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Abstract: Accident prediction is crucial in the mining process, but existing methods have 

limitations in capturing the spatiotemporal correlation and dynamic changes of the mine 

environment, making it difficult to accurately predict the propagation path and impact 

range of accidents. To this end, this paper applies a graph neural network (GNN) model, 

constructs a graph structure based on the mine environment, and optimizes the accident 

propagation prediction algorithm to improve the accuracy and real-time performance of 

accident prediction. In view of the diversity of mine data, this paper constructs three main 

graph structures: sensor network graph (based on sensor data correlation), mine area 

topology graph (based on the interactive relationship between personnel, equipment and 

mine area units) and accident propagation path graph (based on accident trigger points and 

impact range). The edge weights of the sensor network graph are calculated by the Pearson 

correlation coefficient (PCC), the edge weights of the mining area topology graph are 

calculated by normalizing the number of interactions, and the edge weights of the accident 

propagation path graph are dynamically updated using the Gaussian decay model. In order 

to further improve the spatiotemporal modeling capabilities of accident prediction, this 

paper uses a spatiotemporal graph neural network (ST-GNN) combined with a graph 

convolutional network (GCN) for spatial information extraction, and a temporal 

convolutional network (TCN) for time series modeling. The experimental results show that 

the proposed GNN model has significantly improved the accident prediction accuracy, 

accident propagation path identification accuracy and response time. The accident 

prediction accuracy of ST-GNN (this study) is 92.3%, and the F1-score is 0.91, which is 

excellent. ST-GNN performs well in predicting accident propagation paths, can accurately 

capture the chain reaction of mine accidents, and provides strong support for mine safety 

management. 

1. Introduction 

Coal mining is a special operation. Unsafe behaviors of people and unsafe conditions of objects 

may lead to accidents, which may cause serious personal injury and property loss. Accident analysis 
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and prediction are important guarantees for safety. The importance of the probability of occurrence 

of events at the top of the accident tree to system safety evaluation is unquestionable. Therefore, 

This paper proposes a mine accident prediction model based on spatiotemporal graph neural 

network (ST-GNN). By graphing the mine environmental data and modeling the spatiotemporal 

characteristics, it can effectively predict the occurrence of accidents and their propagation paths. 

Specifically, this paper first introduces the graph representation method of mine environmental data, 

including sensor network graph, mine area topology graph and accident propagation path graph. 

Then, a dynamic graph model is constructed by combining time series information to capture the 

propagation dynamics of accidents. Finally, ST-GNN is used for accident prediction. 

This paper first introduces the background and research purpose of mine accident prediction, and 

proposes an innovative idea of using graph neural network (GNN) for accident prediction. Then, the 

paper describes in detail the graph representation method based on mine environment data, 

including sensor network construction, mine area topology map and accident propagation path 

modeling. Subsequently, combined with time series information, the paper applies the application of 

dynamic graph models in accident prediction and proposes a spatiotemporal graph neural network 

(ST-GNN) model. The following chapters present the experimental design and result analysis, 

focusing on comparing the performance of different models in terms of accident prediction accuracy, 

false alarm rate, missed alarm rate, and computational efficiency. Finally, the paper summarizes the 

contributions of the research and proposes directions for future research. 

2. Related Work 

As the safety requirements of the mining industry continue to increase, researchers are 

committed to improving the level of mine accident prediction and safety management by using 

machine learning and deep learning technologies. Javaid et al. used machine learning technology to 

analyze the causes of past coal mine accidents. They used TF-IDF (Term Frequency-Inverse 

Document Frequency) technology to extract features and trained a Voting Hybrid Classifier (VHC), 

which combines random forests, support vector classifiers, and logistic regression, and evaluated 

through soft voting [1]. In order to establish an effective coal mine water inrush prediction model, 

Ye et al. proposed a neural network prediction method based on the improved SMOTE (Synthetic 

Minority Over-sampling Technique) algorithm and Deep Belief Network (DBN). The results 

showed that the water inrush prediction accuracy was 94%[2]. In order to predict sick leave caused 

by accidents, Ramos et al. used the BERT (Bidirectional Encoder Representations from 

