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Abstract: The classical K-means clustering algorithm is widely used in various fields due to 

its simple implementation and efficient computation, but the classical K-means clustering 

algorithm relies on the random selection of the initial center of mass, which is prone to fall 

into the deadlock of local optimality. In order to break through this limitation, the quantum 

K-means clustering algorithm is introduced, which is able to explore multiple potential 

clustering center combinations at the same time through the parallelism of quantum 

computation, so as to have a greater probability of converging to the globally optimal 

solution. Quantum K-means clustering algorithms typically employ fidelity as a similarity 

measure between quantum states, and similarity is assessed by calculating the probability of 

overlap between quantum states. However, the fidelity only quantizes the pure state 

information of the quantum states and ignores the classical statistical features of the data 

itself, which may lead to unreasonable clustering boundaries in mixed state or noise 

interference scenarios. In response to the above problems, this paper proposes an improved 

quantum-classical hybrid similarity metric, whose core idea is to incorporate the dual 

constraints of quantum information and classical features. 

1. Introduction 

In today's data-driven scientific and industrial applications, although classical machine learning 

algorithms have made remarkable achievements, they face computational challenges when the 

amount of data increases. In recent years, with the accelerated development of quantum technology, 

quantum computing has demonstrated superior performance in dealing with classical problems, e.g., 

Shor[1] proposed the Las Vegas algorithm for finding discrete logarithms and factorizing integers, 

proving the exponential acceleration advantage of quantum computers for these two types of number 

theoretic problems, revealing the potential of quantum computing to subvert the classical computing 

paradigm. In 1996, Grover's quantum search algorithm[2] was used to solve the search problem of 

unstructured databases, proving the advantage of quantum computing in search problems and 

becoming an important part of quantum algorithms. Based on the proposal of these algorithms, some 

scholars have widely applied them as subroutines in various quantum machine learning algorithms. 

Anguita[3] et al. used Grover's quantum search algorithm in support vector machine to improve the 

training efficiency to optimize SVM. Ruan[4] et al. proposed a quantum principal component analysis 
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method applied to face recognition, which utilizes the quantum state to face feature encoding and 

using Grover quantum search algorithm for face recognition with secondary acceleration to improve 

the efficiency of the algorithm. 

Quantum computing has also shown great potential in tasks such as clustering and classification. 

Kerenidis[5] et al. extended the work of quantum machine learning by proposing an end-to-end 

quantum algorithm to perform spectral clustering. The algorithm is capable of completing the 

clustering task with high accuracy and a more efficient runtime, which provides a new way of thinking 

about other machine learning and optimization algorithms based on graph structures. Wiebe[6] et al. 

proposed a quantum algorithm for nearest neighbor classification can effectively handle the task of 

classifying datasets with high-dimensional feature space and large-scale training samples, and is 

robust to noise interference, and the algorithm outperforms classical algorithms in terms of time 

performance and classification accuracy. 

The classical K-means clustering algorithm is widely used in unsupervised learning tasks due to 

its simple operation and high efficiency, while quantum computing provides a potential solution for 

clustering big data, the quantum K-means clustering algorithm is proposed in this context, which aims 

to optimize the classical K-means clustering algorithm by taking advantage of the advantages of 

quantum computing. Khan[7] et al. proposed quantum K-means clustering analysis using shallow 

quantum circuits, which not only reduced the number of quantum operations but also significantly 

improved the accuracy of the algorithm. Arthur[8] et al. proposed a quantum method for training 

balanced K-means clustering models, which is a quantum scheme that can more efficiently 

approximate the globally optimal solution of the training problem than the classical method, and 

shows better scalability when dealing with large-scale datasets. Ohno[9] proposed a quantum 

subroutine for the quantum-enhanced K-means algorithm, which achieves algorithm optimization by 

eliminating the traditional center-of-mass computation step. Based on the principle of quantum 

entanglement, the quantum subroutine can output an estimate of the Euclidean distances between the 

data points and the clustering center-of-mass for a given set of clusters, and it is capable of achieving 

exponential speedup for large-scale datasets. The current status of these studies shows the potential 

of quantum computing and lays a solid foundation for the future development of quantum technology. 

