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Abstract: In recent years, significant advancements have been made in the field of infrared 

small target detection (IRSTD), largely driven by developments in deep learning and 

computer vision. Deep learning-based methods have demonstrated substantial improvements 

in both accuracy and inference speed compared to traditional approaches, enabling their 

integration into real-time embedded systems. However, many data-driven techniques rely on 

complex network architectures to process large volumes of intricate data, resulting in 

additional computational overhead. To enhance the efficiency of IRSTD, we propose an 

improvement based on the classical segmentation framework, introducing a semantic gap 

elimination module (SGEM) to reduce the level-to-level semantic gap. This enhancement 

improves the stability and performance of IRSTD. Notably, our method does not rely on 

complex network architectures, allowing it to outperform other deep learning-based methods 

in terms of computational efficiency. It also exceeds the performance of the fastest methods, 

achieving more than a threefold increase in the frames per second (FPS). Furthermore, 

comparative experiments demonstrate the effectiveness of our approach, showing superior 

performance over recent methods in both segmentation and localization accuracy. 

1. Introduction  

Infrared small target detection (IRSTD) is a fundamental research area in computer vision with 

broad applications in various fields, such as detecting fighter jets and ships in military contexts or 

identifying intruders in critical areas. In the era before the explosion of convolutional neural networks 

(CNNs) and deep learning, researchers typically applied image decomposition and matrix theory to 

IRSTD tasks, such as local contrast filtering and matrix rank decomposition. In recent years, deep 

learning methods have achieved breakthrough progress across various computer vision domains. In 

IRSTD, Dai et al. [1] redefined IRSTD as a segmentation task, which mitigates the issue of 

incomplete convergence of the anchor box during model training caused by the small size of the target 

in the data. 

Building on this foundation, many researchers have continued to innovate and proposed several 
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algorithms based on the segmentation framework. These methods significantly outperform traditional 

algorithms in both accuracy and inference speed. However, they still struggle to detect extremely 

small targets in complex scenes. Li et al. [2] identified the issue of semantic gaps between layers in 

segmentation frameworks and designed a dense nested structure to enhance feature interactions 

between layers, attempting to reduce the semantic gaps. However, this approach imposes a substantial 

computational burden and often requires more time for inference. 

To address this challenge, we have improved the classic U-Net segmentation network by designing 

a semantic gap elimination module (SGEM) to reduce semantic gaps between layers. Our method 

does not require adding considerable network layers to compute semantic correlations between layers, 

as in dense nested structures. Instead, it directly calculates the semantic correlation between 

intermediate and deep layers, thereby eliminating the largest semantic gap in deep networks. 

Compared to existing deep learning methods, our approach not only achieves superior segmentation 

and localization accuracy but also offers significantly faster inference speeds, boasting 3 times the 

frames per second (FPS) compared to the fastest current deep learning methods. 

2. Related Work 

2.1. Segmentation Framework 

The segmentation framework for IRSTD was first proposed by Dai et al [1]. They also attempted 

to integrate local contrast operators from traditional algorithms as prior knowledge for neural 

networks to assist in model training [3]. Kou et al. [4] combined detection and segmentation networks, 

employing coarse detection as a prior for the segmentation network within a multi-task framework, 

which further enhanced the localization capability of the segmentation network. Wu et al. [5] 

improved the classic segmentation network, U-Net, by embedding a U-Net structure in each network 

layer, strengthening the model's ability to retain small targets. Zhang et al. [6] and Li et al. [7] both 

introduced edge supervision methods. By designing additional network modules to process the target 

edges obtained from label images using the Sobel operator, they assisted in the training of the 

segmentation network. These models are highly sensitive to targets with significant edge features but 

still face challenges when dealing with extremely small targets with blurred edges.  

2.2. Semantic Gap 

Li et al. [2] argued that the semantic gap between layers is the primary reason for suboptimal 

segmentation performance in IRSTD tasks. They added numerous network layers to the classic U-

Net architecture and continuously guided the recovery of previous layer features with deeper features 

throughout the decoding process, thereby constructing a densely nested structure within the network 

framework. This structure achieved groundbreaking progress in segmentation accuracy. However, 

due to the large number of network layers requiring additional computation, its spatial and temporal 

consumption is more than twice that of other models, which poses a significant burden for certain 

IRSTD applications, such as military and real-time monitoring. Later, other researchers continued to 

improve the dense nested framework, achieving some optimization in terms of accuracy and 

computational efficiency, but still could not avoid the inherent flaws of this structure. 