Transformers) model to represent text information, combined with numerical and binary variables 

extracted from the report, and input it into the Multilayer Perceptron (MLP) for prediction. Through 

cross-validation, the median accuracy of the model was 73.5% [3]. Masood et al. developed an 

automated algorithm based on monitoring displacement data to detect the beginning of slope 

acceleration and predict instability. The model adopts a five-stage audit method. When the analysis 

result is positive, it means that the slope is accelerating. The start time of acceleration is used to 

further predict the time of slope instability, establish an early warning system, and thus improve the 

overall safety and performance of the mine [4]. Trirat et al. proposed the MG-TAR (Multigrid 

Temporal Attention Reinforcement) framework, which uses a multi-view graph neural network and 

a multi-attention module to achieve multi-graph association learning. The results show that 

MG-TAR can reduce the accident risk prediction error by 23% and improve the prediction accuracy 

of the most dangerous area by 27% compared with existing methods [5]. Tang pointed out that in 

the mining industry, AI is used for environmental monitoring, hazardous gas detection, and remote 

hazard assessment. The oil and gas industry uses AI to analyze safety data of wellheads, pipelines, 

and valves, and to provide personalized training[6]. Youhua et al. used the LightGBM model to 
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predict the severity of occupational injuries of mining workers, and combined the SHAP (Shapley 

Additive Explanations) method to improve the model interpretability. The results showed that 

injuries to the head and neck and multiple parts of the body had a significant impact on the risk of 

occupational fatalities[7]. Bing et al. proposed an intelligent architecture that integrates the Internet 

of Things, 5G, and edge computing, and verified its effectiveness through experiments on deep 

learning fire prediction algorithms to improve coal mine safety and emergency response speed[8]. 

Hui et al. proposed a time series prediction model that combines Variational Mode Decomposition 

(VMD) and Deep Belief Network (DBN) to improve the accuracy of water surge prediction. 

Experimental results show that the VMD-DBN model has high accuracy in water surge prediction 

and has great practical application value[9]. To improve construction site safety, Mostofi and Toğan 

proposed a new bilateral construction safety network that combines the interaction of human 

behavior and work environment factors. The high-level information of the bilateral network is 

learned through a graph convolutional network to predict the severity of construction accidents. The 

prediction accuracy is 85.67% when tested on a dataset[10]. Babaeian et al. used the Generalized 

Regression Neural Network (GRNN), Gene expression programming (GEP), and GRNN 

(GA-GRNN) models based on genetic algorithms, and established a statistical model through 

multivariate regression. The results showed that the GA-GRNN model performed best in predicting 

the distance of flying rocks, which helped to reduce damage to buildings and mining machinery 

[11]. Although existing research has made some progress in mining accident prediction and safety 

management, it still faces bottlenecks such as data imbalance, insufficient feature extraction, and 

insufficient model interpretability, which limit its practical application effect. 

3. Method 

3.1 GNN Model Design and Optimization 

The core of mining accident prediction lies in the reasonable construction of the graph structure 

of the mine environment so that GNN can learn and reason. Mine environment data has the 

characteristics of strong spatiotemporal correlation and diverse data sources (such as sensors, 

equipment status, personnel location, etc.). For different data types, we can construct three main 

graph structures: sensor network graph, mining area topology graph and accident propagation path 

graph. 

(1) Sensor network construction (node: sensor, edge: data correlation) 

In the mine environment, a large number of sensors are deployed to monitor environmental 

parameters such as temperature, humidity, gas concentration, carbon monoxide content, air flow 

rate, vibration, etc. The sensor network can be represented as an undirected or directed graph: 

Nodes (V) represent sensors at different locations, and edges (E) represent the correlation between 

sensors. Sensors with correlation between data can also be connected. Mine sensor network diagram 

is as follows: 

𝐺𝑠 = (𝑉𝑠, 𝐸𝑠, 𝑋𝑠)                                                                     (1) 

Among them: 𝑉𝑠 is the sensor set, each sensor node 𝑣𝑖 has a feature vector 𝑥𝑖, which contains 

the environmental parameters it monitors; 𝐸𝑠 is the edge set between sensors, which represents the 

data association between sensors; 𝑋𝑠 is the node feature matrix, which contains the measurement 

data of all sensors. 

