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Abstract: Signalized intersections serve as critical hubs in urban road networks. At 

intersections without dedicated right-turn phases, frequent interactions occur between right-

turning vehicles and pedestrians/non-motorized vehicles. Suboptimal interactions may lead 

to traffic conflicts, significantly compromising travel safety and operational efficiency. This 

study categorizes right-turning vehicle intentions into three types: full-stop yielding, 

deceleration yielding, and non-yielding behaviors. Influencing factors are classified into 

agent-related factors and environmental factors, with input features for intention recognition 

models being selected through filter methods. Three intention recognition models-Support 

Vector Machine, Random Forest, and Logistic Regression-are developed to identify right-

turning vehicle intentions. Through comprehensive evaluation metrics including accuracy 

and precision, comparative analysis reveals that the Logistic Regression model demonstrates 

optimal overall performance in precisely capturing right-turning vehicle intentions. 

1. Introduction 

Numerous studies have investigated right-turning vehicle behaviors at signalized intersections. 

Ankriti [1] enhanced pedestrian social force models by treating vehicles and pedestrians as right-of-

way entities, employing hybrid calibration methods to reveal an inverse correlation between the 

action radius of right-of-way entities and interaction intensity. Sheykhfard [2] integrated logistic 

regression models to demonstrate that countdown timers during signal phase transitions significantly 

influence driver-pedestrian interactions. Wang [3] developed a vehicle yielding model for right-turn 

lane capacity evaluation, incorporating pedestrian density, crosswalk length, and signal timing, 

validated through Monte Carlo simulations. Xiao [4] utilized SHAP (SHapley Additive 

exPlanations)-interpreted machine learning methods on pedestrian-vehicle collision databases, 
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identifying walking speed, low-speed vehicles, pedestrian volume, and signal cycle length as critical 

risk factors. Pan [5] quantified post-encroachment time and lane capacity for right-turning vehicles 

and pedestrians, identifying vehicle gap acceptance and reaction time as key safety parameters. Ali 

[6] analyzed temporal patterns of non-motorized/vehicle conflicts, revealing peak conflict 

occurrences during the initial red/green signal phases and heightened lateral aggression in non-

motorized traffic. Bettina [7] demonstrated that temporal-spatial segregation between bicycles and 

vehicles enhances safety, while excessive separation in signal phasing paradoxically increases 

conflict risks. Georgios [8] identified green-time ratio and cross-bicycle flow as primary factors 

reducing turning-vehicle capacity. Stipancic [9] employed automated conflict detection across 

Canadian intersections to classify collision severity, establishing gender and vehicle speed as 

influential determinants. Van [10] investigated Dutch intersection conflicts, emphasizing the 

significant impact of bicycle lane width on conflict rates. 

Despite existing research, a systematic understanding of right-turning vehicle behaviors at micro-

level interactions remains incomplete. To fundamentally decipher the mechanisms governing these 

behaviors, this study investigates the implicit intentions behind vehicular actions. The spatiotemporal 

differentiation driven by intention-based interactions constitutes the foundational logic influencing 

intersection safety and efficiency. 

2. Study on Right-Turning Vehicle Behavior and Intention Recognition 

2.1. Right-Turning Vehicle Behavior 

This study focuses on signalized intersections without dedicated right-turn phases. Interactions 

between right-turning vehicles and other traffic participants are categorized into two types: right-

turning vehicle-pedestrian interactions and right-turning vehicle–non-motorized vehicle interactions. 

Pedestrian interactions primarily occur in one scenario: when pedestrians cross the intersection via 

crosswalks, bidirectional pedestrian flows interact with right-turning vehicles. Non-motorized vehicle 

interactions include two scenarios: (1) non-motorized vehicles traveling straight in dedicated lanes 

exhibit partially overlapping or proximate trajectories to right-turning vehicles, resulting in 

interactions; (2) non-motorized vehicles crossing via crosswalks or adjacent areas interact with right-

turning vehicles. 

