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Abstract: In this paper, we propose AsppUNet, an image semantic segmentation model 

based on the Atrous Spatial Pyramid Pooling(ASPP) module, to address the issue that 

smaller objects are prone to being overlooked during the segmentation process. Instead of 

using the standard pooling layers in the encoder of UNet, our model adopts a series of 

atrous convolution layers with progressively increasing dilation rates to reduce feature loss 

caused by traditional pooling operations. The ASPP module is constructed by cascading 

atrous convolution layers with different dilation rates, and is integrated into the decoder of 

UNet to aggregate multi-scale feature maps and capture multi-level contextual information. 

Experimental results demonstrate that AsppUNet achieves superior segmentation 

performance on objects of various sizes. It improves the mIoU for objects at different scales 

on the CamVid dataset, and effectively enhances the overall segmentation accuracy. 

1. Introduction 

Image semantic segmentation is an intensive prediction task that requires a combination of pixel-

level accuracy and multi-scale contextual reasoning. In image semantic segmentation, the 

segmented objects are multi-scale, and the traditional CNN is difficult to extract the multi-scale 

features of the image, resulting in poor segmentation of targets at different scales. To achieve higher 

quality image semantic segmentation, we need to retain the image detail information as much as 

possible, while extracting the features of different scale targets[1]. Atrous convolution enables the 

CNN to obtain a larger receptive field without significantly increasing the computational 

complexity. By combining atrous convolution layers with different dilation rates, the network can 

extract multi-scale spatial features, which is beneficial for segmenting objects of varying sizes. In 

existing image semantic segmentation methods, pooling operations are typically employed in the 

encoder part of the network to reduce the spatial dimensions while expanding the local receptive 

field. Since semantic segmentation requires pixel-wise classification, the original image resolution 

is usually recovered through upsampling in the decoder. However, the ability of the decoder to 

reconstruct detailed image information heavily depends on the robustness and richness of the 

features extracted by the encoder. 

The VGG16 encoder in the UNet network reduces the spatial resolution using a max pooling 

layer with a stride of 2×2, while simultaneously expanding the local receptive field. However, this 

operation often leads to significant loss of detailed image information. To mitigate such feature 
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degradation, we replace the max pooling layers in the VGG16 encoder with atrous convolution 

layers. In the encoding part of the pre-trained network, atrous convolution is employed to extract 

multi-scale features from local regions. This strategy allows the model to achieve a larger receptive 

field without increasing the number of parameters. Leveraging the effectiveness of atrous 

convolution, we further propose AsppUNet, a semantic segmentation model based on an encoder-

decoder architecture embedded with an ASPP module, which is added after the decoder to capture 

and fuse multi-scale contextual features, thereby improving the overall segmentation performance. 

2. Related Work 

Image semantic segmentation is a challenging task that requires combining pixel-level accuracy 

with multi-scale contextual reasoning. FisherYu[2] proposed a atrous convolution module that 

aggregates multi-scale contextual information without reducing the resolution and supports 

insertion into existing semantic segmentation architectures at any resolution. In contrast to the 

pyramid-shaped architectures inherited from image classification models, the context module 

proposed in this paper is specifically designed for dense prediction tasks. It contains no pooling or 

downsampling layers, and is entirely based on atrous convolution. This design enables exponential 

expansion of the receptive field while preserving spatial resolution.  

Atrous convolution is widely utilized in tasks such as semantic segmentation and object 

detection. In semantic segmentation, the classic DeepLab series and DUC[3] provide an in-depth 

analysis of atrous convolution. Similarly, SSD[4] and RFBNet[5] in object detection also employ 

atrous convolution to enhance their performance. SPPNet[6] addresses the challenge of requiring a 

fixed-size input image by generating a fixed-length representation regardless of the input image's 

size or scale. It computes feature maps from the entire image only once and then aggregates features 

from arbitrary regions(sub-images) to generate a fixed-length representation for training the 

detector. This method avoids redundant computation of convolutional features. The Spatial Pyramid 

Pooling(SPP) layer used in SPPNet employs a multi-level spatial pyramid structure, providing 

greater robustness in handling deformed objects compared to sliding window approaches that use a 

single window size[7]. PSPNet[8], applied in image semantic segmentation, leverages pyramid 

pooling to aggregate contextual information from different regions, thereby capturing global context. 

This approach improves segmentation accuracy by effectively integrating multi-scale contextual 

information. 

Global prior representations have been demonstrated to effectively generate high-quality 

outcomes in scene parsing tasks. PSPNet provides an excellent framework for applying pyramid 

modules in pixel-level prediction tasks, and the proposed method achieves improved segmentation 

performance across a variety of datasets. Feature Pyramid Networks(FPNs)[9] are commonly used in 

object detection tasks. In such networks, low-level features typically contain less semantic 

information but provide precise localization, whereas high-level features are richer in semantics but 

offer coarser spatial details. Unlike conventional feature fusion approaches, FPN enhances 

prediction accuracy by integrating high-resolution, low-level spatial features with low-resolution, 

high-level semantic features, and performs predictions at each fusion stage. 

