insufficient sequencing depth, scRNA-seq data typically exhibit a
high proportion of zero counts, known as “dropout” events.[2] These zeros often not only reflect the
failure to capture true transcripts because of technical noise but may also partly represent genuine
gene silencing in certain cells, making it a significant challenge to distinguish technical dropouts
from biologically meaningful “true zeros.” Moreover, the intrinsic high sparsity, substantial noise,
and high dimensionality of the data, compounded by variations in expression distributions and noise
characteristics across different experimental platforms and sample types, make it particularly
difficult to capture the complex relationships between cells and genes in high-dimensional space.

To address these issues, researchers have developed a variety of imputation methods that
leverage the similarity among cells or genes to predict and recover the true gene expression values
lost due to technical reasons, thereby enhancing data quality and the accuracy of downstream
analyses.[3][4] Against this background and these challenges, this review systematically surveys
and compares the principal imputation methods in the scRNA-seq field, discussing the fundamental
principles, strengths, weaknesses, and applicable scenarios of each approach, with the aim of
providing researchers with a detailed reference guide and offering insights for future
methodological improvements and new technological developments.

2. Classification and Principles of Imputation Methods
2.1. Methods Based on Probabilistic Modeling

Model-based methods predict missing values by constructing statistical models or employing
matrix factorization techniques that exploit the inherent structural information within the data. The
core idea is to fully leverage the similarities among cells, among genes, or both, to provide a
rational recovery strategy for missing data. Depending on the type of information utilized, these
methods can be divided into three categories:

2.1.1. Cell-based Imputation Methods

These approaches assume that cells of the same type or in similar biological states exhibit similar
gene expression patterns. By capturing the similarity among neighboring cells and sharing
information among them, missing values are inferred. For instance, MAGIC[5] employs a diffusion
mapping algorithm to construct a cell—cell similarity graph and smooth the expression profiles,
thereby filling in dropouts; SAVER[6] uses a Bayesian model to integrate information from
neighboring cells to estimate the true expression level of each gene, effectively reducing the impact
of technical noise.

2.1.2. Gene-based Imputation Methods

These methods are based on the assumption that genes often exhibit co-expression or synergistic
behavior within regulatory networks, implying a certain degree of correlation in their expression
levels. By exploiting the correlations among genes, one can reconstruct missing data either by
building correlation networks or through methods such as non-negative matrix factorization. For
example, scNPF[7] integrates gene interaction network information and leverages the co-expression
relationships among genes to infer missing values, while netNMF-sc[8] uses network-regularized
non-negative matrix factorization to decompose the gene expression matrix into low-dimensional
representations of genes and cells, with network constraints ensuring that interconnected genes
remain similar in the reduced space, thus recovering the lost data.
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2.1.3. Cell & Gene Integrated Imputation Methods

These methods consider both the similarities among cells and the co-expression information
among genes by constructing a joint model that simultaneously captures features from both
dimensions, thereby enhancing imputation accuracy. Typically, they first distinguish between
technical dropouts and true zeros via clustering or preliminary assessments, and then estimate
missing values based on local information. For example, scImpute[9] initially uses a statistical
model to determine whether a zero count is due to a technical dropout and subsequently imputes the
missing value based on the expression levels of similar cells; DrIlmpute[10] performs multiple
rounds of cell clustering and averages the results to yield a robust estimate for missing data;
VIPER[11] employs weighted regression to borrow information from a selected subset of similar
cells; scTSSR[12] utilizes a sparse self-representation model for both cells and genes to jointly
capture the necessary information for reconstructing the expression matrix; SCRABBLE[13]
integrates single-cell and bulk RNA-seq data to improve imputation accuracy through external
constraints; and SDImpute[14] builds a statistical model based on gene expression data unaffected
by dropouts to predict missing values.

