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Abstract: In order to solve the problems of privacy-preserving federated learning in which
the poisoning behaviour of client nodes as well as the malicious aggregation behaviour of
aggregation server nodes lead to the failure of model training, a secure aggregation
privacy-preserving federated learning strategy based on permissioned blockchain is
proposed. In order to solve the problem of malicious behavior of aggregation server nodes,
a trusted aggregation server node selection algorithm is designed to cancel the right of
nodes with malicious aggregation behavior to participate in the aggregation server node
election. Each node establishes a reputation value, proposes a reward and punishment
algorithm based on the reputation value, and establishes a threshold, and nodes with a
reputation value lower than the threshold will be refused to participate in the federated
learning process to reduce the threat of client node poisoning attack behaviour on model
learning. The experimental results show that the scheme is able to ensure secure model
aggregation and achieve high model correctness in the presence of malicious aggregation
behaviour at 50% of the nodes and poisoning attacks at 40% of the nodes.

1. Introduction

Privacy Protection Federal learning (Privacy-Preserving Federated Learning, PPFL) is an
advanced FL framework that uses homomorphic encryption, differential privacy, secure multi-party
computing and other technical means on the basis of Federated Learning (FL) to enhance the
privacy protection in the model training process and reduce the risk of user data leakage. It is an
advanced FL framework integrating privacy protection mechanism[1~5]. However, during PPFL
training, the toxic gradient has higher concealment after processing by privacy protection
mechanism, and is more vulnerable to poisoning attacks by client nodes compared with traditional
FL[6~7]. Moreover, the traditional FL. method used to resist poisoning attacks requires access to the
explicit local gradients uploaded by the clients, in accordance with techniques such as Krum[8-9],
Trim-mean[10], Bulyan[11], and Auror[12]. However, this practice contradicts the original
intention of data privacy security in the training process of the PPFL protection model.

In order to effectively defend against the poisoning attacks of client nodes in PPFL, Liu et
al[13]A privacy-enhanced federated learning framework (PEEL) is proposed, with homomorphic
encryption as the underlying technology, automatically adjusts the gradient weight of the
corresponding nodes by using the median of the coordinate direction, and then measures the
similarity between the gradients through the Pearson correlation coefficient. Ma class[14]Design a
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double trap door privacy protection strategy of homomorphic encryption, the private key is divided
into two respectively sent to two central server, through the communication of two central server,
calculate the client node upload local gradient and the previous round of aggregation between the
global gradient similarity and then filter out the toxic gradient, can effectively resist the client node
poisoning attack, and a separate server cannot access the encrypted data, enhance the privacy of the
client upload local gradient security. Zhou class[15]A differential private federal learning model for
poisoning attacks is established. Firstly, a weight-based algorithm is designed to detect the
parameters of the terminal upload, and then the differential privacy technology is used to protect the
privacy of the terminal upload data and the model. Li class[16]A multi-tentacle federated learning
framework is proposed, which identifies poisoning attacks through efficient poisoning detection
algorithm based on tentacles distribution, and then reduces the influence of poisoning data through
random tentacle data exchange protocol. All exchanged data use differential privacy processing to
ensure the privacy security of data.

However, the above scheme fails to solve the problem of participant authentication, and the
global model is aggregated by the central server, once the central server failure will lead to the
failure of the whole learning process[17~18]. Blockchain is characterized by decentralization,
immutability and transparency, which provides a new idea for researchers to solve this
problem[19~20]. Miao class[21]Designed a privacy protection based on block chain Byzantine
robust federal learning scheme, the scheme to clean data set in Solver server, using completely
homomorphic encryption to protect data privacy, through the cosine similarity contrast local
gradient and clean gradient to eliminate toxic gradient, and then communicate with Verifier server
through block chain aggregation. However, if the Solver or Verifier server fails, the entire FL
cluster will not work properly, and this method will not completely solve the single point of failure
problem. The way of electing new aggregated nodes at each iteration can effectively solve this
problem, Shayan et al[22]Proposed a completely decentralized point-to-peer federal learning
method, first through the consistency hash function (Consistent Hashing Function, CHF) to
randomly select the noise, validation and aggregator of this iteration, each client node using the
differential private noise to protect the uploaded data, the verifier using the uploaded protection data,
then through the validation data using Shamir secret sharing in the aggregator global model
aggregation. However, due to the transparency of the blockchain and the differential private noise
provided by the elected noise, if the noise has malicious behavior, it will pose a threat to the privacy
security of the client data. Therefore, while protecting the data privacy security and resisting the
client poisoning attack in the process of PPFL, it is still a key problem to select the new trusted
aggregation server in the aggregation server to ensure the normal operation of the whole model
system.