3. The AsppUNet Model Architecture 

3.1. AtrosUNet Structure 

 

As shown in Figure 1, the pooling layer of the UNet encoder is replaced with an AtrousConv2D 

layer with a dilation rate of 2. The Atrous convolution is shown in Figure 2. This modification helps 
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to reduce feature loss caused by pooling operations to some extent. We refer to this modified model 

as AtrosUNet. 

 

Figure 1: Network structure of AtrosUNet. 

3.2. Atrous Convolution 

Atrous convolution is a variant of the standard convolution operation that introduces an 

additional hyper-parameter known as the dilation rate, in contrast to conventional convolution. The 

dilation rate specifies the spacing between the elements of the convolution kernel, allowing the 

model to capture a larger receptive field without increasing the number of parameters or 

computational cost. Given a dilation rate r, the output y[i] of an dilated convolution applied to an 

input signal x[i] using a kernel w[i] is defined as follows: 
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Given that m is the length of w[k], and k represents the size of the convolution kernel, the 

effective size of the dilated convolution kernel becomes k′=k+(k-1)(r-1). As illustrated in Figure 

2, consider a convolution kernel of size 3×3(k=3). When the dilation rate r is 1, the effective size 

of the atrous convolution kernel remains 3×3. For r=4, the effective size increases to 9×9, and for 

r=7, it expands to 15×15. It is evident that as the dilation rate r increases, more zero-padding is 

introduced between the elements of the convolution kernel. This introduces gaps in the receptive 

field, potentially leading to a loss of contextual information and spatial discontinuities in multilayer 

atrous convolutions using a single dilation rate. To address this issue, our proposed aspp module 

employs four atrous convolutions with varying dilation rates to effectively capture multi-scale target 

features, thereby enhancing recognition accuracy. 

 

Figure 2: Atrous convolution. 
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The principle of atrous convolution is illustrated in Figure 2. This operation enables an 

exponential expansion of the receptive field without reducing the spatial resolution. Specifically, (a) 

shows feature map F1, obtained by applying atrous convolution with a dilation rate of 1 on F0, 

where each element in F1 has a receptive field of 3×3. (b) presents F2, generated from F1 using a 

dilation rate of 2; each element in F2 has a receptive field of 7×7. (c) depicts F3, derived from F2 

via atrous convolution with a dilation rate of 4, where each element in F3 has a receptive field of 15

×15. Notably, while the number of parameters increases linearly with network depth, the effective 

receptive field grows exponentially. 

3.3. AsppUNet Structure 

As illustrated in Figure 3, we insert the ASPP module behind the decoder. The ASPP module is 

shown in Figure 4. At this stage, the output is a feature map with a resolution of 320×320 and 64 

channels, which are extracted using four parallel atrous convolution kernels with different dilation 

rates. Each of these kernels generates a feature map with the number of channels corresponding to 

the number of categories, while maintaining the same resolution. These feature maps are then 

concatenated and fed into the output layer for final prediction. 

 

Figure 3: The AsppUNet model. 

3.4. Pyramid Module 

The context module is designed to enhance the performance of dense prediction architectures by 

aggregating multi-scale contextual information. It takes C input feature maps and generates C 

output feature maps, maintaining the same spatial dimensions and channel count. This consistent 

input-output structure allows the module to be seamlessly integrated into existing semantic 

segmentation networks, enabling feature maps to pass through multiple layers that expose 

contextual information and thereby improve prediction accuracy. The aspp module processes the 

input in parallel using atrous convolutions with different dilation rates. This approach is equivalent 

to capturing image-level contextual information at multiple scales. As illustrated in Figure 4, to 

classify the center pixel (highlighted in orange), the module employs four parallel atrous 

convolution kernels with distinct dilation rates to extract multi-scale features. These feature maps 

are then concatenated and transformed through a 1×1 convolution operation to produce the final 

output feature maps. 
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Figure 4: The ASPP module. 

4. Experimental Results and Analysis 

This paper conducts experiments based on the two improvement strategies proposed above. First, 

it verifies that replacing standard pooling with atrous convolution in the image semantic 

segmentation model yields better performance. Second, an aspp module is added after the encoder-

decoder architecture to extract multi-scale contextual information, which improves the mIoU and 

enhances the overall segmentation performance. In the network, the standard pooling layers are 

replaced with atrous convolutions using a dilation rate of 2. Two sets of dilation rates are defined 

for the pyramid module: (6, 12, 18, 24) and (3, 6, 9, 12), respectively. 

