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Abstract: Skeleton-based action recognition is one of the core tasks in the field of video 

understanding and is widely used in scenarios such as human-computer interaction, 

intelligent monitoring, and sports analysis. Existing graph convolutional networks (GCNs) 

effectively model the spatial dependency of joints by constructing a skeletal connection 

graph, but their temporal modeling usually relies on fixed-window temporal convolution, 

which makes it difficult to capture the global dynamic associations between distant frames, 

resulting in the loss of key temporal features in complex actions. To this end, this paper 

proposes a feature extraction framework based on temporal context enhancement. First, the 

framework uses GCN to explicitly encode the spatial dependency of skeletal joints and 

extract spatial features containing physical connection priors; secondly, the local temporal 

dynamics between adjacent frames are captured through a multi-scale temporal convolution 

module; on this basis, the self-attention mechanism of the temporal dimension is introduced 

to model the cross-frame association of the feature sequence output by the temporal 

convolution, and the key dependencies between distant action frames are adaptively 

captured through dynamic weight allocation, realizing temporal modeling from local to 

global. Experimental results on the NTU RGB+D dataset show that the proposed method 

significantly outperforms the existing advanced models in the task of skeletal action 

recognition, verifying the effectiveness of the temporal self-attention mechanism in 

modeling complex action dynamics. 

1. Introduction 

As a core task in the field of video understanding, skeleton action recognition has important 

application value in scenarios such as human-computer interaction, intelligent monitoring, and 

sports analysis. Its core challenge lies in how to efficiently model the spatiotemporal dependencies 

in human skeleton sequences - the spatial dimension needs to capture the structural correlation of 

joints, and the temporal dimension needs to capture the dynamic evolution of action sequences. 

Traditional methods such as graph convolutional networks (GCNs) effectively model the spatial 

dependencies of joints by constructing a graph structure of skeleton connections, but their temporal 

modeling part mostly relies on temporal convolutions of fixed windows, which makes it difficult to 
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capture the global dynamic correlation between long-distance action frames, resulting in the loss of 

key temporal features in complex actions. 

In recent years, the self-attention mechanism has shown outstanding advantages in long-range 

dependency modeling, and can capture the semantic correlation of any position in the sequence 

through dynamic weight allocation. However, existing studies have mostly directly applied the self-

attention mechanism to the spatiotemporal joint modeling of skeleton sequences, ignoring the 

hierarchical differences between spatial structural features and temporal dynamic features: the 

spatial dependency of skeletal joints has a clear physical connection prior, while the action 

evolution in the temporal dimension requires temporal context aggregation based on spatial features. 

If self-attention is directly applied to the original skeleton sequence, it is easy to blur the spatial 

structure information and it is difficult to fully utilize the hierarchical features of the skeleton data. 

To this end, this paper proposes a feature extraction network architecture based on temporal 

context enhancement. First, the graph convolutional network (GCN) is used to explicitly encode the 

spatial dependencies of skeletal joints and extract spatial features containing physical connection 

priors. Then, the local temporal dynamics between adjacent frames are captured through a multi-

scale temporal convolution module, focusing on action details and motion patterns within a short 

temporal range. On this basis, the temporal dimension self-attention mechanism is introduced to 

perform cross-frame association modeling on the feature sequence output by the temporal 

convolution. The key dependencies between long-distance action frames are adaptively captured 

through dynamic weight allocation, and the local temporal features are extended to global context 

modeling. The main contributions of this paper are as follows: 

Design a temporal self-attention enhancement module to perform global context modeling on 

feature sequences in the temporal dimension, effectively capture key dynamic patterns of cross-

frame actions, and make up for the shortcomings of traditional temporal models in modeling long-

distance dependencies; 

The use of adaptive topology modeling and multi-scale graph convolution methods is 

beneficial to reducing the number of model parameters and training time; 

Experiments on the NTU RGB+D dataset show that our method significantly outperforms 

existing advanced models in the skeleton action recognition task, verifying the effectiveness of the 

temporal self-attention mechanism. 

2. Related Work 

2.1. Graph Neural Networks 

Graph Neural Networks (GNNs) aggregate neighborhood information through message passing 

mechanisms, showing unique advantages in non-Euclidean data modelling, for example, in social 

network scenarios, GNNs can not only analyze explicit connections between users, but also mine 

potential behavioral associations; in human action recognition, GNNs break through the dependence 

of traditional convolutional networks on rigid topological structures by fusing the spatial 

dependence of skeletal nodes with the temporal correlation of motion trajectories. At present, GNNs 

based on graph convolution are mainly divided into two categories: spectral-based methods and 

spatial-based methods. The spectral method is based on the theory of graph signal processing, and 

its core idea is to map the geometric characteristics of the graph structure to the frequency domain 

space. The node signal is spectrally decomposed through the graph Fourier transform, and the 

frequency domain filter is designed with the help of the spectral properties of the Laplace matrix. 