Based on the above analysis, this paper proposes a Privacy-preserving federated learning secure
aggregation strategy based on permissioned blockchain, PBSPFL) based on licensing blockchain
based on its shortcomings. Major contributions of our work are as follows:

The federal learning model framework of secure aggregation privacy protection based on
licensing blockchain is established to realize the selection of trusted aggregation server nodes in the
open and transparent transaction environment of trusted blockchain and reduce the impact of toxic
gradient on the accuracy of the global model.

To tackle this issue, we propose a node selection algorithm for the trusted aggregation server.
This algorithm incorporates the consistency hash function as a key technology. Specifically, we
design a trusted aggregation node selection algorithm and establish a consistency hash ring that is
exclusively utilized by the trusted aggregation server nodes.

We propose a reward and punishment algorithm based on credit value, which is designed to
penalize nodes that exhibit malicious behavior. The nodes with credit value below the threshold will
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be refused to participate in the federated learning process.
The experiment show that high model accuracy in FASHION-MNIST and CIFAR-10 data sets

2. The system model and the problem description

In order to achieve more secure and reliable FL model training process, this model introduces the
license block chain, consistency hash function and threshold all homomorphic encryption
technology [24] build based on license block chain security aggregation privacy protection federal
learning model framework, analyzes the threat model under the security assumption, and gives the
design goal of this paper. The specific design is shown as follows.

2.1 Model design

License blockchain is mainly responsible for the registration and authentication of devices, the
election of miner nodes and aggregation server nodes, and the execution of rewards and
punishments. The publisher of the task, as the authentication server, is responsible for initializing
the blockchain network, initializing the FL model and distributing the data set, the mine works
(Proof ofWork, PoW) consensus mechanism, and the node selection algorithm based on the
consistency hash function, receives the local gradients uploaded by the client nodes and gates the
global model. Among them, the miners do not participate in the election of the aggregated server
nodes in the current round of FL iteration process, but they can train the local model and upload the
local gradient. Moreover, the consistency hash ring generated by the consistency hash function is
also maintained by the miners elected each time. The specific process is shown in Figure 1.

i

Authentication Server

i .‘
v —> e
[
o ® ®
si L . \ 4
v e A - -
- Consistent Hashi:
[
e v A ii ii
L____ LLL] L____J LI L L____J Aggregated server nodes
oy S L, Miner

Participating Participating Participating
nodes nodes nodes

Permissioned blockchain node selection

process
Blockchain initialization

Figure 1 Blockchain initialization and node selection process

The consistency hash ring is the result of the participating nodes mapping to the logical loop
structure by CHF. It is initially established by the authentication server node and maintained by the
elected miners during each round of FL model iteration, where the number of maps of each node is

shown in formula (1). Hn,

Hn‘ = Nlmsh = (1)

l Z _r::o Rj
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This is the total number of nodes mapping on the consistent hash ring. This paper is the credit
value of the first node participating in the aggregation server campaign, representing the sum of the
credit value of the nodes participating in the aggregation server campaign.

Nhash Nhash =100 Ri i ZJZORf m

The higher the credit value of a node in the consistency hash ring, the greater the likelihood of it
being chosen as the aggregate server node. The first aggregation server node outputs the hash node
as the result of the input value, which then becomes the input value for the consistency hash
function, thus determining the second aggregate server node. The specific process is shown in
Figure 2.
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Figure 2 Selection of the aggregate server nodes
The consistency hash function is shown in Equation (2).

