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Abstract: Two-dimensional joint distribution functions are extensively employed across 

multiple disciplines, serving as a critical tool to describe and quantify the intricate 

relationships between two random variables. Copula theory is widely used in the 

calculation of joint distribution function due to its flexibility in selection of marginal 

distributions and the dependency structure However, existing methods of constructing 

joint distributions based on Copula theory often face issues regarding the selection of an 

appropriate Copula function, which may be inefficient and inflexible. To address these 

issues, this paper proposes a method based on copula entropy. By using the maximum 

entropy copula entropy theory as the creteria, a two-dimensional joint probability density 

function is proposed. Case studies demonstrate that the copula entropy method is not 

limited to existing copula types and exhibits superior computational efficiency and greater 

flexibility compared to conventional copula methods when handling mixed distributions 

and multimodal distributions. 

1. Introduction 

Constructing joint probability density function (PDF) between variables is crucial in engineering 

and structural reliability, as engineering systems and structures are typically influenced by multiple 

random variables, such as material strength, external loads, and environmental conditions. These 

variables may exhibit correlations, and such correlations have a significant impact on the system's 

performance and reliability. In the field of structural reliability need to consider the relationships 

between multiple random variables, typically required the estimation of joint PDF from limited 

sample data. This can be achieved through various statistical methods, such as histograms and 

kernel density estimation. However, these methods often face difficulties when dealing with high-

dimensional data or complex dependency structures between variables, and neither method can 

provide a specific parametric expression. There are some existing two-dimensional distribution 

models, such as the two-dimensional Gaussian distribution, two-dimensional log-normal 

distribution, and two-dimensional exponential distribution, which can account for correlations 

between data. However, these models require the marginal distributions to have the same 

distribution type; for example, two-dimensional Gaussian distribution requires both marginal 

distributions to be normally distributed. In the field of structural reliability, the distribution types of 
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variables are often uncertain, the existing two-dimensional distribution models cannot accurately 

represent the correlation structure between variables. To facilitate modeling of diverse random 

variables, Li etal. [1] proposed a flexible bivariate distribution model, and is derived with the 

probability equivalently expressed as the summation of three basic probabilities corresponding to 

simple functions. These three basic probabilities are calculated with the aid of univariate cubic 

normal distribution, and thus the proposed model is named as bivariate cubic normal 

(BCN)distribution. Wu etal. [2] studied two approximation methods for constructing joint PDFS 

under incomplete probabilistic information: the approximation method P based on the Pearson 

correlation coefficient and the approximation method S based on the Spearman correlation 

coefficient. They used the Nataf distribution model [3] to obtain the joint PDF between variables. 

However, the variables need to be transformed into normal distributions through an equiprobable 

transformation, and the correlation structure is described using linear coefficients, which cannot 

solve complex correlation structures. Additionally, there are many researchers have used the Monte 

Carlo method, based on the characteristics and assumptions of real-world data, to recreate certain 

processes through computer simulations. Hawkes, Gouldby, etal. [4] used a joint probability 

analysis method with Monte Carlo simulations to fit the distributions of water levels, wave heights, 

and wave steepness, as well as their correlations. Adamson etal. [5] used the Monte Carlo method to 

analyze river flooding issues by representing the correlations between variables through a series of 

conditional distributions. However, Monte Carlo method require a large number of sample 

simulations to estimate results, what is difficult to effectively handle complex correlation structures 

between some variables. 

Sklar first proposed Sklar's Theorem [6] in 1959 and established Copula theory, which creates a 

bridge between joint distributions and marginal distributions. Nelson [7] pointed out that Copula 

theory provides a new approach for constructing joint distribution functions under incomplete 

probabilistic information. Copula function connects the joint distribution of variables with their 

marginal distributions and is essentially a joint distribution function. By differentiating the Copula 

function, we can obtain the joint PDF. At present, the commonly used Copula functions are mainly 

classified into elliptical Copulas and Archimedean Copulas.  However, a single Copula function has 

some limitations in describing the correlation structure between variables. In practical engineering 

applications, the correlation structures between variables are often quite complex, if only use a 

single Copula function may have somewhat restrictive.Hu [8] linearly combined commonly used 