The spatial method adopts a more intuitive topology-aware design to simulate the local information 

transmission process directly on the original graph structure. It draws on the local receptive field 

mechanism of the traditional convolutional neural network (CNN), defines the learnable 
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neighborhood aggregation function of the node, and iteratively updates the node representation 

layer by layer. 

2.2. Skeleton-based Action Recognition 

Although traditional human action recognition methods rely on manual feature design and 

template matching, which can achieve certain results in specific scenarios, their generalization 

ability is limited and they are difficult to adapt to complex and changing action patterns. In recent 

years, deep learning methods have been able to automatically mine potential spatiotemporal 

structural information with data-driven feature learning capabilities. However, methods based on 

recurrent neural networks (RNNs) often ignore key spatial structural information in the process of 

serializing joint coordinates into vectors, resulting in loss of position information; while methods 

based on convolutional neural networks (CNNs) usually map skeletal key points to "pseudo-

images" for modeling. Although they can extract local spatial features, they have certain limitations 

in modeling long-term series dynamics. 

The topological connection characteristics of human skeletons are naturally compatible with 

graph structures. This advantage has promoted the development of skeletal action recognition 

methods based on graph convolutional networks (GCNs). A milestone work in this field is the 

spatiotemporal graph convolutional network (ST-GCN) proposed by Yan et al. in 2018. In the 

spatial dimension, the adjacency relationship is constructed through the physical connection of joint 

points. In the temporal dimension, cross-frame node connections are used to replace traditional 

optical flow calculations, thereby achieving efficient joint modeling of the spatiotemporal dynamic 

characteristics of skeletal motion. 

On this basis, a series of improved methods have emerged. For example, [1] et al. used graph 

distance to encode the topology of the physical connection of the skeleton, and introduced persistent 

homology analysis to characterize the dynamics of the action-specific system, in order to solve the 

problem of loss of skeleton connection topology information caused by jointly optimizing the 

adjacency matrix and model weights in skeleton action recognition. [2] et al. proposed a deformable 

graph convolutional network (DeGCN) to address the problems of fixed information aggregation 

mode, lack of intra-class change perception, and insufficient redundant connection processing 

capabilities in traditional graph convolutional networks. By learning the variable sampling positions 

on the spatiotemporal graph, the model can adaptively capture highly discriminative joint features 

and construct a dynamic receptive field. At the same time, the temporal features are defined in a 

continuous latent space, which fits the continuous nature of human motion. 

2.3. Self-Attention Mechanism 

In recent years, the self-attention mechanism, as a core component of Transformer, has achieved 

remarkable results in fields such as computer vision and natural language processing. It has become 

an important technology for sequence modeling by capturing long-distance dependencies in 

sequences and adaptively allocating weights to enhance feature extraction capabilities. In the field 

of action recognition based on skeleton keypoints, [3][4][5][6] achieved excellent results.[7] et al. 

embed the joint set of the same partition into a unified token before inputting the attention module 

for feature modeling. They only rely on the symbolic partition strategy and do not introduce a 

dedicated attention mechanism for a specific partition. Aiming at the possible redundant calculation 

problem between two joints, [8] et al. designed a sparse self-attention mechanism, which effectively 

captures the spatial correlation between joint points through sparse matrix multiplication and greatly 

reduces the computational cost. To this end, this paper first explicitly models the spatial 

dependencies of skeleton key points through a graph convolutional network (GCN) to extract the 
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spatial features of the skeleton structure; then captures the local temporal dynamic information 

through a temporal feature extraction module; and finally introduces a self-attention mechanism to 

re-aggregate the global features in the temporal dimension and adaptively capture the long-range 

dependencies across time steps. 

3. Methods 

3.1. Preliminaries 

The connection relationship between the key points of the human skeleton is modeled as a graph 

structure ( , )G V E , The vertices V  represent the keypoints of the human body, using 

1 2( , , , , , , )NV v v v  to indicate. E  is the set of bone edges represented by the adjacency matrix
N NA  ,where the element 

ija  takes a value of 1 or 0, denoting whether 1v  and 2v  are connected. 

Given a sequence of the skeleton, is represented as C T VX   , where C , T and V  mean the 

number of channels, frames, and joints, respectively. The feature aggregation process of the entire 

graph is as follows: 

 ( 1) 1/2 1/2 ( ) ( )( )l l lX D AD W X    (1) 

Where D  is the degree matrix of A. W are the graph convolution weights. denotes the input 

features to the ( 1)thl   layer and 1lX  denotes the output features to ( 1)thl  the layer.   is the 

activation function. 