Right-turning vehicle behaviors are classified into three categories based on yielding patterns and 

acceleration changes: 

Deceleration yielding: During interactions, the driver recognizes the interacting party’s crossing 

intent but cannot confidently determine whether the current speed allows safe passage through the 

interaction zone. The driver reduces speed to yield priority. 

Full-stop yielding: During interactions, the driver determines that deceleration alone cannot 

provide sufficient time for the interacting party to safely pass. A complete stop is executed to grant 

priority. 

Non-yielding: During interactions, the driver asserts right-of-way by maintaining speed, either 

passing through the interaction zone before the interacting party or compelling them to yield. 
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2.2. Right-Turning Vehicle Intention Recognition 

Right-turning vehicle intentions precede observable behaviors and are categorized into three 

classes: full-stop yielding intention, deceleration yielding intention, and non-yielding intention. 

The input features for the intention recognition model are divided into two categories: agent-

related features (vehicle-specific attributes) and environmental features. These encompass multiple 

sub-features: 

 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] ∈ ℝ𝑁 (1) 

The essence of intention recognition lies in selecting appropriate input features and constructing a 

mapping function to associate features with intentions: 

 𝑓:ℝ𝑁 → 𝑦 (2) 

Three machine learning models—Support Vector Machine (SVM), Random Forest, and Logistic 

Regression—are employed to establish this mapping. Each algorithm is parameter-optimized to 

maximize recognition performance. During intention recognition, the model outputs probabilities for 

all three intention classes, with the highest probability determining the final classification: 

 𝑃(𝑦 = 𝑘 ∣ 𝑋; 𝜃) = 𝑓𝑘(𝑋; 𝜃), 𝑘 = 1,2,3 (3) 

Successful recognition is confirmed when the model’s prediction matches the ground-truth label. 

2.3. Data Collection 

Table 1: Data Inventory of Traffic Participant Extraction 

Number Data Data Type Remarks 

1 Gender of right-turning 

vehicle driver 

Categorical 

Data 

0 = Female; 1 = Male 

2 Age of right-turning vehicle 

driver 

Categorical 

Data 

0 = Young; 1 = Middle-aged; 2 

= Elderly 

3 Energy type of right-turning 

vehicle 

Categorical 

Data 

0 = Traditional fuel vehicle; 1 = 

New energy vehicle 

4 Average speed before right 

turn (vehicle) 

Continuous 

Data 

Unit:m/s 

5 Average acceleration before 

right turn (vehicle) 

Continuous 

Data 

Unit:m/s2 

6 Category of interacting object Categorical 

Data 

0 = Pedestrian; 1 = Bicycle; 2 = 

Electric bicycle 

7 Gender of interacting object Categorical 0 = Female; 1 = Male 
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Data 

8 Age of interacting object Categorical 

Data 

0 = Young; 1 = Middle-aged; 2 

= Elderly 

9 Initial speed of interacting 

object 

Continuous 

Data 

Unit:m/s 

10 Distance between right-

turning vehicle and 

interacting object 

Continuous 

Data 

Unit:m 

11 Time period Categorical 

Data 

0 = Peak hour; 

1 = Non-peak hour 

12 Shooting location Categorical 

Data 

Location codes: 0, 1, 2 

13 Following scale of 

pedestrians/non-motorized 

vehicles 

Continuous 

Data 

Unit: number 

14 Behavior of right-turning 

vehicle 

Categorical 

Data 

0 = Full-stop yielding; 1 = 

Deceleration yielding; 2 = Non-

yielding 

Video data were collected at three signalized intersections, capturing 24 hours of interactions 

between right-turning vehicles and pedestrians/non-motorized vehicles. Right-turning vehicles were 

designated as primary agents, while interacting pedestrians and non-motorized vehicles were 

classified as interaction objects. (Table 1) 

To extract high-precision kinematic data (e.g., velocity, acceleration) from video 

footage, simition software (developed by Simi Reality Motion Systems GmbH, Germany) was 

utilized. This professional motion analysis tool employs advanced tracking algorithms for accurate 

motion capture. Manual coding supplemented data extraction, including driver demographics 

(gender,age) constrained by camera angles. Categorical variables (e.g., yielding behavior 

classification) were manually recorded to minimize subjective bias and ensure data authenticity. The 

final dataset comprises 342 validated interaction instances. 