4.1. AtrousUNet Experiment 

Experiment 1 corresponds to the model illustrated in Figure 1. Compared to the standard UNet 

model, its segmentation performance shows significant improvement. The specific experimental 

results are analyzed as follows: 

 

Figure 5: Segmentation results comparison between AtrosUNet and UNet on the testset. 
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As shown in Figure 5, the figure contains two groups of images. The first column displays the 

original images, the second column shows the corresponding labels, the third column presents the 

segmentation results from the AtrosUNet model, and the fourth column shows the segmentation 

results from the UNet model. As can be seen from the figure, the segmentation of light poles, 

billboards, and cars in the third column(AtrosUNet) of the first group is clearer compared to the 

fourth column(UNet). Additionally, in the second group, the outlines of pedestrians and light poles 

within the black box in the third column are not only segmented more clearly but also exhibit a 

higher degree of completeness compared to those in the fourth column. These observations indicate 

that the AtrosUNet model achieves superior segmentation performance compared to the UNet 

model. Furthermore, atrous convolution proves to be more suitable for dense prediction tasks such 

as image semantic segmentation. 

Table 1: Segmentation results of AtrosUNet, CBAMUNet and UNet model on the CamVid testset. 

Algorithms UNet CBAMUNet[10] AtrosUNet 

Trees 51.2 85.9 66.4 

Sky 94.1 93.2 93.4 

Buildings 84.8 65.3 65.0 

Cars 82.5 89.8 85.0 

Lighs Poles 32.4 41.3 41.5 

Roads 96.9 95.8 88.8 

Sidewalks 89.9 90.2 73.4 

Pedestrian 26.9 30.7 50.6 

Fences 20.2 16.9 29.1 

Traffic Lighs 62.2 59.5 68.0 

Cyclist 26.3 20.8 48.9 

mIoU 60.6 62.7 64.5 

PA 89.0 89.2 90.5 

As shown in Table 1, the average mIoU for pedestrians, fences, and traffic lights is significantly 

improved in the AtrousUNet model compared to the CBAMUNet model[10]. Specifically, light poles, 

which are considered larger targets, and pedestrians, which are smaller targets, both show enhanced 

segmentation performance. The mIoUs for segmenting light poles and pedestrians using the 

AtrousUNet model are higher than those obtained with the CBAMUNet model. The atrous 

convolution operation helps reduce feature loss to a certain extent, thereby effectively capturing 

targets of various scales. 

4.2. AsppUNet Experiment 

Experiment 2 corresponds to the AsppUNet model shown in Figure 3, where four atrous 

convolution layers simultaneously perform feature extraction on the input feature maps, and then 

concatenate the feature maps at different scales, in order to obtain a more efficient combination of 

atrous convolution rates, this experiment sets two atrous convolution rates, namely (6,12,18,24) and 

(3,6,9,12).  

The experimental results indicate that better performance is achieved when the atrous 

convolution coefficients are set to (3,6,9,12), as shown in Figure 6. In this figure, from left to right, 

the columns represent: the original image, the ground truth label, the segmentation result of the 

proposed AsppUNet model and CBAMUNet model. Within this set of images, the segmentation 

performance in the region of interest(highlighted by the black box) demonstrates a clear advantage 

of the AsppUNet model over the CBAMUNet model. Specifically, in the black box of the first row, 
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the purple object corresponds to a cyclist. The AsppUNet model successfully segments the outline 

and accurately identifies the target, whereas the CBAMUNet model fails to capture it clearly in the 

fourth column. In the third row, the orange object within the black box represents a building. The 

AsppUNet model achieves complete and accurate segmentation of the building structure, while the 

CBAMUNet model exhibits fragmented or incomplete segmentation in the corresponding area. 

These results effectively validate the enhanced segmentation capability of the AsppUNet model on 

this dataset. 

As shown in Table 2-1 and Table 2-2, the AsppUNet model achieves a significantly higher mIoU 

on the CamVid dataset compared to other models. Its segmentation performance is notably 

improved for object categories such as trees, cars, roads, and traffic lights. In particular, the 

proposed model in this paper attains a segmentation accuracy of 65.1% on the "cyclist" class, which 

substantially outperforms previous models, as illustrated in Figure 6. While existing models 

demonstrate good performance on certain categories but poor results on others, the proposed model 

not only improves segmentation accuracy significantly for several classes, but also maintains stable 

performance across other categories without notable degradation. 

 

Figure 6: Segmentation results comparison between AsppUNet and CBAMUNet on the testset. 
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Table 2-1: Segmentation results of UNet, AsppUNet and other models for each category on the 

testset. 

