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Abstract: This paper developed a support vector machine (SVM) regression model to predict 

the axial compressive capacity of concrete-filled steel tubular (CFST) columns with built-in 

steel reinforcement. The input parameters of the regression model included the calculated 

length, outer diameter, wall thickness, and yield strength of the steel tube, the axial 

compressive strength of concrete, the cross-sectional area of the embedded steel 

reinforcement, and its yield strength. The output parameter was the experimentally measured 

axial compressive capacity. A dataset of 38 specimens was utilized, with 30 samples for 

model training and 8 for testing. The results demonstrated that the SVM regression model 

achieved a coefficient of determination (R²) of 0.98435, a mean absolute error (MAE) of 

49.119, and a mean bias error (MBE) of -3.679 on the training set. For the testing set, the 

model yielded an R² of 0.9455, an MAE of 96.6133, and an MBE of -19.9404. These findings 

indicate that the proposed SVM model provides accurate predictions for the axial 

compressive capacity of CFST columns with built-in steel reinforcement, offering robust 

theoretical support and a reliable predictive tool for related engineering design and 

performance evaluation. 

1. Introduction 

Steel-reinforced concrete-filled circular steel tube (SRCFCST) columns represent a novel 

composite structural member that leverages the interaction between the steel tube and concrete, as 

well as the synergistic effects of the embedded steel reinforcement, to fully exploit the advantages of 

each material[1-3]. This configuration significantly enhances the compressive, flexural, and shear 

resistance of the component[3]. The structure exhibits superior seismic performance due to the 

combination of the steel tube's plastic deformation capacity and the concrete's energy dissipation 

capacity, enabling excellent ductility and energy dissipation capabilities under seismic loading. In 

practical engineering applications, SRCFCST columns offer notable construction advantages[4]: the 

steel tube serves as formwork, reducing on-site formwork installation efforts, while post-concrete 

pouring and curing procedures are simplified, thereby enhancing construction efficiency. 

Additionally,the durability of SRCFCST columns is exceptional, as the steel tube provides effective 

protection against environmental degradation, including moisture ingress, freezing, and corrosive 
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agents, thereby extending the service life of the structural element[5]. 

Support Vector Machine (SVM) is a machine learning method grounded in statistical learning 

theory, characterized by strong generalization capability and adaptability to small-sample datasets[9]. 

In predicting the axial compressive capacity of steel-reinforced concrete-filled circular steel tube 

(SRCFCST) columns, the axial load-bearing behavior is influenced by multiple interdependent 

factors, including the calculated length, outer diameter, wall thickness, and yield strength of the steel 

tube; the axial compressive strength of concrete; and the cross-sectional area and yield strength of the 

embedded steel reinforcement[10]. These parameters exhibit intricate nonlinear relationships. SVM 

effectively addresses such nonlinearity through kernel functions, enabling precise establishment of 

mapping relationships between input and output variables. Given the limited experimental data in this 

study, SVM demonstrates superior learning and predictive performance for small-sample scenarios, 

facilitating the development of reliable predictive models even with constrained datasets. 

Consequently, SVM represents a highly suitable approach for predicting the axial compressive 

capacity of SRCFCST columns[11]. 

2. Correlation analysis 

To precisely quantify the linear correlations among input features, this study employs Pearson 

correlation analysis. By computing the Pearson correlation coefficient between any two parameters, 

this method enables efficient evaluation of the linear correlation strength among variables. The 

mathematical expression for the Pearson correlation coefficient is provided below as Equation (1): 

 𝑟 =
∑  𝑛
𝑖=1 (𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√∑  𝑛
𝑖=1 (𝑋𝑖−𝑋̅)

2√∑  𝑛
𝑖=1 (𝑌𝑖−𝑌̅)

2 (1) 

 

Figure1 Pearson correlation diagram 

The Pearson correlation coefficient ranges from -1 to 1, where the sign reflects positive or negative 

linear correlations. A larger absolute value of r indicates a stronger linear relationship between 

variables. Figure1 illustrates the correlation matrix between input and output variables in the 

experimental dataset. Analysis reveals complex correlations between SRCFCST characteristic 

parameters and the axial compressive capacity. Notably, Ntu  exhibits relatively strong positive 

correlations with the outer diameter of the steel tube(D) ( r = 0.81 ) and the yield strength of the steel 

tube (Fsy) ( r = 0.72 ), indicating that D and Fsy exert significant positive influences on the axial 

compressive capacity of SRCFCST in this dataset. While most other input parameters also show 

positive correlations with Ntu, these relationships are not governed by simple multivariate linear 

dependencies but instead reflect complex nonlinear mappings. 
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3. Data processing and assessment of indicators 

This study employs MATLAB (R2020a) as the primary computational platform for developing 

machine learning predictive models. The experimental dataset comprising 38 samples[6-8] was 

partitioned into two distinct subsets: a training set (train_data) with 30 samples and a test set 

(test_data)containing 8 samples. During the model training phase, the training set was utilized for 

algorithm learning and hyperparameter optimization, with optimal model configurations selected 

through systematic evaluation metrics. Subsequently, the test set was employed to validate the 

generalizability of the finalized model. The mathematical formulations for these metrics are defined 

in Equations (2) through (5):   

 𝑅2 = 1 − (
∑  𝑛
𝑖=1 (𝑥𝑖−𝑦𝑖)