2.2. Methods Based on Deep Learning

2.2.1. Autoencoder-based Imputation Methods

These methods construct autoencoder neural networks that compress high-dimensional gene
expression data into a low-dimensional latent space and then reconstruct the original data through a
decoder. During training, the network automatically learns the nonlinear structure and underlying
distribution of the data, effectively recovering missing values caused by dropouts during the
reconstruction process. Representative methods include Autolmpute[15], DCA[16], scVI[17], and
DeepImpute[18], all of which balance the recovery of subtle changes in expression levels with the
preservation of overall structural information.

2.2.2. Graph Neural Network-based Imputation Methods

This category represents single-cell data as a graph where nodes correspond to individual cells
and edges denote similarities or proximity between cells. Utilizing graph convolution and other
graph neural network techniques, these methods perform information propagation and aggregation
on the graph, using information from neighboring cells to jointly recover missing expression values.
GraphSCI[19] and scGNNJ[20] are typical examples; they enhance the imputation effect by
leveraging the relational structure among cells, which is especially useful for capturing complex
intercellular interactions.

2.2.3. Other Deep Learning and Novel Network Architectures

Beyond autoencoders and graph neural networks, some approaches adopt generative adversarial
networks (GANs) or other innovative network architectures to achieve data recovery. These
methods typically build generators and discriminators, using adversarial training to enable the
generator to produce imputed data that closely matches the true data distribution. For example,
scIGANs[21] applies a GAN framework by treating the gene expression matrix as an image and
reformulating the imputation task as an image restoration problem; TDimpute[22] utilizes transfer
learning and other strategies under novel network architectures to achieve efficient recovery. Such
methods demonstrate strong adaptability and recovery capability when handling high-dimensional
and complex nonlinear data; scIDPMs[23] utilizes conditional diffusion probabilistic models to
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impute scRNA-seq data.
3. Advantages, Limitations, and Applicable Scenarios

Model-based methods offer strong interpretability by leveraging explicit statistical assumptions
and prior knowledge to elucidate data, and their underlying principles, parameter settings, and
model structures are relatively straightforward to understand and adjust. However, these methods
require strict assumptions about data distributions, and if the actual data deviate from these
assumptions, the imputation performance may suffer. Additionally, they tend to be sensitive to high
levels of noise and sparsity and may struggle to capture complex nonlinear relationships.
Consequently, they are best suited for scenarios with relatively low noise and high-quality data,
such as certain Smart-Seq2 datasets. In contrast, deep learning methods are highly flexible, capable
of automatically capturing intricate nonlinear relationships, and demonstrate robust performance in
large-scale, high-noise, and high-dimensional datasets without relying on stringent statistical
assumptions. Their drawbacks include high computational resource demands, longer training and
parameter tuning times, and relatively lower interpretability due to their "black box" nature. These
methods are more appropriate for situations involving large-scale data with high noise levels and
complex expression patterns (e.g., 10x Chromium datasets) and for downstream tasks that require
automatic extraction of underlying data structures, such as cell trajectory reconstruction and large-
scale clustering analyses.

4. Conclusion

This review has provided a systematic overview of the principal imputation methods in the
scRNA-seq field, categorizing them into model-based and deep learning-based approaches. Model-
based methods, which rely on explicit statistical assumptions and the inherent similarities among
cells and genes, offer good interpretability and effective data recovery under ideal conditions;
however, they may be limited in scenarios with high noise and complex nonlinear structures.
Conversely, deep learning methods, employing autoencoders, graph neural networks, and other
innovative architectures, can capture complex patterns in large-scale, noisy datasets but come at the
cost of higher computational resource consumption and reduced interpretability. In summary, each
class of methods has its own strengths and limitations, and researchers should carefully consider the
specific characteristics of their data and the requirements of their downstream analyses—such as
clustering, differential expression detection, or cell trajectory reconstruction—when selecting an
imputation strategy. Future research should focus on exploring hybrid approaches, enhancing model
generalization, and addressing missing data recovery in the context of multi-omics integration, with
the ultimate goal of advancing single-cell data analysis techniques and providing more precise
computational tools for biological investigations.
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