Algorithms Trees Sky Buildings Cars Light poles Roads Sidewalks 

FCN-8 71.0 88.7 77.8 76.1 19.9 91.2 72.7 

DeconvNet[11] - - - - - - - 

ReSeg[12] - - - - - - - 

DeepLab-LFov[13] 74.6 89.0 81.5 82.2 14.3 92.2 75.4 

SegNet 52.0 87.0 68.7 58.5 16.0 86.2 60.5 

ENet[14] 77.8 95.1 74.7 82.4 35.4 95.1 86.7 

LRN[15] 73.6 76.4 78.6 75.2 30.4 91.7 80.1 

UNet 51.2 94.1 84.8 82.5 32.4 96.9 89.9 

AsppUNet 81.1 94.5 73.6 93.3 30.1 97.3 85.7 

Table 2-2: Segmentation results of UNet, AsppUNet and other models for each category on the 

testset. 

Algorithms Pedestrian Fences Traffic Lights Cyclist Backgrounds mIoU PA 

FCN-8 41.7 24.4 32.7 31.0 - 52.0 88.0 

DeconvNet[11] - - - - - 48.9 85.9 

ReSeg[12] - - - - - 58.8 88.7 

DeepLab-LFov[13] 48.4 27.2 42.3 50.1 - 61.6 - 

SegNet 25.3 17.9 24.8 30.7 - 50.2 88.6 

ENet[14] 67.2 51.7 51.0 42.5 - 51.3 - 

LRN[15] 43.5 41.0 40.1 48.1 - 61.7  

UNet 26.9 20.2 62.2 26.3 - 60.6 89 

AsppUNet 41 29.1 64.9 65.1 36.6 68.7 91.2 

All models in this paper were trained using 12 segmentation categories, including the 

background class. In contrast, the other models listed in the table did not report mIoU values for the 

background category. We believe that evaluating the performance on the background class is also 

important for a comprehensive assessment of segmentation accuracy. As previously mentioned, two 

different atrous convolution configurations were tested in this study. Due to time constraints, we 

only compared the segmentation performance of these two settings, as shown in Figure 7. The 

results indicate that the combination of (3,6,9,12) achieves better segmentation performance than 

(6,12,18,24). It can be observed that the optimal choice of atrous convolution rates may depend on 

both the dataset and the model architecture. Determining the best configuration typically requires 

extensive experimentation. In this work, we only compared two combinations to demonstrate the 

flexibility of such parameter settings. It is possible that the (3,6,9,12) combination is not yet optimal, 

but further exploration was limited by objective constraints. 

As shown in Table 3, we designate the model with an atrous convolution rate of (6,12,18,24) as 

Model A, and the model with a rate of (3, 6, 9, 12) as Model B. According to the table, Model B 

exhibits superior segmentation performance compared to Model A on categories such as sky, 

buildings, roads, and pedestrians. Specifically, the mean mIoU for the atrous convolution rate of 

(3,6,9,12) is significantly higher than that of Model A. These findings suggest that the atrous 

convolution rate combination of (3,6,9,12) is more suitable for this task or, more specifically, better 

suited for the AsppUNet model. 
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Figure 7: Segmentation results of AsppUNet with different atrous convolution rates, from left to 

right, the original image, the ground truth annotation, the segmentation result with dilation rates 

(3,6,9,12), and with dilation rates (6,12,18,24). 

Table 3: Effect of different atrous convolution rates on AsppUNet performance. 

Atrous convolution rate Sky Buildings Roads Pedestrians mIoU 

model A 93.2 55.3 95.8 36.9 65.5 

model B 94.5 73.6 97.3 41.0 68.7 

5. Conclusions 

This paper proposes two directions for model improvement. The first involves replacing the 

standard pooling operations in the U-Net architecture with atrous convolution to reduce feature loss 

during downsampling. Experimental results demonstrate that this modification leads to more 

complete and accurate segmentation of objects such as light poles, billboards, and cars. 

Consequently, the mIoU scores for these categories are also improved to some extent, indicating 

that the atrous convolution-based pooling layer achieves better performance in dense prediction 

tasks compared to conventional pooling layers. Based on these findings, the second improvement 
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introduces the AsppUNet model, which incorporates an encoder-decoder pyramid module with 

atrous convolution at the end of the decoder in the network. This design enables the aggregation of 

multi-scale feature maps and allows the model to derive a combination of atrous rates better suited 

to the CamVid dataset through experimental comparison. As shown in the experiments, AsppUNet 

is capable of accurately recognizing challenging targets such as cyclists, segmenting their outlines 

clearly, and providing more complete segmentation for objects of varying sizes, including 

pedestrians and light poles. Overall, the AsppUNet model achieves a better balance in mIoU across 

different object sizes and improves the overall segmentation performance of the encoder-decoder 

framework. 
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