CHF = H(Key) mod M,, , )
Where is the hash value of the input value, is a fixed value, indicating that the consistency hash
function will map the hash value over the integer of the range, set in this paper.

H(Key) Key MHash H(Key) [0’ MHash] MHash = 232

Threshold completely homomorphic encryption (Threshold Fully Homomorphic Encryption,
ThFHE) is a combination of completely homomorphism encryption and threshold encryption
characteristics of encryption scheme, ciphertext can perform without the decryption of addition and
multiplication operation, private key is divided into multiple shares to different parties, only the
number of participants reach the threshold to data decryption, with the private key share participants
generate part of decryption ciphertext, and then put the part of decryption ciphertext combination
together to obtain decryption value. Article [24] constructs a ThFHE scheme that can be generalized
to any lattice encryption (Learning With Errors, LWE), as detailed in references [23], [24]. This
scheme uses (T, T) distributed decomposition algorithm to decompose polynomial private keys into
parts, and nodes with some private keys must cooperate together to decrypt. It is set in this paper.
During decryption, the node with a partial private key partially decrypts the ciphertext, and then
combines the partially decrypted ciphertext to obtain the clear text, where the encrypted message is
shown in formula

SkTTT:2Cf:(aab)[x]fmbbzaosk+m+e 3)
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Where is the public-key matrix, which is the noise. Partial decryption of the ciphertext is shown
in equation (4).4 € ¢t

[x],=aesk +¢ )

This is the partial private key owned by the node involved in the decryption, and the noise added
for the node. All partially decrypted ciphertexts are combined, as shown in Equation

T
Ski ielTé 5:b_2i:1[x]i (5)

The result is essentially a more precise plaintext.
r
5m+e=2.€) 5 m
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Figure 3 System model framework

As shown in Figure 3, the system model framework is composed of a secret key centerand a
blockchain, in which the blockchain consists of aggregated server nodes, client nodes and miners.
Before the start of each round of FL training process, the blocks generated after the last round of FL
training will be downloaded to the local area, and new miners and server nodes will be elected. The
functions of each module of the system model are introduced as follows.

Secret key center. The function of this module is to distribute the secret key to the aggregation
server nodes and client nodes during each round of FL training, and divide the private key into two
parts and distribute it to two different aggregation server nodes (step D).

Client nodes. The local model is trained and the local gradient is uploaded. The nodes with toxic
attack behavior will transmit their own toxic gradient (step @), and the accuracy of the global
model generated by the aggregate server nodes is verified (step ©).

Aggregation of the server nodes. This part is two nodes selected by node selection algorithm as
aggregation server nodes, in the block chain to collect client node upload local gradient (step ),
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and in the case of protecting local gradient privacy, against poisoning attack safe aggregation,
malicious aggregation behavior nodes will make some behavior hinder the generation of the global
model or reduce the accuracy of the global model (step @), and finally upload their own aggregate
global model (step ®).

Miners. This part is selected by the PoW consensus protocol, which is responsible for collecting
transaction information between various nodes in the blockchain and recording it in the ledger,
while executing rewards and punishments for the node reputation value and maintaining a
consistent hash ring (Step (¥). When this round of FL training process is completed, the recorded
ledger, the updated node reputation value and the consistency hash ring are uploaded to the
blockchain in the form of a block (step ®).

3. Security assumptions

Suppose 1 this paper assumes that each node of the blockchain is semi-honest and can follow the
FL training rules, but will try to crack the sensitive data encrypted by the other nodes.

Hypothesis 2 This paper assumes that nodes with poisoning attack behavior can obtain the
aggregated global model and upload their own malicious gradient, but cannot observe or access the
local model updates of other clients.

Hypothesis 3 this paper assumes that nodes with malicious aggregation behavior will not collude
with client nodes in the open and transparent transaction environment of the license blockchain, but
will give a global model with low accuracy in the model aggregation stage to slow down the
convergence rate of the global model.