Archimedean Copula functions, such as the Frank Copula, Gumbel Copula, and Clayton Copula, to 

create a new mixed Copula model. The advantage of the mixed Copula is that it can capture more 

different Copulas characteristics, offering greater flexibility and better describing complex 

correlation structures compared to a single Copula. In recent years, Cook[9] proposed the OEN 

mixed model to solving the joint distribution of wind speed and wind direction. The marginal 

distributions of the variables were used a mixture distribution, and multiple Gaussian Copulas were 

used to represent the correlation structure between variables. JI [10] developed the generalized 

bivariate mixture (GBM) model for directional wind speed using two-dimensional Copula functions, 

which Copula functions used include normal, Frank, and AMH and the marginal distributions 

include normal and logistic. There are 12 sub-models used to fit the correlation structure between 

variables, offering greater flexibility and freedom. Constructing joint PDF based on Copula theory, 

whether using a single Copula function or mixed Copula functions, the primary challenge is 

selecting an appropriate Copula function to describe the correlation structure. Up to now, there is no 

universally accepted method for selecting Copula functions, and most approaches are to select a few 

commonly used Copula functions, Dias and Embrechts used the AIC [11] (Akaike Information 

Criterion) and BIC [12] (Bayesian Information Criterion) to select the most suitable Copula 

function. However, there are many types of Copula functions, each of them have distinct 
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characteristics and can describe different correlation structures [13]. For example, the Independent 

Copula cannot reflect the impact of correlation between variables on the joint distribution function; 

the Gaussian and Frank Copulas have symmetric correlation structures; the Clayton and CClayton 

Copulas have lower tail and upper tail dependencies. The correlation structures between various 

variables are generally uncertain and diverse. If only select several existing Copula functions to 

compare to get a better Copula function, it can not really reflect the correlation structure between 

variables and the comparison efficiency between multiple Copula functions will be relatively low. 

In practical applications, selecting different Copula functions for the same problem can lead to 

different analytical results. Therefore, it is very necessary to select the Copula function which is 

suitable for the correlation structure between variables. 

To solve disadvantages of inflexibility and inefficiency in constructing two-dimensional joint 

PDF based on Copula theory, this paper introduces a method for constructing two-dimensional joint 

PDF based on Copula entropy. Copula entropy combines the advantages of Copula theory and the 

concept of information entropy, which can provide a more flexible and accurate method for 

constructing joint PDF. No longer make artificial assumptions about Copula function types, this 

approach directly solves the two-dimensional Copula probability density function using the Copula 

entropy formula through the Lagrange multiplier method and genetic algorithm based on variable 

data , then combined with the marginal distributions of the variable data itself to obtain the two-

dimensional joint PDF. 

2. Constructing Two-Dimensional Joint PDF Based on Copula Theory 

Copula theory can combine the marginal distributions of multiple random variables into a 

multivariate distribution function, effectively describing the correlations between multivariate 

variables without restricting the types of marginal distributions. Therefore, a two-dimensional 

Copula can be used to construct the joint PDF of two-dimensional random variables. 

2.1 Sklar Theorem 

Sklar theorem [6] is the core of Copula theory. It allows the joint distribution of multivariate 

random variables to be decomposed into the form of marginal distributions and a Copula function, 

and the Copula function describing the correlations between the variables. In fact a Copula function 

is a type of joint distribution function. For the case of two-dimensional random variables, a Copula 

function is defined as a two-dimensional joint distribution function with uniform marginal 

distributions [7] on the interval [0, 1] in the [0, 1]2 space. According to Sklar theorem, the two-

dimensional joint distribution function of random variables 1x  and 2x  is given by: 

1 2 1 2( , ) ( ( ), ( ); ) ( , ; )F x x C F x G x C u v  
                                       (1)  

where 𝑢 = 𝐹(𝑥1) and 𝑣 = 𝐺(𝑥2)  are the marginal distribution functions of 𝑥1 and 𝑥2 

respectively;𝐶 is the two-dimensional Copula function, and 𝛼 represents the correlation parameters 

of the Copula function. From the relationship between the joint distribution function and the joint 