3.2. Multi-scale adaptive convolution Module 

In order to more effectively model the spatial relationship between skeletal key points, we 

proposed a multi-scale adaptive graph convolution module (MS-AGC). Traditional graph 

convolution methods rely on fixed human topological structures to construct adjacency matrices. 

However, in practical applications, different categories of actions often involve different joint 

interaction patterns. Fixed graph structures are difficult to flexibly adapt to the diversity of actions, 

which easily leads to limited information transmission paths. For example, the action of running 

relies more on the global coordination between the joints of the limbs, so the connection between 

the legs and arms is particularly critical; while waving is concentrated in the hand area, and the fine-

grained structure between its key points is more worthy of attention. This shows that in action 

recognition, different actions should focus on graph structure modeling of different parts. To this 

end, we introduce a learnable adjacency matrix at multiple scales to dynamically adjust the 

connection strength between nodes, thereby achieving more expressive and adaptive spatial 

modeling capabilities. As shown in Figure 1 

Given an input feature X C T V   , we first divide it along the channel dimension by 

1 1 onvC  to obtain multiple sub-feature fragments 1 2{ , , , }nX X X   , each of which has a shape of 

iC T V 
. Then, we apply a spatially adaptive graph convolution operation to each fragment and 

obtain the corresponding output. All sub-outputs are concatenated along the channel dimension to 

form the final output feature, that is: 

 out 1 2 3 4[ ( ) ( ) ( ) ( )]O Y X Y X Y X Y X  (2) 

Where represents the connection operation, Y  represents the adaptive graph convolution 

operation, and outO  represents the total output. In order to improve the stability of model training 
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and accelerate the convergence speed, this study introduces the residual connection mechanism, 

followed by batch normalization processing and ReLU activation function mapping, and finally 

obtains the output representation. That is: 

 ( ( ))n outZ b O res   (3) 

Where res  represents residual link, ( )nb  are the batch normalization, ( )  is the activation function 

ReLU. 

 

Figure 1: Multi-scale Adaptive Graph Convolution 

The above adaptive convolution module is mainly composed of three sub-modules: feature 

conversion, adaptive adjacency matrix calculation and information aggregation. For the input 

feature /4C T VX   , it is first mapped to a high-dimensional space through a linear transformation 

to enhance the expression ability, that is: 

 
' ( )X M X XW   (4) 

Where 
'

' 4
C T V

X
 

  is the transformed high-dimensional feature, and 
'C CW   is a learnable 

weight matrix. In the adaptive calculation of the adjacency matrix, we first perform average pooling 

on the input feature /4C T VX    in the time dimension to extract static structural features. Then, 

we compress the input features through two different linear transformation functions ( )   and ( )   

to reduce the computational complexity. For each pair of joint points ( , )i jV V , the transformed 

feature ( , )i jx x  can be expressed as: 

 ( ( ), ( )) ( ( ) ( ))i j i jM x x x x       (5) 

to reflect the correlation of the dynamic structure between nodes. On this basis, the final adaptive 

adjacency matrix is expressed as: 

 sA A Q   (6) 

Among them, sA is the predefined shared adjacency matrix, Q  is the dynamically generated 

channel-specific adjacency matrix, and   is a learnable parameter used to adjust the influence of 

the adaptive part. After obtaining high-dimensional features of different scales 
' ' '

1 2{ , , , }nX X X  and 

the corresponding adaptive graph structure 1 2{ , , }nQ Q Q , the final graph convolution output is: 

103



 
' ' ' '

1 1 2 2 3 3 4 4[ ]Z Q X Q X Q X Q X  (7) 

Where  is concatenate operation, since the adjacency matrix Q  changes dynamically with the 

input samples, the whole process constitutes a dynamic graph convolution framework, which can 

adaptively build graphs according to the semantic features of the input actions, thereby enhancing 

the model's ability to model structural differences. Its architecture is shown in Figure 2. 

 

Figure 2: Feature transformation and adaptive topology generation 

3.3. Hybrid Attention Module  

In order to more fully model the dynamic patterns of joints changing over time in action 

sequences, we introduced a multi-scale temporal convolution module (MSTC); in addition, in order 

to capture the temporal dependencies between joints from a global perspective, we further 

combined a temporal modeling branch based on an attention mechanism, thereby improving the 

model's perception of complex temporal dynamics, as shown in the Figure 3. First, for the input 

feature C T VX   , we use 4 different receptive fields

( 1, 2, 3. 4)dilation dilation dilation dilation     and reduce the channel size through 4 parallel 