3.1 Model threat

The key center is a trusted third party, the two aggregate server nodes Anl And An2lt is selected
by the selection algorithm, which may have malicious aggregation behavior, and also tries to infer
the sensitive data of the other nodes, but it will not collude with each other in a transparent and open
trading environment. Nodes with toxic attacks will carefully upload their own toxic gradient,
reducing the accuracy of the global model. The potential threats posed by the appeal entity are as
follows:

Popoison attack threat. When a node with poisoning attack behavior acts as the client nodes, it
will carefully upload its own toxic gradient, and the goal is to reduce the accuracy of the global
model without being detected by the aggregation server node.

Data privacy leakage threat. The local gradient uploaded by the client node is a mapping of the
local data of the node. If the client node directly uploads the plaintext gradient, the attacker can
infer or obtain the original information of the honest client to some extent, resulting to the client
data leakage.

Malicious aggregate threat. When the nodes with malicious aggregation behavior are selected as
the aggregation server nodes, a global model with low accuracy will be given in the model
aggregation stage, slowing down the convergence rate of the global model.

3.2 Model design

The goal of this scheme is to protect the privacy of data, resist the client poisoning attack, when
the aggregation server node failure or malicious aggregation behavior, the new aggregation server
can be selected in time so that the model system can run stably and give a high-quality global model.
The specific scheme is as follows:
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Election of the trusted aggregation server node. The trusted aggregation server node selection
algorithm is designed to cancel the power of the node campaign for the aggregation server nodes
with malicious aggregation behavior, which effectively alleviates the threat of malicious
aggregation.

Safety of the model. The local gradient uploaded by the client and the global gradient at the last
iteration are used for cosine similarity verification, and the local model nodes that fail to pass the
verification are penalized using the reward and punishment algorithm based on credit value, so as to
reduce the impact of poisoning attacks on model learning.

Data privacy protection. The client node encrypts the trained local model based on threshold
all-homomorphic encryption, and the key center divides the private key into two parts and sends it
to the two aggregation server nodes respectively to ensure the privacy of the data during the
aggregation process.

4. PBSPFL policy

This section mainly tells about the construction of PBSPFL strategy, which is divided into two
parts: model training process and algorithm implementation. Symbol descriptions are shown in
Table 1

Table 1 Symbolic description

symbol description

g Local gradient of the first client node in the first iteration ki

& g Results after normalization

w, Local model of the first client node in the first iteration ¥ ¢

D, Local dataset of the first client node?

[[g /lf]] 8 Results after fully homomorphic encryption

W, Global models generated by the first round of iterative aggregationk
&k Global gradient generated by iterative aggregation in the first round k
n Model learning rate

Womest Number of local gradients was verified by safety

a The factor to control the intensity of rewards and punishments

N Number of nodes involved in the model training

4.1 Model training process

PBSPFL Training process is mainly divided into local model training, local gradient upload,
security validation, global model aggregation and global model correctness validation five parts, the
standardization of safety verification, cosine similarity validation and global model aggregation of
global gradient using ciphertext calculation, and use smart contract for ciphertext calculation is
open and transparent, specific introduction as follows.

4.2 Local model training.

First, the authentication server node completes the authentication registration of the participating
nodes, and issues the data set and the FL initialization model after completing the blockchain
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initialization. Secondly, the miner nodes in the FL iteration process are selected, and the
aggregation server nodes An in the FL iteration process are selected by using the consistent hash
ring maintained by the minerslAnd An2. Finally, the client node trains the local model by
stochastic descent using stochastic gradient descent, and standardizes the trained local gradient and
uploads the normalized local gradient. The local gradient of the first client node during the first FL.

i ~i

iteration and the standardized local gradient are shown in Equation (6). ki8k 8k

g = VL(w, D)
5= i
k Hng (6)
Where is the local model of the first client node during the first round of FL iteration, which is

the local data set of that node, which is the derivative of the empirical loss function. " kiD,