PDF, the two-dimensional joint PDF is given by: 

1 2 1 2 1 2( , ) ( ( ), ( ); ) ( ) ( )f x x c F x G x f x g x                                         (2)  

where 𝑐 is the probability density function of the Copula, and 𝑓(𝑥1) and 𝑔(𝑥2) are the marginal 

probability density functions of 𝑥1 and 𝑥2 respectively.
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2.2 Comparison of Copula Function 

Copula functions can directly combine random variables following various distributions to form 

a multivariate distribution, effectively describing the dependencies between variables. However, 

different types of Copula functions capture these dependencies in different ways, each with a 

unique correlation structure. Commonly used Copula functions can be classified into elliptical 

Copulas and Archimedean Copulas. Elliptical Copulas include the Gaussian Copula and t-Copula, 

while Archimedean Copulas include the Gumbel Copula, Frank Copula, and Clayton Copula. The 

joint distribution functions, joint PDF, and the range of Copula parameters for these five two-

dimensional Copula functions are listed in Table 1. For the case of two-dimensional random 

variables, the dependencies between the variables are not fixed. Therefore, to select an appropriate 

type of Copula function that describes the optimal dependency structure between variables, a 

goodness-of-fit test for Copula functions is necessary. The commonly used AIC [11] and BIC [12]  

are important tools for selecting the most suitable Copula function. The AIC criterion aims to select 

the best model by balancing model complexity (the number of parameters) and model fit (the 

likelihood function), generally favoring more complex models. The BIC criterion, based on the AIC 

criterion, tends to favor simpler models. 

ˆ2 2ln( )AIC k L                                                           (3)  

ˆln( ) 2ln( )BIC k n L                                                        (4)  

where k is the number of parameters; 𝐿̂ is the maximum likelihood of the model; n is the sample 

size. The smaller the AIC and BIC values, the better the model fit. The root mean square error 

(RMSE) [14] is also commonly used to evaluate goodness-of-fit. Its calculation formula is as 

follows: 

2

1

1
[ ( , )] ( , )]

n

i i

i

RMSE F x y F x y
n 

                                           (5)  

where ,  ( )iF x y
 
represents the theoretical or empirical value; ,  ( )iF x y denotes the modeled value; 

n is the sample size. A smaller RMSE value indicates better model fit. This study employs both AIC 

and RMSE as evaluation metrics for model goodness-of-fit. 

Table 1 CDFs, PDFs, and Parameter Ranges for 5 Types of two-dimensional Copulas 

Type of 

Copula
 

( , ; )C u v 
 

( , ; )c u v 
 

Parameter Range 

Gaussian 
1 1( ( ), ( ))u v

   
 

1 1

1 1

(Φ ( ),Φ ( ))

(Φ ( )) (Φ ( ))

u v

u v
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 

 

   ( 1,1)  
 

t 
1( ( ), ( ))T T u T v  


 

( ( ), ( ))

( ) ( )

t T u T v

t u t v

  

 

 ( 1,1)  
 

Gumbel 
1

[ (( ln ) ( ln ) ) ]exp u v     
 

1 1

2

( ln ) ( ln )

[ 1 ( ln ) ( ln ) ]

uv u v

u v

 

 

  

    
 (1, )  

 

Clayton 
1

[max{( 1),0}]u v  


  
 

1

2( 1) ( )( 1)u v u v    


     
 

( 1,0) (0, )   
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3. Constructing Two-Dimensional Joint PDF Based on Copula Entropy 

3.1 Copula Entropy 

Copula entropy is a method for measuring the complex dependencies among variables in a 

multivariate distribution. It combines the concept of entropy from information theory and the 

Copula function from statistics. Entropy measures the uncertainty of random variables, while the 

Copula function describes the dependence structure among multiple random variables. For two-

dimensional random variables 1x and 2x , the Copula entropy is given by: 

