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Abstract: Tropical cyclones (TCs) are among the most destructive natural disasters, posing 

significant threats to coastal regions, particularly in southeastern China, where rapid 

economic growth and urbanization have intensified the risks associated with TC-induced 

wind hazards. To enhance predictive capabilities and mitigate potential damage, this study 

leverages advanced artificial intelligence (AI) techniques, focusing on deep learning-based 

Variational Autoencoder (VAE) models, to analyze and forecast the genesis of tropical 

cyclones in the Northwest Pacific. By training the VAE on historical TC data, the model 

effectively captures the underlying patterns governing TC formation, enabling accurate 

simulations of both the frequency and spatial distribution of these events. The findings 

reveal that the VAE model performs robustly in replicating observed TC climatology, 

offering critical insights for risk assessment and disaster preparedness. Furthermore, the 

study highlights the practical applications of AI-driven TC predictions in civil engineering, 

particularly in improving wind load calculations and optimizing structural designs to 

enhance resilience against extreme wind events. This research underscores the potential of 

AI technologies in advancing meteorological forecasting and supporting sustainable 

infrastructure development in cyclone-prone regions.   

1. Introduction 

Tropical cyclones are among the most destructive natural disasters globally, particularly in the 

southeastern coastal regions of China, where rapid economic growth and urbanization have 

heightened the risks associated with TC-induced wind disasters [1,2]. Statistics show that 

approximately one-third of global tropical cyclones (around 30 annually) originate in the Northwest 

Pacific, with an average of seven TCs making landfall in southeastern China and the South China 

region each year, causing economic losses exceeding 20 billion yuan and hundreds of casualties 

[3,4]. In recent years, advancements in construction technology have led to the development of 

numerous high-rise buildings with novel structural systems in southeastern China. These modern, 

large-scale structures are characterized by their height and flexibility, making them highly sensitive 
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to wind effects. The wind-induced responses (e.g., vibration) of these structures are highly 

correlated with wind speed, meaning even small changes in wind speed can lead to significant 

variations in wind load and wind-induced responses, thereby affecting the safety and comfort of the 

structures. 

The impact of tropical cyclones on building structures is primarily manifested in wind load and 

wind-induced vibration responses. Wind load is a critical parameter in structural design, directly 

influencing the safety and economic viability of buildings. The strong winds associated with 

tropical cyclones can induce significant wind-induced vibrations, leading to structural fatigue, 

localized damage, or even total collapse. Therefore, accurate prediction of tropical cyclone genesis 

and trajectory is essential for wind load calculations and structural design. 

2. Research Methodology 

Deep learning, as a key predictive technology, plays a significant role in the field of machine 

learning. Compared to traditional machine learning methods, deep learning offers greater flexibility 

and adaptability. In recent years, with continuous technological advancements, new algorithms and 

models in deep learning have emerged, and their application demands have grown. Successful 

applications in fields such as healthcare, education, and finance have demonstrated the immense 

potential of deep learning. Consequently, an increasing number of researchers are exploring the use 

of deep learning techniques for predicting tropical cyclone activity. 

This study employs a deep learning model known as the Variational Autoencoder (VAE) [5]. 

VAE is an unsupervised deep learning generative model capable of modeling the distribution of 

training data and generating diverse, complex data. In recent years, VAE has become a popular 

method for handling complex distribution problems, widely applied in areas such as facial 

recognition, handwritten digit recognition, image segmentation, scene modeling, and static image 

prediction [6]. However, its application in predicting key parameters of tropical cyclones remains 

limited. 

This study utilizes a deep learning simulation approach, based on the tropical cyclone best-track 

dataset released by the China Meteorological Administration, to construct a tropical cyclone genesis 

model. The model employs a VAE structure, capable of handling data with latent variables and 

generating new data not present in the input data [6]. VAE trains two main functions through neural 

networks: q(z/x) and p(x/z), corresponding to the encoder network and decoder network (also 

known as the inference network and generative network), respectively. As shown in Figure 1, the 

encoder network, parameterized by θ, maps the input x to the latent variable z, while the decoder 

network, parameterized by φ, reconstructs the output x from the latent variable z. This approach 

allows VAE to effectively simulate and predict tropical cyclone behavior. 

Encoder 

q(z/x;ө)  

Decoder 
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Z
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Fig. 1. Basic Structure of VAE 

In this study, the VAE generative model consists of an encoder network and a decoder network, 
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as shown in Figure 1. The encoder network includes a connection layer, mean layer, variance 

logarithmic layer, and output layer, while the decoder network comprises one sampling layer and 

four connection layers. The model takes the monthly tropical cyclone genesis count in the 

Northwest Pacific region (2.5°×2.5°grid) from January to December over a 40-year period (1979–

2018) as input. The model outputs two components: (1) the predicted monthly tropical cyclone 

genesis count for the next 100 years, and (2) the spatial distribution of monthly tropical cyclone 

genesis for the next 100 years. This design enables the VAE model to effectively simulate the 

genesis patterns of tropical cyclones and provide reliable data for long-term predictions. 