Edge weights can be calculated using the Pearson Correlation Coefficient (PCC): 

𝑤𝑖𝑗 =
∑ (𝑥𝑖.𝑡−𝑥̅𝑖)(𝑥𝑗,𝑡−𝑥̅𝑗)𝑇

𝑡=1

√∑ (𝑥𝑖.𝑡−𝑥̅𝑖)2𝑇
𝑡=1 √∑ (𝑥𝑗,𝑡−𝑥̅𝑗)2𝑇

𝑡=1

                                                    (2) 
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Among them: 𝑥𝑖.𝑡 and 𝑥𝑗,𝑡 are the data collected by sensors i and j at time t, respectively. 𝑥̅𝑖 

and 𝑥̅𝑗 are the average measurement values of sensors i and j, respectively. The value range of 𝑤𝑖𝑗 

is between [−1,1], and the larger the value, the higher the correlation between the two sensor data. 

If 𝑤𝑖𝑗 exceeds the set threshold r, it is considered that there is an edge eij between sensors i 

and j. Finally, a weighted sensor network graph is formed. 

(2) Construction of mining area topology (nodes: miners/equipment/mining area units, edges: 

interaction relationships) 

The mining area topology can be modeled as a heterogeneous graph. 

𝐺𝑚 = (𝑉𝑚, 𝐸𝑚, 𝑋𝑚)                                                                      (3) 

Among them: nodes (V) can include three types of nodes - miner 𝑉ℎ, equipment 𝑉𝑑 and mining 

area 𝑉𝑧 units; edges (E) represent the interactive relationship between miners and equipment (such 

as operation, maintenance), the positional relationship between miners and mining area units, and 

the association between equipment and mining area units (the location of the equipment). 

Node characteristics (X): 

Miners: location coordinates, working hours, operation records. 

Equipment: equipment type, operating status, maintenance records. 

Mining unit: area type, historical accident rate. 

Defining the connection weight 𝑤𝑖𝑗 between miners and equipment: 

𝑤𝑖𝑗 =
𝑛𝑖𝑗 

𝑁𝑖
                                                                               (4) 

Among them: 𝑛𝑖𝑗 represents the number of interactions between miner i and device j in the past 

period of time. 𝑁𝑖 is the total number of all interactions of miner i in the same period of time. 

If 𝑤𝑖𝑗 exceeds the threshold, it is considered that there is an interaction relationship between 

miner i and device j, and an edge 𝑒𝑖𝑗 is added to the graph. 

The mining area topology map can be used to predict the security risks that miners may face. 

(3) Accident propagation path modeling (node: accident trigger point, edge: impact range) 

Mine accidents are contagious. For example, gas leakage may cause explosions, and equipment 

failure may cause collapse. Therefore, we can construct an accident propagation graph. 

Ga = (Va, Ea, Xa)                                                                   (5) 

Among them: nodes (V) represent different accident trigger points; edges (E) represent possible 

propagation paths of accidents; node features (X) represent accident types, impact ranges, historical 

accident data, etc. 

Assuming that the impact range of accident propagation obeys the Gaussian attenuation model, 

the weight of the edge can be expressed as: 

𝑤𝑖𝑗 = 𝑒
−

𝑑𝑖𝑗
2

2𝜎2                                                                     (6) 

Among them: 𝑑𝑖𝑗 represents the distance between the accident source i and the affected area j. 

σ is the scale parameter of the impact diffusion (which can be adjusted according to the actual 

situation of the mine). If 𝑤𝑖𝑗 exceeds the threshold, it is considered that the accident will spread 

from node i to node j. 
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3.2 Dynamic Graph Model Combined with Time Series Information to Predict Accident 

Propagation Path 

3.2.1 Dynamic graph representation of accident propagation 

The occurrence and spread of mining accidents are usually dynamic, involving changes in time 

and space. For example, a gas leak may spread throughout the mine within minutes, and a 

mechanical failure may lead to a more serious accident through a series of chain reactions. 

Therefore, static graph models are difficult to capture the temporal characteristics of accident 

propagation, and spatio-temporal graph neural networks (ST-GNN) are needed to model the 

accident propagation path, predict its diffusion trend, and formulate corresponding emergency 

response measures. 