VL(w,,D,) L(W,,D,)
4.3 Local gradient upload

The standardized local gradient of client nodes can only be uploaded to the blockchain after fully
homomorphic encryption and blockchain authentication encryption, aiming to ensure privacy in the
process of global model aggregation. It is encrypted by the public key pair in ThFHE, and the client
node is signed through the local private key pair, which is used to verify the authenticity and
integrity of the uploaded local gradient to ensure that the submitted information is not maliciously
tampered with, as shown in formula

& & pe g |afla] (&) £ =hashe, (2] o
4.4 Safety verification

After receiving the standardized local gradient uploaded by the client node, the aggregation
server node will first conduct the standardization confirmation. If the first client node standardizes
the verification result, the information uploaded by the node is received, otherwise it will be
abandoned. The standardized verification is as shown in formula

[2]-[&]o]z]
i B R R R B ®

The aggregation server node determines the local gradient that is the by validation. The cosine
similarity was compared by comparing the local gradient with the global model gradient generated
during the previous round of FL iteration. First, the standardized processing is encrypted, and then
the cosine similarity is calculated. After the two aggregation servers cooperate with the decryption,
the local gradient is removed. The cosine similarity is calculated as shown in formula (9).

I[gllc]l 81 ia [I:gkq]] [[gk,l]] I[gllc:ll [[COS(gli’gk—l)H Cos(glic’gk—l) <0 [I:COS(gli’g/c—l)]] = [[gllc]]Q[[gk—l]](9)
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4.5 Aggregation of the global models

The aggregate server node performs a federated average aggregation of the verified local
gradient, as shown in equation (10).

[e]=-——3" [&]

nh(mest (10)
We=W_ —ng

Where is the number of local gradients verified by safety, which is the learning rate. Phonest 17
4.6 Global model correctness verification.

Both the two nodes of the aggregation server selected in this paper will collect the local gradient
uploaded by the client and go to step 3) ~4), which will generate the corresponding standardized
verification set, cosine similarity set and global model, and sign the results with their own private
key and upload them to the blockchain in the way of transaction. The uploaded transaction is shown
in formula

/1:(11,22---/1}1) cos W,
)= hash,,, (C{")

i

C]:ln, — (/1:”, — (ﬂ‘l’ﬂ?’.”’/’ln)’
COS:ni = (cos(g~,1€,g~k_1),---,cos(g~,’j,§k_1)),

wm) (11)

After receiving the transaction uploaded by the server node, the miner node first compares the
standardized validation set and the cosine similarity set in the two information and the global model.
If both are trusted aggregation server nodes, the values of the corresponding part should be equal. If
there are unequal values, the miner node will verify the accuracy of the global model generated by
the two nodes by comparing the test set and compare the test results with the accuracy of the global
model in the previous FL iteration. If the difference is greater than the threshold, that is to say, the
aggregation server node generated the global model accuracy is far lower than the global model in
the process of FL iteration, will be judged as malicious aggregation behavior, cancel the power of
the aggregation server node, if both nodes are judged to be malicious aggregation behavior, the
global model for the global model in the process of FL iteration, continue to a new round of FL
training. If the difference between the global model accuracy generated by the two nodes and the
global model accuracy in the previous FL iteration is less than the threshold value, the final global
model will be voted on by the client node.

/Iz(j'nﬁ'z"%n) coSs Wk P(WkAni) P(VVH) SA SA

An;
(Ck > EAnl- key 4,

5. Algorithm implementation

To address the potential for malicious aggregation behavior among selected aggregation server
nodes and to ensure rewards and penalties for node reputation values, this paper proposes a trusted
aggregation server node selection algorithm. It also introduces a credit-based rewards and penalties
algorithm to guarantee that the nodes involved in the aggregation server campaign are highly

92



credible and to minimize the impact of poisoning attacks on the accuracy of the global aggregation
model.