3. Method 

3.1. Segmentation Framework 

We make improvements to the classic U-Net segmentation network, and the framework of our 
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model is shown in Figure 1. As can be seen, our model follows an encoder-decoder architecture, 

where the encoder extracts feature of the original image at different scales, and the decoder 

progressively fuses these features to recover the spatial resolution. Notably, we have eliminated the 

skip connection between the third layer of the encoder and the second layer of the decoder, replacing 

it with the SGEM. Specifically, the features from the third layer of the encoder and the first layer of 

the decoder are both fed into the SGEM. By calculating the linear correlation between these features, 

the module produces a semantic probability distribution matrix. This output is then employed as the 

result for the second layer of the decoder, contributing to the subsequent feature fusion and decoding 

operations. This approach replaces the dense nested structure, which relies on considerable network 

layers to bridge the semantic gaps between layers, leading to improvements in both accuracy and 

inference speed compared to the dense nested structure. The computational process of the SGEM will 

be described later.  

 

Figure 1: The overall architecture of our proposed method. 

3.2. Semantic Gap Eliminate Module 

In this section, we provide a detailed description of the implementation process of the SGEM, as 

shown in Figure 1. We simultaneously input the output of the third encoder layer and the output of 

the first decoder layer into the SGEM to compute the semantic probability distribution matrix. 

Specifically, the input features are first transformed into linear vectors through different initial 

convolutional and linear layers. These vectors are then processed through matrix multiplication and 

per-channel convolutions to restore the original three-dimensional features. Finally, the probability 

distribution is normalized to the range of 0 to 1 using a softmax activation function. Residual 

connections are employed to ensure the effective transmission of deep features, which are then output 

to the second layer of the decoder. The detailed implementation of the semantic probability 

distribution matrix are as follows: 

                                                     𝑄 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐶𝑜𝑛𝑣1×1(𝐸3))                  (1) 
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                                                     𝐾 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐶𝑜𝑛𝑣1×1(𝐷1))                                                  (2) 

                                                𝑀𝑎𝑡𝑟𝑖𝑥 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑜𝑛𝑣1×1(𝑄 ⊗ 𝐾))                                                 (3) 

Our design is inspired by linear cross-attention, a method that adapts the kernel self-attention 

mechanism from Transformers to compute correlations between different network layers. In this 

approach, input features from various sources are modeled as Q, K, and V, and linearized attention 

operations are performed. The linearization process serves two main purposes: it reduces the 

dimensionality of matrix operations, thereby decreasing computational complexity, and it eliminates 

redundant information through model training, ultimately enhancing the efficiency of IRSTD. 

3.3. Loss Function 

We employ the SoftIoU loss function to train our IRSTD network model. The SoftIoU loss 

function is particularly effective in handling class-imbalanced datasets, as it provides smoother 

gradient updates, which help mitigate oscillations during the training process. This makes it well-

suited for datasets with imbalanced categories, ensuring more stable and effective training. 

In segmentation models, predictions are typically represented as binary masks. To evaluate the 

similarity between the predicted and ground truth masks, we compute the intersection and union of 

the two masks, followed by the calculation of the intersection over union (IoU) ratio. The SoftIoU 

loss function first scales the model’s predictions using a sigmoid function, mapping the outputs to a 

range between 0 and 1. This scaling enables the use of derivatives in the loss calculation. It then 

computes the intersection and union sets of the predicted and true masks, ultimately calculating the 

IoU ratio. The formal definitions are as follows: 

         𝑙𝑜𝑠𝑠 = −
1

|𝐶|
∑

∑ 𝑦𝑡𝑟𝑢𝑒𝑦𝑝𝑟𝑒𝑑𝑝𝑖𝑥𝑒𝑙𝑠

∑ (𝑦𝑡𝑟𝑢𝑒 + 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒𝑦𝑝𝑟𝑒𝑑)𝑝𝑖𝑥𝑒𝑙𝑠𝐶

                                              (4) 

Where C represents the total number of categories, 𝑦𝑡𝑟𝑢𝑒 denotes the true target pixel points, and 

𝑦𝑝𝑟𝑒𝑑 represents the predicted pixel points. 