1 1

1 2

0 0

( , ) ( , ) log ( , )H x x c u v c u v dudv                                             (6)  

where 𝑢 = 𝐹(𝑥1) and 𝑣 = 𝐹(𝑥2) are the marginal distribution functions of the two random 

variables 𝑥1and 𝑥2 respectively, c is the two-dimensional Copula probability density function, and 

H is the Copula entropy. According to the principle of maximum entropy [15], when H reaches its 

maximum value, the corresponding 𝑐(𝑢, 𝑣)  is the optimal function describing the relationship 

between the two random variables 𝑥1 and 𝑥2 , the optimal Copula probability density function 

describing the relationship between the two variables. Based on this, the two-dimensional joint PDF 

can be obtained as follows: 

1 2 1 2 1 2( , ) ( ( ), ( )) ( ) ( )f x x c F x G x f x g x                                           (7)  

where 𝑓(𝑥1) and 𝑔(𝑥2) are the marginal probability density functions of the random variables 𝑥1 

and 𝑥2 respectively, and 𝑐(𝑢, 𝑣) is the two-dimensional Copula probability density function derived 

based on Copula entropy. 

3.2 Solving the two-dimensional Copula Probability Density Function 

From Eq. 5, each entropy value corresponds to a two-dimensional Copula probability density 

function. According to the principle of maximum entropy, the 𝑐(𝑢, 𝑣) corresponding to the 

maximum H is the optimal two-dimensional Copula probability density function describing the 

relationship between the two variables. By using the Lagrange multiplier method, we maximize the 

entropy H under the given constraint conditions [16] of the Copula probability density function to 

solve for 𝑐(𝑢, 𝑣). The constraint conditions are as follows: 

1 1

0 0

( , ) 1c u v dudv  
                                                          (8)  

1 1 1 1

0 0 0 0

1
( , ) ( , )

1

r ru c u v dudv v c u v dudv
r

 
                                            (9) 

 
1 1

0 0

3
( , )

12
uvc u v dudv

 
                                                       (10)  

where r = 0,1,2 … ;  𝜌 is the Spearman rank correlation coefficient. Using these constraints, the 

Lagrange equation is given by: 
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i
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i

v c u v dudv uvc u v dudv
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 
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 





      



   



    

    

    (11)  

where λ0, λ1, λ2, λ3are the unknown Lagrange multipliers. By solving the Lagrange equation, the 

Copula probability density function 𝑐(𝑢, 𝑣) [16] can be obtained: 

2 2

0 3

1 1

( , ) exp( )i i

i i

i i

c u v u v uv   
 

                                         (12)  

where 𝜆0 can be expressed in terms of 𝜆1, 𝜆2 and 𝜆3: 

1 1 2

0 3

10 0

ln{ exp[ ( ) ] }i i

i i

i

u v uv dudv   


                                     (13)  

Combining with Eq. 11, solving for the Lagrange multipliers 𝜆1, 𝜆2, 𝜆3 yields the two-

dimensional Copula probability density function 𝑐(𝑢, 𝑣). Mead [17] and Kapur [18] proposed that 

the model parameters can be estimated by minimizing a convex function: 

2

0 3

1

( )i i

i i

i

u v uv   


                                                    (14)  

Eq. 13 can be solved using a genetic algorithm to obtain the global optimal solutions 𝜆1, 𝜆2, 𝜆3. 

From Eq. 11, the two-dimensional Copula probability density function is: 

2 2

1 2 1 2 3

1 1

2 2

1 2 1 2 3

0 0

exp( )
( , )

exp( )

u u v v uv
c u v

u u v v uv dudv

    

    

    


     

                          (15)  

4. Numerical Examples 

4.1 Example 1: Data with Two Different Distributions 

A sample of 1000 randomly generated data points was created. The random variable x follows a 

Gamma distribution with location parameter 1 2   and scale parameter 1 2  , while random 

variable y follows a Gumbel distribution with location parameter 2 2   and scale parameter 

2 2  . The marginal distributions of both variables are shown in the following figure 1 and 2: 