Accident propagation can be modeled as a dynamic graph. At different time steps t, the structure 

and node characteristics of the graph may change over time: 

𝐺𝑡 = (𝑉𝑡, 𝐸𝑡, 𝑋𝑡)                                                                           (7) 

𝑉𝑡 represents each area, equipment or personnel in the mine that may be affected, and the state 

of the node will change over time; 𝐸𝑡 represents the propagation path of the accident, such as the 

fire spread path and the gas diffusion path, and the weight of the edge may be updated over time; 

𝑋𝑡 represents the characteristics of each node, such as temperature, gas concentration, equipment 

status, etc., which evolve over time. 

3.2.2 Spatio-temporal modeling method for accident propagation 

(1) Spatio-temporal graph convolutional network (ST-GCN) 

ST-GCN (Spatio-Temporal Graph Convolutional Network) combines sequence modeling in the 

temporal dimension and topological structure learning in the spatial dimension to predict how 

accidents spread over time. 

Temporal Modeling: Temporal Convolution is used to capture the temporal evolution of the 

accident. 

Spatial Modeling: Using GCN (Graph Convolutional Network) to capture the propagation 

pattern of accidents in the mine topology. 

(2) ST-GCN propagation formula 

The core of ST-GCN is to combine graph convolution (GCN) with time series modeling. The 

node feature update at each time step t is: 

𝐻𝑡 = 𝜏(𝑊𝑔𝐺𝑡𝐻𝑡−1 + 𝑊𝑡𝐻𝑡−1 + 𝑏)                                                       (8) 

Among them: 𝐻𝑡 is the hidden state of the node at time step t; 𝐺𝑡 is the adjacency matrix at 

time step t, representing the accident propagation path; 𝑊𝑔 and 𝑊𝑡 are the trainable weight matrix; 

b is the bias term; 𝜏 is the nonlinear activation function. 

4. Results and Discussion 

4.1 Dataset 

The experiment uses real mine environment data, the data sources include: 

(1) Sensor data (temperature, humidity, gas concentration, carbon monoxide concentration, air 

flow rate, vibration, etc.) 

(2) Miner behavior data (location, working hours, operation records) 
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(3) Equipment status data (type, operating status, maintenance records) 

(4) Historical accident data (accident type, location, impact range, transmission path) 

Data preprocessing includes: 

(1) Abnormal data processing (removing sensor fault data) 

(2) Time series alignment (interpolating data at different time steps) 

(3) Feature normalization (normalizing sensor measurements to [0,1]) 

4.2 Evaluation Indicators 

This paper evaluates the performance of the accident prediction model through four main 

indicators, including accident prediction accuracy, accident propagation path identification accuracy, 

prediction lead time and computational efficiency. Among them, accident prediction accuracy 

measures the prediction correctness; accident propagation path identification accuracy evaluates the 

matching degree between the predicted path and the actual path; prediction lead time indicates the 

lead time of the prediction result compared to the actual occurrence time; and computational 

efficiency focuses on the running time of the model. 

ST-GNN (This study) GCN LSTM ARIMA Rule-based method
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Figure 1. Comparison of accident prediction accuracy and F1-score 

In the experiment, ST-GNN (this study) achieves an accident prediction accuracy of 92.3% and 

an F1-score of 0.91, which performs well, showing that the model can accurately predict the 

occurrence of mine accidents while achieving a good balance between accuracy and recall. This is 

mainly due to its ability to combine the spatiotemporal characteristics of the mine and 

comprehensively consider the spatial dependence and time evolution of accident propagation, so it 

has strong prediction capabilities. In contrast, the accident prediction accuracy of LSTM is 82.1% 

and the F1-score is 0.82. Although it can capture time series data well, it has certain limitations in 

spatial relationship modeling, resulting in a decrease in the prediction accuracy of complex accident 

propagation paths in the mine environment (as shown in Figure 1). 
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ST-GNN (This study) GCN LSTM ARIMA Rule-based method
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Figure 2. Comparison of model accuracy 