The main contributions of this paper are: 

First, different quantum state encoding approaches are taken and the effects of these encoding 

approaches on the quantum K-means clustering algorithm are compared. 

Second, a quantum-classical hybrid distance is proposed considering the influence of classical data 

itself on the clustering effect. 

Finally, three UCI datasets are selected to compare the quantum K-means clustering algorithm 

with the classical K-means clustering algorithm to verify the effectiveness of the proposed method. 

2. Quantum K-means clustering based on improved quantum state similarity metrics 

Quantum K-means clustering enhances classical K-means through quantum computing 

capabilities, leveraging quantum parallelism and state superposition for efficient processing of large-

scale and high-dimensional datasets. The algorithm encodes data points and centroids as quantum 

states manipulated via quantum circuits, employing core quantum techniques including state 

encoding and quantum distance measurement. 

2.1 Quantum state encoding approach 

Quantum computation demands specialized encoding to bridge classical-quantum data 

compatibility, achieved through mathematical mappings into Hilbert space via quantum gates. This 

section analyzes two primary encoding schemes: amplitude and angle encoding, which maintain 
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critical data properties while enabling quantum superposition and entanglement operations. 

2.1.1 Amplitude encoding 

Amplitude encoding achieves exponential quantum resource efficiency by embedding high-

dimensional vector data into quantum state amplitudes. Specifically, for a normalized real vector 

1 2( , , )Nx x x x  of length N , it can be mapped onto a superposition state of 2logn N  quantum 

bits by amplitude encoding, which is formally represented as: 

 
1

N

i

i

x i


     (1) 

Where i  is the computational ground state of the n  quantum bit system. Amplitude 

encoding's logarithmic qubit scaling enables efficient handling of complex data, remaining vital for 

quantum ML and chemistry despite stringent normalization requirements.  

2.1.2 Angle encoding 

Angle encoding converts classical data into quantum states by mapping input values to rotation 

angles of qubit gates, enabling parameter embedding through single-qubit rotations. In terms of 

implementation, a single quantum bit can encode multiple classical parameters by means of a generic 

single quantum bit gate 3( , , )U    . For n dimensional classical data 1 2( , , , )nx x x x , an angle 

encoding method corresponding to one quantum bit per dimension can also be used, and if the ( )yR   

gate is used, the classical data can be encoded into the following quantum state: 
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This encoding creates tensor product states through gate rotation parameters, achieving hardware-

efficient implementation ideal for dynamic parameter optimization in variational quantum classifiers. 

2.2 Parameter selection for the quantum state encoding method 

Quantum encoding parameters serve as critical interfaces between classical data and quantum 

feature spaces, governing model representational capacity and convergence. This work implements 

quantum K-means clustering with amplitude and angle encoding, and will analyze their parameter 

configurations. 

(1) Amplitude encoding 

When using amplitude encoding, the single quantum bit gate usually selected is the ( )yR   gate, 

and the calculation of   is mainly performed in the following way: for any data point ( , )a b  in the 

data set, which needs to be normalized first in order to satisfy the normalization condition of the 

quantum state, there are 
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 (3) 

Then the data point ( , )a b  amplitude can be encoded as 

 0 1a b    (4) 
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Because any single quantum bit state   , can be expressed as: 

 cos 0 sin 1
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Where   is a polar angle and  0,   , so the coefficients correspond to have 
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Then the data point ( , )a b  can be encoded as 

   0yR   (7) 

(2) Angle encoding 

In the SWAP test circuit utilizing angle encoding, the single quantum bit gate usually selected is 

the 3( , , )U     gate, which will cause information redundancy if the three parameters are selected 

simultaneously, so in this paper, we make 0  . The parameters   and   are computed mainly in 

the following way: for any data point ( , )a b  in the dataset, it is normalized and transformed to[10] 
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Then the data point ( , )a b  can be encoded as 

  3 , ,0 0U    (10) 

2.3 Improved quantum state similarity metrics 

For two pure states   and  , fidelity as the fundamental distance metric between data 

representations is defined as the squared overlap: 

