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Abstract: This paper focuses on the map-less navigation problem of autonomous vehicles 

based on deep reinforcement learning, and proposes a map-less navigation method for 

autonomous vehicles based on an improved Twin Delayed Deep Deterministic Policy 

Gradient (TD3) algorithm. Aiming at the problems of navigation success rate, exploration 

performance, and training time of existing map-less navigation algorithms based on deep 

reinforcement learning, the following innovations are used to optimize the above 

performance: ① Optimize the neural network structure of the TD3 algorithm to enhance the 

exploration ability of autonomous vehicles in complex environments. ②  Construct a 

composite reward function to integrate dense rewards and sparse rewards, which significantly 

speeds up the training speed of the algorithm. Finally, the algorithm in this paper only needs 

12% of the training amount of the comparison algorithm to achieve the same success rate. A 

comprehensive test environment and a special test environment were built in a simulation 

environment for comparative experiments. The results show that the navigation success rate 

of the algorithm in this paper is increased by 11.80% in the comprehensive test environment; 

the obstacle avoidance success rate is increased by 40% and 70% in the special test 

environment, and the exploration success rate is increased by 100%. In the test of real 

complex environment, the navigation algorithm is not adjusted, and it can effectively drive 

the autonomous vehicle to perform map-less navigation. The navigation effect and portability 

of the algorithm are verified. 

1. Introduction 

The emergence of Deep Reinforcement Learning (DRL) has catalyzed innovative paradigms for 

autonomous navigation [1-4]. DRL-based systems endow agents with autonomous decision-making 

faculties through continuous environmental interaction coupled with deep network policy 

approximation, offering three strategic benefits: 1) Obviates the need for annotated training datasets 

2) Facilitates comprehensive edge case discovery through self-supervised exploration surpassing 

conventional rule-based systems 3) Exhibits superior temporal action sequence learning capabilities 

compared to traditional machine learning approaches. 

Notable DRL implementations include the BADGR framework [5, 6] leveraging monocular visual 

inputs for autonomous wayfinding, Huang et al.'s Goal-oriented Transformer Architecture (GTA) [7] 
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enhancing map-less navigation through heterogeneous sensor fusion, and Cimurs' Geometric Deep 

Autoencoder (GDAE) [8,9] achieving efficient environment modeling via LiDAR point cloud 

processing with enhanced computational economy and cross-domain adaptability. 

The GDAE algorithm can achieve map-less navigation in unknown environments with less input 

information and a lightweight neural network. However, there is still much room for improvement in 

the algorithm's navigation success rate and algorithm training speed. Based on this, this paper studies 

how to use lidar to perceive the surrounding environment information in real time in an unfamiliar 

environment with complex static and dynamic obstacles, realize end-to-end obstacle avoidance 

decision control, and improve the navigation success rate of autonomous vehicles and speed up 

training. The main contributions of this paper are: 

(1) In order to solve the problem that autonomous vehicles cannot find suitable driving routes in 

complex environments due to insufficient exploration, this paper optimizes the neural network 

architecture of the deep reinforcement learning algorithm, and improves the navigation success rate 

in complex environments by improving the algorithm's exploration. 

(2) Constructing a composite reward function effectively improves the algorithm's training speed. 

This algorithm only requires 12% of the training volume of the GDAE algorithm to achieve the same 

navigation success rate. 

2. Autonomous Vehicle Navigation Algorithm 

The autonomous vehicle map-less navigation method proposed in this paper consists of the 

following three parts: 

(1) Simulation Environment. The simulation environment is constructed in Gazebo, a autonomous 

vehicle simulator integrated with the Autonomous vehicle Operating System (ROS), which provides 

high-fidelity physics engine and sensor modeling capabilities. This platform replicates real-world 

complex unknown scenarios and serves as both a data source and validation benchmark for navigation 

algorithms. 

(2) Reinforcement Learning Components in Navigation. For differential-drive autonomous 

vehicles, the action space is designed based on their kinematic model, comprising linear and angular 

velocities. The state space integrates environment states and vehicle states. A hybrid reward function 

combining sparse and dense rewards is implemented to accelerate training convergence, enhance 

obstacle avoidance capabilities, and improve trajectory smoothness. 