2.4. Input Feature Study 

Feature selection is required prior to constructing machine learning algorithms. Feature selection 

involves identifying a subset of original features that most significantly influence the target variable. 

This process aims to reduce dimensionality, minimize noise, and enhance model generalizability. 

Filter methods in machine learning—a feature selection technique—screen features based on 

statistical properties before model training. This study preliminarily screens multi-source factors 

preceding behavioral events and conducts significance analysis with right-turning behaviors to 
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determine input features for intention recognition models. 

Based on literature and extracted data, factors influencing interactions are summarized in Table 2. 

Each factor is analyzed for its relationship with right-turning vehicle behaviors to identify valid input 

features. 

Table 2: Agent-Related and Environmental Factors 

First-level 

Classification 

Second-level 

Classification 
Third-level Classification 

Agent-related 

Factors 

Pre-right-turn motion 

status of vehicles 

Average speed 

Average acceleration 

Vehicle type (new energy vehicle, 

traditional fuel vehicle) 

Physiological attributes of 

drivers 

Gender 

Age (young, middle-aged, elderly) 

Environmental 

Factors 

Information from 

interacting objects 

Category of interacting objects 

(pedestrian, bicycle, electric 

bicycle) 

Initial speed 

Distance 

Gender (of interacting object) 

Age (of interacting object: young, 

middle-aged, elderly) 

Following scale of interacting 

objects 

Time period (peak/non-peak 

hours) 

Size of signalized intersection 

Feature selection can be conducted based on the data in Table 3.Factors with p-values > 0.05 

(vehicle energy type, interacting object gender/age) show no statistical association with right-turning 

behaviors and are excluded. Remaining factors ( p< 0.05) are retained as input features for intention 

recognition models.  
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Table 3: Statistical Test Results of Factors 

Factors Test Method 
H-value or Chi-

square value 
P-value 

Average speed Kruskal-Wallis Test 82.21 <0.01 

Average acceleration Kruskal-Wallis Test 64.62 <0.01 

Vehicle energy type Chi-square Test 9.76 0.084 

Driver gender Chi-square Test 15.38 0.032 

Driver age Chi-square Test 21.06 0.027 

Category of interacting object Chi-square Test 48.90 <0.01 

Initial speed of interacting object Kruskal-Wallis Test 53.73 <0.01 

Distance between vehicle and 

interacting object 
Kruskal-Wallis Test 69.28 <0.01 

Gender of interacting object Chi-square Test 8.59 0.075 

Age of interacting object Chi-square Test 9.48 0.068 

Following scale of interacting 

objects 
Kruskal-Wallis Test 60.05 <0.01 

Time period Chi-square Test 14.33 0.034 

Size of signalized intersection Chi-square Test 12.15 0.041 

3. Right-Turning Vehicle Intention Recognition Modeling 

3.1. Model Selection 

Machine learning, a critical component of artificial intelligence, enables computers to acquire 

knowledge from complex data and perform predictive or decision-making tasks. Unlike traditional 

programming, machine learning algorithms autonomously extract deeper patterns from existing data 

samples through training. 

Supervised learning involves datasets with input features and output labels. The algorithm learns 

the mapping relationship between features and labels to predict new instances. Its defining 

characteristic is that each input sample has a unique predefined label. 

This study addresses a supervised multi-class classification problem for right-turning vehicle 

intention recognition. Common classification algorithms include K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), Naive Bayes, and Decision Trees. Given the relatively small dataset 

size and structural simplicity, three widely applicable algorithms-SVM, Random Forest, and Logistic 

Regression-were selected. 
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3.2. Support Vector Machine Optimized via Simulated Annealing 

3.2.1. Algorithm Principle 

The Support Vector Machine (SVM) is a supervised learning algorithm based on statistical 

learning theory, initially designed for binary classification and later extended to multi-class tasks. Its 

core idea is to identify an optimal hyperplane that maximizes the geometric margin between different 

classes, ensuring classification accuracy while enhancing generalization. 