  
2

,F      (11) 

the range from 0 to 1, with higher values indicating greater proximity in Hilbert space. The SWAP 

test quantifies quantum state similarity by entangling states through controlled SWAP gates and 

measuring ancilla qubit probabilities. The test circuit and its core steps are as shown in Figure 1: 

 

Fig. 1 SWAP test circuit diagram 

13



First, the auxiliary quantum bit is initialized to 0  , and the quantum states to be compared   

and   are stored in two registers, respectively, so that the system input states are 

 1 0      (12) 

Applying a Hadamard gate to the auxiliary quantum bit yields 

    2

1 1
0 1 0 1

2 2
           (13) 

Applying SWAP gate yields  

  3

1
0 1

2
       (14) 

Finally, applying another Hadamard gate to manipulate the auxiliary quantum bits yields 

    4 3

1
0 1

2
H                 (15) 

Then the probability of measuring auxiliary quantum bits to get 0  is: 

 
2

4 4

1 1
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2 2
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Specifically, when the amplitude encoding in Section 3.2 is used, The test circuit is refined as 

shown in Figure 2: 

 

Fig. 2 SWAP test circuit for amplitude encoding 

When the angle encoding in Section 3.2 is used, the test circuit is refined as follows in Figure 3: 

 

Fig. 3 SWAP test circuit for angle encoding 

While quantum state fidelity effectively measures similarity in Hilbert space, traditional quantum 
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K-means clustering overlooks the original data's geometric topology. Furthermore, dimensional 

compression during quantum encoding induces local manifold distortion, adversely affecting 

clustering performance. To overcome the above limitations, this paper innovatively proposes a hybrid 

quantum-classical distance metric. Define the hybrid quantum-classical distance metric formula as: 

  1 2max P(0)i i
i

dis x x   (17) 

where 11 12 1( , , )nA x x x  and 21 22 2( , , )nB x x x  are any two points in the n -dimensional space 

before quantum encoding, and P(0)  denotes the probability that the auxiliary quantum bit is in the 

ground state 0  as measured by the SWAP test circuit. 

2.4 Implementation process of quantum K-means clustering algorithm 

Quantum K-means clustering algorithm is obtained by introducing quantum computation on the 

basis of classical K-means clustering algorithm and is based on the quantum mixing distance 

proposed in Section 2.3 as a quantum state similarity metric. The specific steps of quantum K-means 

clustering algorithm are as follows in Table 1: 

Table 1 Quantum K-means algorithm 

Algorithm 1 Quantum K-means algorithm 

Input: Dataset  1 2, , nD x x x , where 
d

ix R  

      Number of clusters k  

      Maximum iterations maxT  

      Convergence threshold   

Output: Cluster assignments  1 2, , kC C C C  

Cluster centroids  1 2, , kc c c c  

Procedure: 

1.Initialize Centroids 

Randomly select k  distinct data points from D  as initial centroids: 

 
1

(0)

2, ,j i i ikc x x x  for 1,2,j k  

  2. Iterate until convergence 

      a. Cluster Assignment (Quantum Step): 

          For each data point ix D : 

             i. Quantum Encoding: 

                Prepare quantum state i  using angle or amplitude encoding 

             ii. Distance Calculation: 

                 For each centroid 
( )t

jc : 

                    1. Encode centroid as j  using same method 

                    2. Construct quantum circuit with i , j , ancilla qubit 

                    3. Apply controlled-SWAP operations 

                    4. Measure ancilla M times, record P(0)  

                    5. Compute hybrid distance:  

 d max P(0)t

ij im jm
m

x c   

            iii. Assign ix  to nearest cluster: 

                 arg min dij
j

l   
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                  l l iC C x  

      b. Centroid Update (Classical Step): 

          For each cluster 1, ,j K : 

              
1 1

j

t

j

x Cj

c x
C





   

      c. Convergence Check: 

           Compute 
1max t t

j j
j

c c    

           Until    or maxt T  

3. Return final clusters  1 2, , kC C C C and centroids  1 2, , kc c c c  

3. Experimental simulation and analysis 

3.1 Dataset Selection and Preprocessing 

In order to evaluate the performance of the quantum K-means clustering algorithm based on the 

improved quantum state similarity measure, three real UCI datasets are selected in this paper, namely, 

the Iris, Seeds, and Wine datasets, which are available for download at 

http://archive.ics.uci.edu/ml/datasets.php, and Table 2 lists the basic information of these three 

datasets.  