4. Experiment 

4.1. Datasets 

We select the NUDT-SIRST dataset as the experimental dataset. This dataset, developed by Li et 

al. [2], is a synthetic collection consisting of 1,327 images with a resolution of 256x256 pixels. The 

backgrounds include various scenes such as cities, fields, oceans, and skies, while the targets 

primarily consist of small objects such as drones, airplanes, and ships. For model training, we adopt 

the original data split proposed by the authors, with the dataset divided into training and testing sets 

in a 1:1 ratio, resulting in 663 training images and 664 testing images. 

4.2. Implement details 

All traditional methods are implemented on MATLAB R2023b, all data-driven methods are 

implemented by PyTorch on a computer equipped with an Intel(R) Core(TM) i7-11700K @ 3.60GHz 

CPU and an NVIDIA GeForce RTX 3090 GPU. The images input into models are randomly cropped 

to 256 × 256. The training epoch, batch size and learning rate are set to 1500, 8 and 0.0001. 
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4.3. Evaluation Metrics 

We use Intersection over Union (IoU) to evaluate the model's ability to segment target boundaries, 

F1 score to provide a comprehensive assessment of the model's precision and recall, floating point 

operations (FLOPs) to evaluate the computational complexity of the algorithm, Params to assess the 

model size, and FPS to measure the inference speed. These metrics offer a thorough evaluation of 

each model's overall performance in terms of accuracy and computational efficiency. 

4.4. Quantitative Results 

Table 1: Comparison to the data-driven methods in terms of IoU (×102), F1(×102), FLOPs(G), 

Params(M) and FPS. 

 IoU F1 FLOPs(G) Params(M) FPS 

ACMNet[1] 60.75 75.58 1.31 1.54 103 

ALCNet[3] 81.60 89.87 4.34 0.37 20 

IAANet[4] 84.03 91.32 436.79 14.05 14 

UIUNet[5] 85.83 92.37 54.50 50.54 48 

ISNet[6] 66.77 80.08 30.63 1.09 70 

DNANet[2] 86.57 92.80 14.28 4.70 27 

ABCNet[8] 83.28 90.87 5.31 9.09 95 

EGPNet[7] 71.52 83.39 19.55 3.54 92 

Ours 87.64 93.41 15.92 8.69 342 

As shown in Table 1, our model achieves the best results in both segmentation accuracy and 

localization precision. Although our approach does not demonstrate a significant advantage over other 

models in terms of algorithmic complexity and parameter count, it excels in inference speed. 

Specifically, our model is more than three times faster than the next fastest deep learning method, 

ACMNet. 

Our approach employs computationally intensive linear relational models to address inter-layer 

semantic gaps, with minimal impact on inference speed. Additionally, we expand the initial number 

of channels in the model to enhance its learning and representational capabilities during the early 

encoding phase. This results in a larger parameter count compared to the lightweight model, ALCNet. 

However, in general, appropriately scaling the model is essential for achieving higher accuracy. 

5. Conclusion 

This paper improved upon the classic U-Net segmentation network by designing the SGEM to 

reduce the semantic gap between network layers. Unlike dense nested structures that require the 

addition of numerous layers to compute level-to-level semantic correlations, our model directly 

calculated the semantic correlations between intermediate and deeper layers, thereby eliminating the 

largest semantic gaps in the deeper layers of the network. Compared to existing deep learning methods, 

our model not only leaded in segmentation accuracy and localization precision but also boasted an 

exceptionally fast inference speed, achieving three times the FPS of the other fastest deep learning 

methods. 

Although our approach demonstrates significant advantages in both inference speed and model 

accuracy compared to recent deep learning methods, challenges remain when confronted with 

complex scenes characterized by strong background clutter and very weak target signals. In such 

scenarios, our method may still experience issues such as miss detection and false alarm. This presents 

a significant challenge for applications requiring extremely high detection accuracy. Therefore, in the 
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future, we plan to further optimize the algorithm and develop datasets for algorithm validation to 

enable real-world deployment in practical applications. 
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