(3) Enhanced TD3 Algorithm. The Twin Delayed Deep Deterministic Policy Gradient (TD3) [10], 

an actor-critic framework-based DRL algorithm for high-dimensional continuous action spaces, is 

optimized to address limitations observed in GDAE navigation. Key improvements include: Network 

Architecture Refinement: Enhanced neural network structures for improved policy stability and 

information utilization efficiency. Adaptive Noise Attenuation Strategy: Redesigned exploration 

noise decay mechanism that balances exploration-exploitation trade-offs during training phases. 

2.1. Architectural Optimization of TD3 Algorithm 

The proposed methodology introduces architectural refinements to the Critic Network within the 

TD3 framework. The network's input layer configuration processes both environmental state 

representations (44-dimensional vector) and actuator command signals (2-dimensional vector). While 

conventional TD3 implementations employ linear concatenation of these heterogeneous feature 

streams, our analysis reveals significant dimensional disparity between sensory inputs (44D) and 

control outputs (2D). This dimensional imbalance induces feature dominance phenomena where high-

dimensional state representations disproportionately influence network activations, effectively 

suppressing the discriminative power of lower-dimensional action parameters during feature fusion. 
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Figure 1: Improved Critic Network. 

The proposed architecture addresses this dimensional disparity through optimized feature fusion 

strategy, as illustrated in Figure 1. Rather than direct vector concatenation, we implement dual-stream 

dimensional homogenization where both state (44D) and action (2D) vectors undergo feature 

projection via independent dense layers before integration. We devise a soft feature preservation 

mechanism within the Critic Network architecture: The state processing stream generates transformed 

representation s sh W s  , while the action processing stream produces residual-enhanced encoding 

a a ah W a b  . 

( )s a ah W s W a b                                                          (1) 

The fusion mechanism employs weighted summation of both vectors while preserving only the 

action branch's bias term ab  . This configuration bears conceptual similarity to residual network 

principles, where the action branch's bias functions analogously to a residual component. Such design 

prevents complete overshadowing of action features by high-dimensional state representations during 

fusion. By maintaining localized enhancement of action features through bias retention, the 

architecture effectively mitigates information submergence issues where low-dimensional action 

vectors might otherwise be overwhelmed by state vectors. This strategic partial reinforcement enables 

enhanced network adaptability for discovering latent environmental-action correlations while 

maintaining dimensional compatibility between heterogeneous feature spaces. 

2.2. State Space Design 

The autonomous vehicle generates the action of the next moment based on the state space S , 

which contains the information of the autonomous vehicle in the environment at the current moment. 

According to the operating environment and algorithm requirements of the autonomous vehicle, the 

state space designed in this paper consists of the environment state envS  and the autonomous vehicle 

state vehiclelS  . Among them, envS   is composed of the environment state array. The sensor of the 

autonomous vehicle is a 360-degree LiDAR. If all the point cloud data are directly flattened as the 

environment state array, the dimension of the environment state array will be too high, which will 
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drown out the information of other states. The algorithm in this paper down samples the point cloud, 

divides the area around the vehicle into 40 intervals, and uses the nearest point cloud distance in each 

interval to form the environment state envS  . ssing a 40-dimensional array to represent the 

environment can take into account the comprehensive expression of environmental information and 

the lightweight of the environment state array. vehiclelS   contains the autonomous vehicle's own 

information, including the Cartesian distance goaldis  between the autonomous vehicle and the target , 

the relative angle 
goal  between the autonomous vehicle and the target , and the linear velocity xv  and 

angular velocity of the autonomous vehicle 
z  at the current moment . 

[ , , , ]vehicle goal goal x zdis v S                                                       (2) 

Finally, the state space S   is represented by a 44-dimensional vector concatenated from the 

environment state vector and the autonomous vehicle state vector. 

[ , ]env vehicleS S S                                                                 (3) 

2.3. Action Space Design 

The carrier of the algorithm in this paper is the Bingda-RK3566 autonomous vehicle in the 

simulation. This is an autonomous vehicle with differential steering. The algorithm controls the linear 

velocity and angular velocity of the autonomous vehicle. Therefore, the action space A  is composed 

of the linear velocity xv  and angular velocity 
z : 

[ , ]x zv A                                                                    (4) 

2.4. Reward Function Design 

2.4.1. Sparse Reward Function 

The episodic incentive mechanism operates exclusively at terminal states, assigning performance 

evaluations to the autonomous system. Termination conditions comprise three operational scenarios: 

successful navigation to target coordinates, physical collision detection, and exhaustion of predefined 

episode duration without task completion. This structural configuration facilitates exploratory 

behavior modulation while emphasizing temporal abstraction and strategic generalization in policy 

development. In our framework, distinct incentive values are assigned according to these terminal 

states through predefined weighting coefficients. 
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                                              (5) 