In the evaluation of false alarm rate and false negative rate in Figure 2, ST-GNN (this study) 

shows the best performance, with a false alarm rate of 5.8% and a false negative rate of 6.1%. This 

result shows that ST-GNN can effectively distinguish between accidents and normal situations in 

the mine environment, with fewer false alarm warnings, and can also detect possible accident risks 

in a timely manner and reduce the occurrence of false negatives. This is mainly due to the fact that 

it fully considers the spatiotemporal dependency relationship during modeling, allowing the model 

to more accurately identify potential danger signals. In contrast, the false alarm rate of GCN is 8.3% 

and the missed alarm rate is 10.2%. Although the model performs well in modeling spatial 

structures, it fails to effectively integrate temporal information, resulting in inaccurate prediction of 

accidents in some cases, increasing the risk of missed alarms. At the same time, the false alarm rate 

is slightly higher than that of ST-GNN, indicating that the model is not robust enough when dealing 

with some noisy data. ARIMA has a false alarm rate of 14.2% and a false negative rate of 15.1%, 

which is a relatively average performance. As a traditional time series model, ARIMA cannot 

handle the spatial dependency in the mine environment, nor can it effectively capture the complex 

propagation path of accidents in mines. Therefore, its false alarm rate and false negative rate are 

high, and its scope of application is relatively limited. 

In the experiments of lead time and inference time, ST-GNN (this study) performs well in both 

indicators. Its lead time is 15.2 minutes, which means that the model can predict the occurrence of 

accidents a long time in advance, providing more preparation time for the prevention and 

emergency response of mine accidents. In addition, although the computational efficiency of 

ST-GNN is 35.4 milliseconds, which is slightly higher than other models, considering its 

advantages of high-precision prediction and long lead time, this computational efficiency is still 

within an acceptable range, and it still has higher real-time performance than traditional methods. 

The prediction lead time of GCN is 10.5 minutes, which is slightly shorter than ST-GNN, but it can 

still provide effective warning for accident prediction within a certain period of time, as shown in 

Figure 3. In general, ST-GNN performs best in terms of advance prediction and can provide 

long-term warning for mine accidents. Although its computational efficiency is slightly lower than 

other models, it can still complete high-precision predictions within a reasonable time and has high 

practical value. 
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Figure 3. Model's lead time and computational efficiency 

Visualization results: Plotting the accident propagation path, comparing the prediction results 

with the actual results 

Table 1. Comparison of accident propagation paths 

Model Actual Propagation Path Predicted Propagation Path 

ST-GNN (This 

study) 

Gas leak → Fire → 

Equipment failure → Collapse 

Gas leak → Fire → 

Equipment failure → Collapse 

GCN 
Gas leak → Fire → 

Equipment failure → Collapse 

Gas leak → Fire → 

Equipment failure 

LSTM 
Gas leak → Fire → 

Equipment failure → Collapse 

Gas leak → Fire → 

Equipment failure 

ARIMA 
Gas leak → Fire → 

Equipment failure → Collapse 
Gas leak → Fire 

Rule-based 

method 

Gas leak → Fire → 

Equipment failure → Collapse 
Gas leak → Equipment failure 

From the data in Table 1, it can be seen that in the comparison between the actual propagation 

path and the predicted propagation path, the predicted propagation path of ST-GNN (this study) is 

completely consistent with the actual propagation path, both of which are gas leakage → fire → 

equipment failure → collapse. It indicates that the model performs well in predicting the accident 

propagation path and can accurately capture the chain reaction of mine accidents. ST-GNN uses the 

deep learning advantages of spatiotemporal information to successfully predict the evolution of 

accidents from one stage to another, providing strong support for mine safety management. 

5. Conclusion 

This study proposes a mine accident prediction method based on spatiotemporal graph neural 

network (ST-GNN), aiming to improve the accuracy, advance time and computational efficiency of 
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mine accident prediction. By graphing the mine environmental data and modeling the 

spatiotemporal features, this paper can effectively capture the complex spatiotemporal dependencies 

of mine accidents and provide more accurate and comprehensive support for accident prediction. 

The experimental results show that compared with the traditional prediction model, ST-GNN 

performs well in multiple evaluation indicators. However, this paper also points out that although 

ST-GNN has shown high performance in mine accident prediction, there is still room for 

improvement. First, future research can further optimize the model structure to improve 

computational efficiency, especially when processing large-scale data. In addition, for different 

types of mine accidents, it may be necessary to apply more domain-specific knowledge into the 

model to further improve the adaptability and generalization ability of the model. The mine accident 

prediction model based on ST-GNN provides an innovative solution for mining safety management. 

It can provide timely warning and decision support for mine managers, help reduce the occurrence 

of mine accidents and protect the lives of miners. In the future, with the enrichment of mine 

environmental data and the continuous advancement of model optimization, accident prediction 

technology based on graph neural networks is expected to play a greater role in the field of mining 

safety. 
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