2

∑  𝑛
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2 ) (2) 
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To address the heterogeneity in data scales across input features, this study implements min-max 

normalization to confine each feature dimension within the interval [-1, 1], thereby enhancing the 

model's convergence rate and predictive accuracy. The normalization process employs the 

mapminmax function, whose mathematical formulation is expressed as: 

 𝑋∗ =
𝑥𝑖−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
, 𝑥𝑖 ∈ 𝑥 (6) 

4. Optimal parameter selection for SVM 

As a classical supervised learning algorithm, Support Vector Machine (SVM) has been extensively 

applied in regression prediction domains. Its fundamental principle involves identifying the optimal 

regression hyperplane by margin maximization to achieve effective data fitting. SVM demonstrates 

exceptional performance in addressing nonlinear problems, particularly in scenarios characterized by 

limited sample sizes and high-dimensional feature spaces, such as predicting the axial compressive 

capacity of steel-reinforced concrete-filled circular steel tube (SRCFCST) columns.   

The selection of kernel functions and their hyperparameters profoundly influences SVM's internal 

mechanisms and predictive performance. Model optimization necessitates meticulous parameter 

tuning to balance fitting accuracy and generalization capability. The specific hyperparameter 

configurations are as follows[12]:   

1) Kernel Function Selection: The Radial Basis Function (RBF) kernel was adopted. The RBF 

kernel effectively captures nonlinear relationships between input features, offering advantages such 

as parametric simplicity, automatic adaptation to complex interaction orders, and robustness against 

noise. These properties make it an ideal choice for modeling the coupled multi-physics behavior of 

SRCFCST systems.   

2) Kernel Parameter Optimization: The kernel parameter γ was set to 0.8. This parameter regulates 

the local sensitivity of feature mapping, preventing model performance degradation caused by either 

excessive γ values (leading to high variance) or insufficient γ values (resulting in high bias)[13].   

3) Penalty Factor Configuration: The penalty factor C was fixed at 4.0. This parameter mediates 

the trade-off between model complexity and training error tolerance. Experimental results indicate 
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that excessively high C values (C > 10) induce overfitting, while insufficient C values (C < 1) risk 

underfitting. For the present dataset, C = 4.0 achieves optimal equilibrium between error control and 

generalization capability[14].   

 

Figure 2 The comparison between the real value and the predicted value of the SVM train set 

 

Figure 3 The comparison between the real value and the predicted value of the SVM test set 

5. SVM model training results 

Using the aforementioned SVM kernel function and hyperparameters, model training was 

conducted on the training set, followed by predictive validation on the test set. The training outcomes 

are presented in Figure 2, Figure 3 and Table 1. 

Table 1 Calculated results of each statistical parameter of the SVM model 

 R2 MAE MABE RMSE 

train set 0.98435 49.119 -3.679 85.3278 

test set 0.9455 96.6133 -19.9404 119.7851 

Table 1 presents the statistical performance metrics of the Support Vector Machine (SVM) model 

on both training and testing datasets, including the coefficient of determination (R²), mean absolute 

error (MAE), mean bias error (MBE), and root mean squared error (RMSE). These metrics 

collectively evaluate the model’s fitting efficacy and predictive accuracy across different dimensions.   

The model achieved an R² value of 0.98435, indicating its ability to explain 98.435% of the 

variance in the training data, which reflects excellent fitting performance. The MAE and RMSE 

values were 49.119 and 85.3278, respectively, confirming minimal deviations between predicted and 

actual values. Notably, the MBE of -3.679 suggests a slight systematic underestimation bias in the 

training phase. However, the magnitude of this bias remains negligible relative to the overall 

predictive accuracy, demonstrating limited impact on model reliability.   

On the test set, the model maintained robust generalization capability with an R² of 0.9455, 

accounting for 94.55% of the variance in unseen data. The MAE and RMSE increased to 96.6133 and 
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119.7851, respectively, which is expected due to inherent uncertainties in extrapolating to new 

samples. While these error metrics exhibit moderate elevation compared to the training set, they 

remain within acceptable bounds for engineering applications. The MBE of -19.9404 indicates a more 

pronounced underestimation trend in testing, potentially attributable to dataset limitations or 

nonlinear interactions not fully captured during training.   

This comparative analysis underscores the model’s high fidelity in replicating training patterns 

while retaining reasonable generalizability, thereby validating its applicability for axial capacity 

prediction in SRCFCST systems. 

6. Test set prediction results 

Figure 4 shows the prediction results of the SVM model test set. From the comparison results in 

the figure, it can be seen that there is a high degree of agreement between the predicted values of the 

SVM model (red curve) and the actual axial compressive load bearing capacity values measured in 

the test (blue curve). In 8 groups of test samples, the maximum error between the predicted value of 

SVM model and the actual value of axial compressive load capacity is 7.29%, the minimum error is 

0.73%, and the average error is 1.01%.The computational errors of the SVM model are 

68.18KN,151.86KN,206.69,69.73KN,19.74KN,192.43KN,30.26KN ,34KN. 

Further analyzing these error data, it can be found that although the errors of individual samples 

are relatively large, the overall error level is low and more evenly distributed. This indicates that the 

SVM model has good stability and adaptability when dealing with different combinations of input 

parameters. 

 

Figure 4 Comparison of Ntu values and SVM model predicted values 
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