2.4.2. Dense Reward Function 

The heading alignment reward mechanism evaluates the angular relationship between the robot 

and target at every time step. This calculation compares the current heading angle current  with the 

previous angle pre . When both angles share directional consistency (identical sign) with reduced 

angular magnitude ( | | | |current pre  ), the system issues orientation improvement rewards. Conversely, 

directional inconsistency or angular magnitude increase triggers penalty deductions. This differential 
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reward structure r   serves dual objectives: 1) Promoting rapid directional convergence through 

immediate angular optimization incentives. 2) Implementing asymmetrical reward magnitudes where 

positive rewards exceed negative penalties, thereby preventing rotational oscillations while 

maintaining progressive heading adjustments. 

1.5,  if * | | |
-2,  else

current pre current prer
    


0 & |

 
                                        (6) 

The Euclidean distance metric between the robotic agent and its target undergoes evaluation at 

every temporal iteration. This comparative analysis involves measuring the instantaneous separation 

distance currentd  against the preceding measurement pred . When the current proximity measurement 

demonstrates spatial advancement ( current pred d  ), the system assigns progressive proximity 

incentives. Conversely, any measured regression in navigational progress ( current pred d  ) triggers 

corresponding penalty deductions. To facilitate accelerated path optimization toward the objective, a 

target-oriented distance reward component distr   is explicitly formulated through this conditional 

reward allocation mechanism. 

1.5,  if 
-2,  else

current pre
dist

d dr 


 
                                                     (7) 

dense distr r r                                                                (8) 

The reward function  of the algorithm is designed as: 

sprase denser r R                                                             (9) 

3. Experiments  

3.1. Special Scenario Navigation Experiment 

In order to quantitatively analyse the obstacle avoidance and exploration performance of the 

algorithm, this paper designed three special scenarios. As shown in Figure 2, the left part is three 

simulation scenarios, and the right part is the corresponding real vehicle experimental scenario. 

(a) A narrow path with a width of 1 meter. In this scenario, the autonomous vehicle does not need 

to make complex decisions. It only needs to drive forward and avoid obstacles on both sides in time 

when the vehicle body is close to the obstacles on both sides, and keep driving in the center. Therefore, 

scenario (a) avoids the influence of decision-making and only tests the obstacle avoidance 

performance of the algorithm. 

(b) A narrow gate with a width of 1 meter. The fault tolerance space of the vehicle body when 

passing through the narrow gate is 20 cm. Unlike scenario (a), scenario (b) has no walls on both sides 

as constraints before passing through the narrow gate. It is necessary to adjust the direction in time in 

front of the door to pass through, which is more difficult. In scenario (b), the autonomous vehicle can 

always perceive the passable area in front, so this environment excludes the influence of road 

decisions and only tests the obstacle avoidance performance of the algorithm. 

(c) A scenario of bypassing obstacles to test the exploration of the algorithm. . The obstacle in 

front of the autonomous vehicle is 4 meters long. At the starting point, there are no obvious obstacles 

farther away in the environment state array, that is, the autonomous vehicle cannot sense that both 

sides are passable at the starting point. In this scenario, there are no obstacles very close to the 
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autonomous vehicle, eliminating the influence of obstacle avoidance and only testing the exploratory 

nature of the algorithm. 

The proposed algorithm and GDAE algorithm were simulated and tested in the above three 

scenarios, and each scenario was simulated for 10 rounds. In the experiment of scenario (a), the 

autonomous vehicle using the proposed algorithm will turn earlier when approaching the wall, keep 

driving in the middle, and no collision occurs. However, the GDAE algorithm does not avoid in time 

or even does not avoid in time. In the experiment of scenario (b), although the first half of the 

trajectory of the autonomous vehicle using the proposed algorithm is not facing the narrow gate, it 

can turn in time before passing through the narrow gate, so that the vehicle body is in the middle of 

the channel and passes smoothly. Most of the trajectories of the GDAE algorithm did not turn in time, 

and only 2 trajectories passed through the narrow gate. In scenario (c), no matter where the 

autonomous vehicle using the proposed algorithm is facing in the initial direction, it will first drive 

to the front of the wall, then drive along the wall at a slower speed, and after finding a passable gap, 

it will pass through the gap with the optimal path and drive to the end. The algorithm always walks 

along the left side of the wall before passing through the obstacle, which may be because more similar 

paths were collected and learned during training. The GDAE algorithm can only give a local optimal 

strategy in this scenario. The autonomous vehicle first drives to the wall, then does not move or sways 

in place, and does not conduct effective exploration. In the process, it runs out of time or collides, 

resulting in navigation failure. 