(1) Five bivariate copula functions were selected from Table 1 to construct the joint distribution 

function of random variables x and y, expressed as Equation (1). The corresponding joint 

probability density function was then derived by differentiating these copula functions: 

( , ) ( ( ), ( ); ) ( ) ( )f x y c F x G y f x g y                                          (16)  

where c(u, v) =
∂C2(u,v)

∂u ∂v
; ( )f x and ( )g y are the marginal probability density functions of 

variables x and y respectively. 
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Fig.1 Histogram, PDF and CDF of x Fig.2 Histogram, PDF and CDF of y 

(2) Using the sample data points in Figures 1 and 2, We estimate the parameters of the 

connection function by maximum likelihood, as shown in Table 2. 

Table 2. Parameter Values α, AIC, RMSE 

 Gaussian t Gumbel Clayton Frank 

α [1,0.0103;0.0103,1] [1,0.011;0.011,1] 1.0155 0.00145 0.1029 

AIC 7661 7657 7657 7659 7659 

RMSE 0.0039 0.0039 0.004 0.0039 0.004 

(3) Employing the same 1000 sets of random sample points, we construct the two-dimensional 

joint probability density function (PDF) through Copula entropy. Subsequently, the Lagrange 

multipliers i  are determined by implementing the methodology elaborated in Section 3.2, with 

computational results systematically organized in Table 3. 

Table 3. Lagrange Multipliers i  

i  0  1  2  3  4  5  

Parameter -0.058 0.116 0.002 0.116 0.002 -0.236 

From Tab. 3, the two-dimensional Copula probability density function is: 

2 2

1 1

2 2

0 0

exp( 0.116 0.002 0.116 0.002 0.2361 )
( , )

exp( 0.116 0.002 0.116 0.002 0.2361 )

u u v v uv
c u v

u u v v uv dudv

    


     

            (17)  

(4) Building upon both the conventional copula method and the copula entropy method to obtain 

the bivariate copula density functions, we then derived the joint probability density function of 

variables X and Y using Equation (16). The results are presented in the figure 3 to 9 below: 
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Fig.3 Original Data 

Joint PDF 

Fig.4 Gaussian 

Copula Joint PDF 

Fig.5 Clayton Copula 

Joint PDF 

Fig.6 Frank Copula 

Joint PDF 

 

   

 

 
Fig.7 Gumbel Copula 

Joint PDF 

Fig.8 t Copula Joint 

PDF 

Fig.9 Copula entropy 

Joint PDF 

 

Comparison of  Results 

The model-derived joint probability density functions obtained from both conventional copula 

and copula entropy methods were compared against theoretical values. The goodness-of-fit was 

evaluated using AIC and RMSE metrics, with comparative results presented in the following table 4: 

Table 4. Comparison of Results 

Methods Type of Copula AIC RMSE 

Copula 

Gaussian 7661 0.0039 

t 7663 0.0039 

Gumbel 7657 0.004 

Clayton 7659 0.0039 

Frank 7659 0.004 

Copula entropy - 7664 0.004 

As evidenced in the table, the copula entropy method yields AIC and RMSE values of 7664 and 

0.004 respectively, demonstrating comparable performance to conventional elliptical and 

Archimedean copulas. These results confirm that the copula entropy approach achieves satisfactory 

fitting performance for mixed-distribution data and accurately characterizes the dependence 

structure between variables. 
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4.2  Example 2: Multimodal Distribution Data 

Consider two datasets of wind speed and wind direction, where the marginal distribution of wind 

direction exhibits multimodal characteristics. Here, we treat wind speed and wind direction as 

random variables x and y, respectively. The marginal distributions of both variables are shown in 

the figure 10 and 11 below: 

  

Fig.10 Histogram, PDF and CDF of X Fig.11 Histogram, PDF and CDF of Y 

(1) Five bivariate copula functions were selected from Table 1 to construct the joint distribution 

function of random variables x and y, expressed as Equation (1). The corresponding joint 

probability density function was then derived by differentiating these copula functions: 

( , ) ( ( ), ( ); ) ( ) ( )f x y c F x G y f x g y                                            (18)  

Where c(u, v) =
∂C2(u,v)

∂u ∂v
; ( )f x and ( )g y are the marginal probability density functions of 

variables x and y respectively. 