Assume a training set containing m  samples,  ),(,),,(),,( 2211 mm yxyxyx  , where  1,1 iy  

denotes class labels. In the feature space, the classification hyperplane is defined by the linear 

equation 0 bwT
. Here, 

dRw  is the normal vector determining the hyperplane’s orientation, 

and Rb  is the bias term controlling its offset from the origin. The geometric distance from any 

sample x  to the hyperplane is expressed as: 

 
w

bxw
r

T 
      (4) 

This distance reflects the proximity of the sample to the decision boundary, with larger distances 

indicating higher classification confidence. To correctly classify all samples, the following constraints 

must be satisfied: 
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Samples meeting these constraints are termed support vectors, located on the margin boundaries 

and determining the hyperplane. The sum of distances from two classes of support vectors to the 

hyperplane constitutes the margin. 

The objective is transformed into maximizing the margin under constraints, equivalent to 

minimizing the squared norm of w: 

 min
w,b

1

2
∥ w ∥2 (6) 

When samples are linearly inseparable in the original space, SVM introduces the kernel trick to 

project data into a higher-dimensional space via nonlinear mapping, rendering them linearly separable. 

The hyperplane equation becomes: 

 wTϕ(x) + b = 0 (7) 

Direct computation of inner products in high-dimensional spaces is computationally intensive. 

Kernel functions implicitly compute these products: 

 K(xi, xj) = ϕ(xi)
Tϕ(xj) (8) 

In practice, data often contain noise or slight nonlinearity. Enforcing hard-margin constraints risks 

overfitting. A soft-margin mechanism is introduced, allowing some samples to violate constraints via 
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slack variables The optimization goal becomes: 

 min
w,b,ξ

1

2
∥ w ∥2+ C∑ ξi

m
i=1  (9) 

Ameter C balances margin maximization and classification error: a larger C prioritizes error 

reduction (smaller margin), while a smaller C tolerates more errors (larger margin, better 

generalization). This is implemented via the hinge loss function: 

 max(0,1 − yi(w
Txi + b)) (10) 

3.2.2. Model Construction 

Based on the feature selection results for right-turning vehicles, the filtered features were used as 

inputs to the Support Vector Machine (SVM) along with their corresponding behavior type labels. 

The dataset was divided into training and testing sets at an 8:2 ratio. 

SVM is inherently a binary classification algorithm. Since this study involves a multi-class 

classification problem for right-turning vehicle intention recognition—and to avoid classification bias 

caused by class imbalance in the relatively small dataset—the One-vs-One (OVO) strategy was 

adopted to extend SVM to a multi-class algorithm. 

The choice of SVM kernel function directly impacts model performance. Common kernel 

functions include the linear kernel, polynomial kernel, and Gaussian kernel. Given the study’s 

characteristics, 5-fold cross-validation (a widely used method suitable for small datasets, which 

reduces bias from single-fold splitting and provides stable, reliable evaluation for model selection 

and hyperparameter tuning) was employed to select the kernel type. Among the linear, polynomial, 

and Gaussian kernels, the Gaussian kernel achieved relatively higher accuracy. Additionally, 

adjusting its parameters could further enhance model performance, and it required fewer parameters 

(simplifying tuning difficulty). Thus, the Gaussian kernel was selected as the SVM kernel function. 

Parameter tuning for the Gaussian kernel is critical to optimizing model performance. The key 

parameters C (controlling the model’s tolerance for classification errors) and γ (determining the 

local influence of individual training samples on the decision boundary) were optimized using the 

Simulated Annealing Algorithm (SAA). 

The Simulated Annealing Algorithm is a probabilistic global optimization method inspired by the 

thermodynamics of solid annealing. Its core mechanism mimics a dynamic equilibrium process of 

"high-temperature random exploration followed by low-temperature directional convergence" to 

search for the global optimal solution in the parameter space. The algorithm uses a temperature 

parameter to control the search process: at high temperatures, it probabilistically accepts inferior 

solutions according to the Metropolis criterion to avoid local optima; as the temperature decreases 

gradually following a predefined schedule, the algorithm focuses on local fine-grained search, 

eventually converging to the global optimal region. By applying SAA to the training set, the optimal 

parameter combination for C and γ was identified, with results shown in Table 4. 
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Table 4: Simulated Annealing Optimization Results 

model C γ 

SVM 189.0291 0.02520 

Based on the optimization results of the simulated annealing algorithm, the parameters of the 

support vector machine intention recognition model for right - turning vehicles are set. The final 

recognition results for the three types of intentions are shown in Table 5. 