  
Scenario (a) The narrow path. 

 
 

Scenario (b) The narrow gate. 

 

 

Scenario (c) The detour scenario. 

Figure 2: Special scenario simulation and experimental environment. 
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Experiments in special scenarios have proved that the algorithm in this paper effectively improves 

the obstacle avoidance performance of the algorithm through the composite reward function, and 

effectively improves the exploration performance of the algorithm by optimizing the neural network 

structure. 

3.2. Special Scenario Navigation Experiment 

In order to test the algorithm's training speed and navigation performance in complex 

environments, four different simulation environments were designed as shown in Figure 3: (a) ENV1: 

10m×10m area containing static obstacles (21% coverage) for algorithm training. (b) ENV2: 

Enhanced version of ENV1 with increased static obstacles (27% coverage) for higher scene 

complexity. (c) ENV3: Expanded 20m×20m workspace with reconfigured static obstacles (23% 

coverage). (d) ENV4: ENV3 baseline with 4 random dynamic obstacles (24% coverage) to evaluate 

algorithm generalization in dynamic scenarios. 

    

(a) ENV1. (b) ENV2. (c) ENV3. (d) ENV4. 

Figure 3: Four simulation environments with complex obstacles. 

  

(a) Navigation success rate in training. (b) Navigation success rate in testing. 

Figure 4: Navigation success rate in training and testing. 

As shown in Figure 4(a), after 10,000 rounds of training, the navigation success rate of the 

proposed algorithm is 97.12%, while the navigation success rate of the GDAE algorithm is 84.78%. 

The proposed algorithm can achieve a success rate of 84.58% after 1,200 rounds. The main reasons 

for the fast algorithm training speed and high success rate are: the reward function provides correct 

guidance for the navigation strategy of the autonomous vehicle. The optimization of the neural 

network structure effectively improves the exploration performance. 

The proposed algorithm and the GDAE algorithm were tested in the four environments in Figure 

3. 400 consecutive navigation experiments were performed in each environment, and the navigation 

success rate was recorded in Figure 4(b). The navigation success rate is an important criterion for 

evaluating navigation strategies and is a comprehensive reflection of the obstacle avoidance and 

exploratory nature of the algorithm. As shown in Figure 4(b), the navigation success rate of the 

proposed algorithm has been significantly improved in all four environments. In the experiment, if 

the starting point and the end point are both in a relatively open area, both algorithms can successfully 

navigate. If the starting point or the end point is in an obstacle-dense area at the edge, the success rate 

of the GDAE algorithm will drop significantly. Therefore, the proposed algorithm effectively 

improves the success rate in the comprehensive environment by improving the navigation success 
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rate in the obstacle-dense area. 

4. Conclusions 

In this paper, a map-less navigation method for autonomous vehicles based on deep reinforcement 

learning is proposed to solve the problems of low navigation success rate, insufficient exploration 

performance and slow training speed of map-less navigation algorithms in complex environments. 

Through theoretical analysis and experimental verification, the following conclusions are drawn: 

(1) This paper constructs a composite reward function, combines the advantages of dense rewards 

and sparse rewards, and guides the convergence of acceleration strategies through multi-dimensional 

guidance. Experimental results show that the algorithm in this paper only needs 12% of the training 

amount of the comparison algorithm to achieve the same performance. And by optimizing the network 

structure of the TD3 algorithm, the exploration ability of the algorithm in complex environments is 

improved. 

(2) The navigation performance of the algorithm in comprehensive navigation environment and 

special environment is compared and tested in simulation, and the transferability and robustness of 

the algorithm are verified through real vehicle experiments. Without adjusting the navigation 

algorithm, the real vehicle achieves efficient navigation in obstacle avoidance test environment and 

exploratory test environment. 

The current algorithm still has the problem of large fluctuations in the trajectory of the autonomous 

vehicle and a large room for improvement in trajectory smoothness. Future research can further 

explore multi-modal sensor information fusion strategies, such as acceleration, vision and other 

information, to further improve the trajectory smoothness of the navigation algorithm. 
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