Based on the trusted block chain and consistency hash function idea, design a high confidence
aggregation server node election algorithm, the algorithm of aggregation server node aggregation
global model validation, when the aggregation server node detected malicious aggregation behavior,
will cancel the node election the aggregation of server node power. We put the nodes with trusted
aggregation behavior into the set, and obtain the number of nodes we can map to the consistent hash
ring through our own credit value and consistency hash algorithm. The specific process is shown in
Algorithm 1.M
Algorithm 1: a trusted aggregation server node selection algorithm
nput: The sum of messages sent after the two aggregate server nodes during the first FL

n An,
iteration K (G E,,) (G ’EAnz)
Output: The new aggregation server node, Anl And An2
A0 cos™ W

1. The miner node extracts, and of two transactions

2. Judge whether the corresponding and of two nodes are equal 2 cos W

3, if are all equal

4. The transaction uploaded by the aggregation server will be submitted to the client node
for voting

5.end if

6, the unequal presence of if

7. Miner nodes verify the accuracy of the two nodes in generating the global

An;
model PW™)
8. fori=1to 2 do
9 if PW,_)-P(W,/)>S,

10, is the node with malicious aggregation behavior, removed from the collectionAni M

11. end for i

12. end if

13. If The global model accuracy of two nodes is verified by miners

14. The miner node uploads the transactions of both nodes to the client node for voting

15, else if Only one node is verified by the global model accuracy of several miners

16. The miner node only transmits the transactions that verify through the aggregation
server node

17. The global model in the last round of FL iteration of se is the final global model of this
round, and the miner node punishes the two aggregation servers through the reward and
punishment algorithm

18. end if

19, if has an aggregate server node verified by the miner node

20. The client node votes on the.,, and generated by the aggregate server node 2 cos W

21. If the node with the largest number of votes exceeds half of the nodes participating in
the training client, the aggregation result of the node is taken as the final result of this round
of FL iteration

22. end if

23. If, there is a trusted aggregation server node after the client node verification

24. Store the final results of the verified aggregate server nodes and the nodes with
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malicious behavior in the collection, and store the honest nodes in the collection. A cos

Jalse trye
25. Miner nodes punish the nodes in the set through the reward and punishment algorithm

based on the credit value, and reward the nodes in the set Jalse  true

26. The global model in the last FL iteration of ose is the final global model of this round,
and the miner node punishes the two aggregation servers through the reward and punishment
algorithm

27. Miner nodes update the consistency hash ring and upload the ledger as blocks to the
blockchain

28. Select the new miners based on the PoW consensus, and select the new aggregation
server node An based on the updated consistency hash ringl And An2

29.return An 1, An2

6. Theoretical analysis
This section will theoretically prove that the PBSPFL strategy designed in this paper is privacy.
6.1 Privacy analysis

To protect client node privacy during interactions, we reference the Threshold Fully
Homomorphic Encryption (ThFHE) method [24]. We demonstrate that the PBSPFL model ensures
the privacy of client node data, even when data is aggregated by server nodes.

Citation extension 1 In the ThFHE scheme, the private key is always distributed throughout the
whole process. Each private key owner uses the share of the private key distributed to it to partially
decrypt it, and sends the decryption results to the decryption user, without revealing its part of the
private key.[25]

Theorem 1 In the case of malicious aggregation behavior, the communication between two
aggregation server nodes does not reveal the privacy of the client node.

We prove that the exchange between aggregate server nodes only standardized verification
results, cosine similarity verification results and global gradient aggregation results need to be
decrypted. We perform the three encrypted operations in a smart contract way, making the three
computing processes open and transparent, and ensuring that the results of the aggregation server
decryption can only be one of the three results[26]. If the aggregate server node Anl has results to
decrypt, Anl*l1 sends the ciphertext to another aggregation server node, Anl*I2. An2 uses its private
key share of the ciphertext and sends the partially decrypted ciphertext to An[*I[xl: 1. Anl then uses
its own private key share to partially decrypt the ciphertext, and the two partially decrypted
ciphertexts are combined to obtain the plaintext.*

In this process, due to the open and transparent nature of blockchain and smart contracts, the
aggregation server node can only decrypt the standardized verification results, the cosine similarity
verification results and the global gradient aggregation results, so the aggregation server node will
not obtain any other information of the client node. At the same time, the aggregation server node
uploads the ciphertext that need to be decrypted, and finally the final result can be decrypted locally,
so the aggregation server nodes cannot be colluded. Therefore, even if the aggregation server node
has malicious aggregation behavior, the privacy of client data can be guaranteed[27].