(2) Using the sample data points, we estimated the parameters of the copula functions via 

maximum likelihood estimation and computed both AIC and RMSE values, as shown in Table 5. 

Table 5. Parameter Values α, AIC, RMSE 

 Gaussian t Gumbel Clayton Frank 

α 
[1,-0.0114;-

0.0114,1] 
[1,0.0237;0.0237,1] 1.0095 0.00145 0.2391 

AIC 45761 45725 45758 45760 45755 

RMSE 0.0278 0.0265 0.0268 0.0274 0.0260 

(3) Employing the same 1000 sets of random sample points, we construct the two-dimensional 

joint probability density function (PDF) through Copula entropy. Subsequently, the Lagrange 

multipliers i  are determined by implementing the methodology elaborated in Section 3.2, with 

computational results systematically organized in Table 6. 
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Table 6. Lagrange Multipliers i  

i  0  1  2  3  4  5  

Parameter -0.018 0.231 0.01 0.231 0.01 -0.481 

From Table 6, the two-dimensional Copula probability density function is: 

2 2

1 1

2 2

0 0

exp( 0.231 0.01 0.231 0.01 0.481 )
( , )

exp( 0.231 0.01 0.231 0.01 0.481 )

u u v v uv
c u v

u u v v uv dudv

    


     

                  (19)  

(4) Building upon both the conventional copula method and the copula entropy method to obtain 

the bivariate copula density functions, we then derived the joint probability density function of 

variables X and Y using Equation (18). The results are presented in the figure 12 to 18 below: 

    

Fig.12 Original Data 

Joint PDF 

Fig.13 Gaussian 

Copula Joint PDF 

Fig.14 Clayton 

Copula Joint PDF 

Fig.15 Frank Copula 

Joint PDF 

 

   

 

 
Fig.16 Gumbel 

Copula Joint PDF 

Fig.17 t Copula Joint 

PDF 

Fig.18 Copula 

entropy Joint PDF 

 

Comparison of Results 

The model-derived joint probability density functions obtained from both conventional copula 

and copula entropy methods were compared against theoretical values. The goodness-of-fit was 

evaluated using AIC and RMSE metrics, with comparative results presented in the following table 7: 
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Table 7. Comparison of Results 

Methods Type of Copula AIC RMSE 

Copula 

Gaussian 45761 0.0278 

t 45765 0.0264 

Gumbel 45758 0.0267 

Clayton 45760 0.0274 

Frank 45755 0.0260 

Copula entropy - 45751 0.0259 

The results in Table 7 indicate that the copula entropy method achieves superior performance 

with AIC = 45,751 and RMSE = 0.0259, which are significantly lower than those obtained from 

conventional elliptical and Archimedean copulas. This demonstrates that the copula entropy 

approach provides better fitting performance for multimodal distribution data and more accurately 

characterizes the dependence structure between variables. 

5. Conclusion 

The copula entropy method combines the maximum entropy principle with copula theory, 

retaining copula theory's advantage of constructing multivariate distributions from random variables 

with different marginal distributions to describe their dependencies, while overcoming the 

limitations of traditional copula theory. Unlike being constrained to existing copula function types, 

this method directly computes the relationships between variables from data, making the function 

types more flexible. 

Moreover, it eliminates the need to assume copula function types and reduces redundant 

computations, thereby improving computational efficiency to some extent. Since it performs 

calculations directly using variable data, even for complex mixed distributions, the copula entropy 

method can solve the two-dimensional copula probability density function and consequently obtain 

a concise and easily expressible two-dimensional joint probability density function. 

However, the copula entropy method has poorer accuracy and unsatisfactory fitting performance 

when dealing with two-dimensional joint probability density functions between random variables 

with identical distributions. The fundamental issue lies in the fact that the coefficients obtained 

through Newton's iteration method are not optimal. Therefore, how to obtain the optimal 

coefficients requires further in-depth research. 
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