This study compares the VAE generative model with traditional probabilistic models to evaluate 

the predictive accuracy of the AI model. Rumpf et al. [7,8], Emanuel et al. [9], and Hall and Jewson 

[10] have used historical genesis points to estimate the genesis probability at each location in the 

ocean using Gaussian kernel density functions. Therefore, this study adopts the biased 

cross-validation method proposed by Sain et al. [11] to calculate the optimal bandwidth for 

longitude, latitude, and time dimensions, as shown in Equation (1). Since the genesis location of 

tropical cyclones is determined by three dimensions (longitude, latitude, and time, i.e., d=3), 

Equation (1) can be further simplified to Equation (3) for calculation. Based on this, the kernel 

density function (Equation (1)) is used to estimate the probability density of tropical cyclone 

genesis count, the probability density of longitude and latitude distribution, and the probability 

density of genesis time [12]. This comparative analysis provides a basis for validating the 

superiority of the VAE model. 
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x—parameter to be estimated; 

xi—sample parameter; 

h—optimal bandwidth; 

n—sample size. 
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3. Results and Analysis 

3.1 Kernel Probability Density Model 

The data for this study are derived from the tropical cyclone best-track dataset provided by the 

China Meteorological Administration [13,14]. Using the kernel density estimation method, the 

annual genesis count, occurrence time, and spatial location (longitude and latitude) of tropical 

cyclones in the Northwest Pacific from 1979 to 2018 were quantitatively assessed. The study area 

was divided into 2.5°×2.5° grid cells, and the kernel density calculation results were used to 

quantify the genesis probability of tropical cyclones in each grid. 

The three-dimensional characteristics (longitude, latitude, time) of tropical cyclone genesis 

locations are shown in Figure 2. Using Equation (1), the annual genesis count was estimated, 

revealing that the annual genesis count of tropical cyclones is concentrated in the range of 25–30 

(Figure 3). Notably, due to partial missing historical data and differences in statistical standards 

among meteorological agencies, the historical distribution exhibits non-uniform characteristics. To 

validate the simulation results, the Kolmogorov-Smirnov (K-S) test and rank-sum test were used to 

analyze the consistency between the simulated data and historical data distributions. The results 

showed no significant difference at the 0.05 significance level (p=0), confirming the reliability of 

the model. 

 

Fig. 2. Spatial Distribution of Tropical Cyclones  

Further analysis of the spatiotemporal distribution patterns of tropical cyclones in the Northwest 

Pacific was conducted using the kernel density estimation method. The temporal dimension analysis 

(Figure 4) indicates that the peak period for tropical cyclone genesis is between July and October, 

with the highest frequency occurring in August. The simulation results show that the error for 

April–October and November is below 20%, with errors for April, May, August, September, and 

October further reduced to below 10%. In the spatial dimension analysis, the longitude simulation 

exhibited higher errors in the 100°E–110°E range, while errors in other regions were below 6%. In 

the active tropical cyclone region of 110°E–160°E, the error was further reduced to below 3%. 

Specifically, in the 130°E–140°E region (where the genesis probability is highest), the simulation 

error was only 0.02%. In the latitude simulation, tropical cyclones primarily originated in the 5°N–

20°N region, with errors generally below 5%. In the 10°N–15°N region (where the probability 

density peaks), the error was only 0.87%. Overall, the simulation accuracy in the spatial dimension 

was significantly higher than in the temporal dimension, and increasing the data volume 
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significantly reduced errors. 

Based on the kernel density estimation results, this study generated a probability density 

distribution map of tropical cyclone genesis in the Northwest Pacific (Figure 5). A comparison 

between historical and simulated data revealed that both datasets showed the highest genesis 

probability in the 130°E–135°E and 10°N–20°N regions (historical value: 0.0851 vs. simulated 

value: 0.0878), with a difference of only 4. In most regions, the difference approached zero, 

indicating that the kernel density model performs exceptionally well in simulating scenarios without 

climate change. 

 

Fig. 3. Probability Distribution of Annual Tropical Cyclone Genesis Count 

 

Fig. 4. Probability Distribution and Error Comparison of Tropical Cyclones in Different 

Dimensions 

 

Fig. 5. Historical and Simulated Probability Density Distribution of Tropical Cyclone Genesis 

Locations 
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3.2 VAE Model 

This section employs the Variational Autoencoder (VAE) to construct a tropical cyclone genesis 

model, thereby expanding the research methodology. The input data consist of the monthly genesis 

count in the Northwest Pacific (2.5°×2.5° grid) from 1979 to 2018. After training the model, the 

output includes the monthly genesis count and spatial distribution of tropical cyclones for the next 

100 years. This study adopted the average of five independent outputs from three VAE models as 

the final prediction to enhance the robustness of the results. 

The model performance analysis (Figure 6) shows that the historical annual genesis count was 

29.73, while the predicted means for the three VAE models were 30.88 (Model 1), 30.54 (Model 2), 

and 30.24 (Model 3), closely aligning with the historical data. The probability density distribution 

indicates that Model 1 has a broader prediction range (20–36), with the probability peak distributed 

between 34–35. Model 2 (23–34) and Model 3 (25–33) exhibit more concentrated unimodal 

distributions (peaks at 32–33 and 30–31, respectively), suggesting that model complexity 

significantly impacts output stability. 

The spatial distribution comparison (Figure 7) shows that the simulation results closely match 

the historical data in the 110°E–150°E and 5°N–20°N regions. The genesis hotspots are divided into 

two regions, with Manila as the boundary: 110°E–120°E (12.5°N–20°N) and 127.5°E–145°E 

(7.5°N–17.5°N). The differences between models may stem from insufficient data quality or 

limitations in generalization ability, but overall, the results validate the applicability of VAE for 

long-term tropical cyclone prediction. 

 

Fig. 6.Estimated Annual Tropical Cyclone Genesis Count by Different Models 

 

Fig. 7. Historical and Future Distribution of Tropical Cyclone Genesis Count 
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4. Conclusion  

This study demonstrates the effectiveness of using artificial intelligence, particularly the 

Variational Autoencoder (VAE) model, in predicting tropical cyclone generation and distribution. 

The VAE model provides accurate simulations of tropical cyclone behavior, offering valuable 

insights for wind load calculations and structural design in civil engineering. The results highlight 

the potential of AI-driven approaches in mitigating the risks associated with tropical cyclones, 

particularly in vulnerable regions like southeastern China. 
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