7. Simulation experiment and performance analysis

This section first introduces the simulation experimental environment of model training, and
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analyzes and evaluates the performance of the global model accuracy. Finally, it analyzes the node
selection algorithm and the reward and punishment algorithm based on credibility value.

7.1 Experimental environment

The server environment configuration for all the experiments conducted in this paper is as
follows: Intel (R) Core (TM) i7-10700 CPU 2.90 GHz, 1 6 GB of memory, Windows 10 operating
system. In the experiment, VS Code was used to build Python development environment, Python
programming language was used to realize blockchain functional modules, Pytorch 2.0.1 in Python
3.7 was used to build FL Framework, and convolutional neural network was used as the training
model, and the hyperparameters such as the convolution, the size of the nucleus and the number of
neurons in each module needed to be determined according to the experimental effect[28].

7.2 Experimental dataset

This paper evaluates the performance of the proposed PBSPFL model based on the
FASHION-MNIST and CIFAR-10 datasets, respectively. This paper uses 2 0 devices for training
the model, of which two devices will be selected as aggregate server nodes. In this paper, the entire
FASHION-MNIST and CIFAR-10 training sets were randomly divided into 20 subsets of equal size
and no sample overlap, and randomly distributed to the device to train the local model.

7.3 Model comparison scheme

In order to show the high availability of the aggregated global model of the proposed scheme, the
traditional federated average algorithm (federated gradient average, FedAvg) is used as the
benchmark scheme, and the correct rate of the global model is compared with the ShieldFL and
Biscotti model schemes[29].

First, we compared the accuracy rate of the benchmark scheme FedAvg, the scheme PBSPFL
and the global model on the FASHION-MNIST and CIFAR-10 datasets without the FL. model
training. The accuracy rate in this experiment was defined as the percentage of the number of
correctly classified samples to the total number of samples. The experiment updates with 100 FL
iterations, and the accuracy of the global model generated by the verified aggregation server is
recorded. The 2 0 devices participating in each round of FL training will be divided into two
aggregation server nodes and 1 7 client nodes, among which the miner node also performs the task
of client nodes. The model accuracy pairs of the different schemes on the FASHION-MNIST and
CIFAR-10 datasets are shown in Figure 4.
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Figure 4 Nodes without malicious behavior participate in the FL model training

On the FASHION-MNIST dataset, after 100 rounds of FL iteration, FedAvg has the highest
accuracy and similar accuracy between the PBSPFL and ShieldFL schemes, slightly inferior to the
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benchmark model FedAvg. After 50 rounds of FL iteration, the accuracy of the PBSPFL scheme has
stabilized at around 95.8%. It can be seen from the experimental results that the PBSPFL scheme
can have the accuracy rate similar to the FedAvg while protecting the privacy and security
performance of the client side. On the Fashion-MNIST, the accuracy of the PBSPFL scheme dataset.
Therefore, the PBSPFL scheme can guarantee the privacy security of the client nodes with the high
accuracy of the model.

In order to verify the PBSPFL scheme against the poisoning attack, the global model of the
aggregation is still high availability, this section experiment set up 20% and 40% of the malicious
poisoning attack nodes involved in FL model training, and compared with FedAvg, ShieldFL,
Biscotti model test, of which the default poisoning attack for the label flip attack. The experimental
aggregation server nodes in this section are all trusted nodes.