Table 5: Intention Recognition Results of Support Vector Machine 

Intention Accuracy Precision 

Full-stop yielding intention 0.942 0.904 

Deceleration yielding intention 0.937 0.905 

Non-yielding intention 0.929 0.885 

3.3. Random Forest Optimized by Grid Search Algorithm 

3.3.1. Algorithm Principle 

Random Forest is a machine learning algorithm based on ensemble learning, widely used in 

classification and regression tasks. Its core idea is to construct multiple independent decision trees 

and integrate their prediction results to significantly enhance model generalization and reduce the risk 

of overfitting caused by single decision trees over-relying on training data details. The algorithm 

workflow of Random Forest is as follows: 

Training Set Generation: Using the Bootstrap method for repeated sampling, construct T 

independent training sets (S1, S2, … , ST) through random sampling with replacement. 

In the decision tree construction process, the algorithm trains a classification model for each 

training set SS according to the following rules. 

During the splitting step, the algorithm randomly selects mm candidate attributes from the 

total MM attributes to form a local split attribute set. 

In the attribute selection step, the construction process calculates the optimal split scheme using 

the Gini index or information entropy based on the candidate attributes, and then completes the node 

division. 

In the result integration step, the integration method aggregates the classification results 

of TT decision trees via majority voting, and the model determines the final class of a sample by 

selecting the class label with the highest frequency. 

3.3.2. Model Construction 

Based on the feature selection results for right-turning vehicles, the filtered features were used as 

inputs to the Random Forest along with their corresponding behavior type labels. The dataset was 
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divided into training and testing sets at an 8:2 ratio.   

The choice of node splitting method—primarily the Gini index or information gain—was critical. 

Through accuracy comparison under cross-validation, the Gini index-based node splitting method 

was found to outperform the information gain method for right-turning vehicle models, so the Gini 

index was selected as the node splitting criterion. 

Key parameters of Random Forest include the number of trees (n_estimators), maximum tree depth 

(max_depth), and minimum number of samples required to split an internal node (min_samples_split). 

The grid search algorithm was employed to optimize these parameters. This method involves 

generating a grid of predefined hyperparameter values, training and validating the model for each 

parameter combination, and identifying the optimal set. The best-performing parameter combination 

is shown in Table 6. 

Table 6: Optimization Results of Grid Search Algorithm 

model n_estimators max_depth min_samples_split 

SVM 128 10 12 

Based on the grid search optimization results, the parameters of the Random Forest intention 

recognition model for right-turning vehicles were set. The final recognition results for the three types 

of intentions are shown in Table 7.  

Table 7: Intention Recognition Results of Random Forest 

Intention Accuracy Precision 

Full-stop yielding intention 0.911 0.832 

Deceleration yielding intention 0.882 0.846 

Non-yielding intention 0.903 0.821 

3.4. Logistic Regression Optimized by Bayesian Optimization 

3.4.1. Algorithm Principle 

Logistic regression, a classic classification algorithm, features a simple structure and strong 

parameter interpretability, commonly used in binary or multi-class classification tasks. It essentially 

applies a logistic function transformation to the results of linear regression, mapping outputs to 

probability values, thus serving as a probabilistic extension of linear models. 

The logistic distribution, a type of continuous probability distribution, has its cumulative 

distribution function and probability density function defined as: 

 F(x) = P(X ≤ x) =
1

1+e−(x−μ)/γ
 (11) 

 f(x) =
e−(x−μ)/γ

γ(1+e−(x−μ)/γ)
2 (12) 
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Where μ  is the location parameter controlling the distribution center, and γ  is the shape 

parameter determining the steepness of the distribution curve. 