Table 2 UCI dataset information table 

number data set sample size dimensionality Number of categories 

1 Iris. 150 4 3 

2 Seeds 210 7 3 

3 Wine 178 13 3 

To address the computational efficiency and interpretability challenges of quantum K-means 

clustering for high-dimensional data, this paper proposes a dimensionality reduction optimization 

strategy. By compressing UCI standard datasets into two-dimensional space through Principal 

Component Analysis while retaining the core features of the data, this approach effectively reduces 

quantum bit consumption and mitigates quantum noise interference. 

3.2 Experimental Simulation and Analysis 

This section compares the performance of the proposed quantum K-means-Amplitude, quantum 

K-means-Angle with the classical K-means clustering algorithm on the Iris, Seeds and Wine datasets 

through three sets of comparative experiments, Table 3 – 5 Quantitatively presents the comparative 

data for the five evaluation metrics. 

Table 3 Iris dataset comparison of clustering effects using different methods 

Evaluation indicators K-means quantum K-means-Amplitude quantum K-means-Angle 

ARI 0.6146 0.6205 0.6312 

NMI 0.6956 0.6893 0.7042 

SC 0.8674 0.8551 0.8596 

CH 681.0889 670.0490 674.7586 

DB 0.4361 0.4661 0.4566 

Table 3 shows quantum K-means-Angle achieves superior ARI/NMI scores in Iris classification, 

effectively capturing categorical features. Although amplitude encoding reaches 0.6205 ARI, its 
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weaker SC/DB metrics reveal sensitivity to specific traits. The triangular PCA distribution naturally 

complements angle encoding's directional separation, while amplitude encoding's dimension 

reduction compromises feature representation through information loss. 

Table 4 Seeds dataset comparison of clustering effects using different methods 

Evaluation indicators K-means quantum K-means-Amplitude quantum K-means-Angle 

ARI 0.6142 0.6192 0.6506 

NMI 0.6395 0.6047 0.6355 

SC 0.7958 0.7694 0.8103 

CH 592.3293 564.1185 643.6940 

DB 0.5454 0.5410 0.5341 

Table 4 highlights angle encoding's superiority in seed classification, with quantum K-means-

Angle showing 8.7% higher CH index through directional pattern capture in PCA space via quantum 

phase modulation. Amplitude encoding's inferior NMI performance stems from lost high-dimensional 

correlations during dimensionality reduction and measurement-induced state perturbations causing 

label inconsistencies. 

Table 5 Wine dataset comparison of clustering effects using different methods 

Evaluation indicators K-means quantum K-means-Amplitude quantum K-means-Angle 

ARI 0.7587 0.7726 0.7742 

NMI 0.7624 0.7728 0.7740 

SC 0.8186 0.8167 0.8171 

CH 497.7627 495.5086 497.3176 

DB 0.4723 0.4739 0.4749 

Table 5 shows quantum K-means-Angle's modest 2.04% ARI and 1.52% NMI gains over classical 

methods in PCA-reduced Wine data. Although amplitude encoding achieves comparable ARI, its 

compromised DB scores reveal separation deficiencies. Minimal SC and CH variations across 

methods indicate that 13D→2D compression constrains quantum advantages by eliminating high-

dimensional patterns essential for quantum feature representation. 

4. Conclusion 

In this paper, a new quantum-classical hybrid distance is proposed and clustering performance 

comparison experiments are carried out based on three UCI standard datasets. By comparing and 

analyzing the classical K-means algorithm with two quantum K-means clustering algorithms with 

different encoding methods, it is found that quantum K-means with angle encoding exhibits relatively 

superior clustering performance. The experimental results show that with the continuous development 

of quantum computing hardware, quantum-enhanced clustering algorithms are expected to break 

through the computational bottleneck of traditional machine learning in dealing with high-

dimensional and large-scale datasets, and provide a new technological path for intelligent data 

analysis. 
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