The global model accuracy rates of the different model schemes on the FASHION-MNIST and

CIFAR-10 datasets are shown in Figure 5.
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Figure 5 20% of the nodes with malicious poisoning attacks participate in the FL model training

Since FedAvg has no security mechanism against toxic attacks, the toxic gradient has a huge
impact on the accuracy of its global model, so the accuracy of FedAvg fluctuates around 40%. In
the FASHION-MNIST dataset, the Biscotti accuracy was maintained at 88.4%, and the PBSPFL
scheme accuracy was stabilized at 92.2%, slightly higher than the ShieldFL stable accuracy at
90.8%. The accuracy of the present scheme was maintained at 85.4% on the CIFAR-10 dataset,

The global model accuracy rates of the different model schemes on the FASHION-MNIST and

CIFAR-10 datasets are shown in Figure 6.
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Figure 6 40% of the nodes with malicious poisoning attacks participate in the FL model training

Under the FASHION-MNIST dataset, as the number of nodes with malicious poisoning attacks
in the model increases to 4 0%, the model accuracy of FedAvg fluctuates around 20%, and after 4 0
rounds of iteration, the accuracy gradually drops below 20%. In this paper, the model is still well
available with the other two comparison models. The PBSPFL scheme stabilized after 4 0 rounds of
iterations, and the accuracy rate stabilized at around 84.8%. Biscotti The most affected in the
presence of malicious poisoning attacks in 40% of the nodes, and its accuracy has stabilized at
around 75%. The model accuracy rate of ShieldFL is maintained at 80.2%, which is lower than
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4.6%. On the CIFAR-10 dataset, 40% of the PBSPFL scheme nodes maintained 79.6% of the model
accuracy.

The experimental results show that the PBSPFL scheme can still guarantee the high availability
of the global model with malicious poisoning attacks in 20% and 40% of the client nodes.

7.4 Algorithmic effect analysis

In order to evaluate the effect of the node selection algorithm of the trusted aggregation server to
identify malicious aggregation behavior, 40% of the nodes are set to have malicious poisoning
behavior. We need to increase the number of nodes exhibiting malicious aggregation behavior to
20%, 40%, and 50%, respectively, with half of them also engaging in malicious poisoning attacks.
The influence of different numbers of nodes with malicious aggregation behavior after 1 00 rounds
of FL iterations on the global model accuracy of the PBSPFL scheme is shown in Figure 7.
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Figure 7 The nodes with different numbers of malicious aggregation behavior participate in the FL
model training

As the nodes with malicious aggregation behavior increase, the FL. model converges more slowly.
In the case of no malicious aggregation behavior, the global model on the FASHION-MNIST
dataset reached the convergence level in the 4 Oth iteration, while in 50% of the nodes had the
malicious aggregation behavior, the FASHION-MNIST dataset gradually converged until the 60th
FL iteration, and gradually converged on the CIFAR-10 dataset. When the model reaches the
convergence level, under the condition of nodes with different numbers of malicious aggregation
behavior, the correct rate of the global model reaches 84% in the FASHION-MNIST data set, and
the accuracy rate reaches 79% in the CIFAR-10 data set. Therefore, the trusted aggregation server
node selection algorithm can guarantee the quality of malicious aggregation attacks on the server.

8. Conclusion

The current PPFL model safeguards data privacy and resists client poisoning attacks. However,
the entire model system can be compromised due to the malicious behavior or failure of the
aggregation server. This paper introduces a framework for secure aggregation privacy protection,
which is based on a licensed blockchain. In the open and transparent trading environment of the
licensed blockchain, the trusted aggregation server node selection algorithm selects two aggregation
nodes. The privacy security of data is ensured through a threshold-based fully homomorphic
encryption protection model. The cosine similarity and a reward-punishment algorithm based on
credit value are used to penalize nodes exhibiting malicious behavior. The impact of toxic gradient
reduction on the global model accuracy is examined. Experimental results indicate that even with
50% of the nodes engaging in malicious aggregation behavior and 40% conducting poisoning
attacks, high model accuracy can still be achieved on the FASHION-MNIST and CIFAR-10
datasets. Future work will further optimize the communication consumption of the model and

97



improve the efficiency of the model in the work.
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