In logistic regression, the Sigmoid function g(z) is introduced to convert linear combinations into 

class probabilities. The conditional probability expression is: 

 P(y = 1|x; θ) =
1

1+e−θ
TX

 (13) 

Where θ  represents model parameters (feature weights). The specific form of the Sigmoid 

function is: 

 g(z) =
1

1+e−z
 (14) 

The linear output part is defined as: 

 hθ(x) = θTx (15) 

3.4.2. Model Construction 

Based on the feature selection results for right-turning vehicles, the filtered features were used as 

inputs to logistic regression along with their corresponding behavior type labels. The dataset was 

divided into training and testing sets at an 8:2 ratio. 

A core goal in model construction is ensuring good predictive performance on unseen data. 

Overfitting often occurs when model complexity is high or training data is insufficient. Introducing 

regularization methods can effectively constrain model complexity, balancing fitting accuracy and 

generalization ability to enhance model stability. This study adopted L2 regularization. 

The key parameter to optimize was the regularization parameter C, achieved via the Bayesian 

optimization algorithm. Bayesian optimization is a global optimization algorithm based on 

probabilistic models, suitable for scenarios with high objective function computation costs or 

complex hyperparameter tuning. Its core lies in constructing a probabilistic model of the objective 

function to intelligently select the next evaluation point. Applying Bayesian optimization to the 

training set identified the optimal C value, as shown in Table 8. 

Table 8: Optimization Results of Bayesian Optimization Algorithm 

model C 

LR 6.3×10-3 

Based on the Bayesian optimization results, the parameters of the logistic regression intention 

recognition model for right-turning vehicles were set. The final recognition results for the three types 

of intentions are shown in Table 9. 
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Table 9: Intention Recognition Results of Logistic Regression 

Intention Accuracy Precision 

Full-stop yielding intention 0.884 0.821 

Deceleration yielding intention 0.894 0.873 

Non-yielding intention 0.902 0.871 

3.5. Model Performance Summary 

A summary of the three models’ performance is presented in Table 10. 

Table 10: Performance Summary 

model Accuracy Precision F1 Score Sensitivity Specificity 

SVM 0.936 0.931 0.933 0.941 0.935 

RF 0.899 0.891 0.895 0.901 0.905 

LR 0.893 0.881 0.887 0.895 0.891 

SVM: Demonstrated the best overall performance, leading in accuracy (0.936), precision (0.931), 

and sensitivity (0.941), indicating strong global recognition ability for the three intention classes. RF: 

Showed moderate performance, with an accuracy (0.899) slightly lower than SVM but a higher 

specificity (0.905), possibly resulting in fewer misclassifications for negative samples (e.g., "non-

yielding intention"). LR: Performed weakest, though with small gaps in all metrics, making it suitable 

for scenarios with limited computational resources or rapid deployment needs. 

Full-stop yielding intention: SVM (0.942) significantly outperformed RF (0.911) and LR (0.884), 

likely due to SVM’s advantage in capturing complex boundaries in high-dimensional feature spaces. 

Deceleration yielding intention: SVM (0.937) remained leading, while RF (0.882) underperformed, 

possibly due to insufficient learning of deceleration scenarios from feature interactions. Non-yielding 

intention: Small differences existed among the three models (SVM 0.929, RF 0.903, LR 0.902), 

suggesting low feature distinguishability for this class or balanced data distribution. 

4. Conclusions 

Through a review of existing literature and observations of real-world scenarios, this study 

comprehensively summarized and analyzed the behaviors of right-turning vehicles, establishing a 

framework for classifying their intentions based on agent-related and environmental features. By 

deeply analyzing the relationships between agent/environmental factors and right-turn behaviors, key 

individual and environmental features critical for intention recognition models were selected. Using 

these features, three intention recognition models—Support Vector Machine, Random Forest, and 

Logistic Regression—were developed. Through comprehensive evaluation metrics such as accuracy 

and F1-score, the SVM model was found to have the best overall performance, enabling precise 
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capture of intentions corresponding to right-turning vehicle behaviors. 
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