1 1 onvC  branches to change the feature to 4
C T V

X
 

 . For the first two branches, we further 

introduce three trainable parameter matrices 
Q K VW W W、 、  to generate the corresponding query 

vectors, key vectors, value vectors, Q , K , 
'C T VV   . Subsequently, the generated Q , K , V  

features are rearranged and reshaped to obtain 1Q , 1K , 1V  to meet the computational requirements 

of multi-head attention. Specifically, it is divided into groups, (where represents the number of 

heads), and in each group, the query vector Q  and the key vectors K  are dot-producted, and the 

attention map on the global time dimension is obtained by combining normalization and activation 

function processing. Then, the obtained attention map is weighted multiplied with the 

corresponding Value vector. The output features generated by all heads (multi-head) are then 

concatenated in the channel dimension to integrate the information from different attention 

subspaces to form the final multi-head attention output. The above process is expressed as: 

 ( ) , {1,2,3,4}
n nT

n

n

Q K
Out softamx V n

C
   (8) 

Finally, the global temporal features generated by the self-attention mechanism are fused with 

the local dynamic features extracted by multi-scale temporal convolution, so as to simultaneously 

model the local details and global dependencies of the action sequence in the same representation 
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space, further improving the model's ability to express and discriminate temporal behavior patterns. 

It can be expressed as: 

 1 1 2 2 3 4[ ]Z Out Conv Out Conv Conv Conv  (9) 

Among them, Conv  indicates that the convolution operation is performed at the time level to 

extract local temporal dynamic features. 

 

Figure 3: Multi-scale Self-Attention Temporal Convolution 

3.4. Overall architecture 

The model consists of 10 blocks, as shown in the Figure 4. The number of input channels of each 

block is 3, 64, 64, 64, 64, 128, 128, 128, 256, 256. The temporal channel is halved in the 5th and 

8th blocks with stride=2. 

 

Figure 4: The overall architecture of our model 

4. Experiments 

To verify the effectiveness of the model, this paper evaluates the Top-1 and Top-5 indicators on 

the NTU RGB +D 60 dataset. 

4.1. Dataset 

NTU RGB+D 60 is a large indoor dataset widely used in skeletal action recognition research. It 

contains 60 human action categories, covering 40 daily behaviors, 9 health-related actions, and 11 

interactive actions. The dataset was completed by 40 subjects, with a total of 56,880 action samples, 

collected synchronously from three horizontal viewing angles (-45°, 0°, 45°) using a Microsoft 

Kinect v2 device. Each sample contains up to two human skeletons, each consisting of 25 joint 
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nodes. The dataset provides two standard test settings: Cross-Subject (X-Subject) and Cross-View 

(X-View). In the X-Sub setting, 40,230 samples collected by 20 subjects are used as the training set, 

and 16,560 samples collected by the remaining 20 subjects are used as the test set; in the X-View 

setting, samples collected by cameras 2 and 3 are used for training, and the data of camera 1 is used 

for model evaluation. These two evaluation methods effectively measure the generalization of the 

model under different subjects and viewpoint changes. 

4.2. Implementation Details 

This model is trained using the stochastic gradient descent (SGD) optimization algorithm, with 

momentum set to 0.9, L2 regularization introduced to prevent overfitting, and weight decay 

coefficient set to λ = 0.0004. The training is performed for 65 epochs, with an initial learning rate of 

0.1, and the learning rate is decayed by multiplying it by 0.1 in a piecewise manner at the 35th and 

55th epochs. The entire training process is completed on an NVIDIA A6000 GPU. 

4.3. Comparison of the state art 

We combine joint and motion. Our model is compared with the latest models in Table 1 on the 

NTU RGB+D dataset. The experimental results show that the proposed model reaches the current 

state-of-the-art level in Top-1 indicators and shows a strong performance advantage. 

Table 1: Comparison of the Top-1 accuracy with the state-of-the-art methods on the NTU RGB+D 

dataset 

Methods 
NTU-RGB+D 

X-Sub(%) X-View(%) 

ST-GCN[9] 81.5 88.3 

2s-AGCN[10] 88.5 95.1 

Shift-GCN[11] 90.7 96.5 

MS-G3D[12] 91.5 96.2 

ST-TR[13] 89.9 96.1 

Dynamic GCN[14] 91.5 96.0 

DSTANet[15] 91.5 96.4 

MST-GCN[16] 91.5 96.6 

Ours 91.8 96.8 

5. Conclusions 

In view of the shortcomings of traditional temporal convolution in modeling long-distance 

temporal dependencies, this paper proposes a novel spatiotemporal modeling framework for skeletal 

action recognition. This method models spatial dependencies through graph convolutional networks, 

extracts local dynamic features through multi-scale temporal convolution modules, and integrates 

temporal self-attention mechanisms to achieve global temporal context modeling, achieving a good 

balance between local detail perception and long-range dynamic capture. In addition, the 

introduction of adaptive topological modeling and multi-scale design effectively improves the 

efficiency and expressiveness of the model. Experiments on the NTU RGB+D dataset show that the 

proposed method significantly outperforms existing mainstream methods in terms of recognition 

accuracy, demonstrating the wide application potential and research value of this method in the 

field of complex action modeling. 
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