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Abstract: In the context of global energy transformation, the rapid development of new 

energy vehicles has put forward higher requirements, for the accuracy of lithium-ion battery 

state estimation. Ambient temperature changes will significantly affect the activity of 

internal battery materials and electrochemical reactions, resulting in increased errors in 

battery health status and state of charge estimation, threatening system safety. This paper 

reviews the attenuation mechanism of temperature in lithium-ion batteries, including 

electrolyte decomposition and SEI film thickening at high temperatures, lithium 

precipitation and interface degradation at low temperatures, and systematically analyzes the 

state of charge estimation methods based on model-driven (equivalent circuit, electrothermal 

coupling model) and data-driven (neural network, filtering algorithm). The research provides 

a theoretical reference for improving the adaptability of battery management systems in 

complex temperature environments. 

1. Introduction 

As the global energy crisis and ecological pollution problems intensify, the transformation and 

upgrading of the traditional energy industry system has become a global strategic issue. The power 

battery system based on electrochemical energy storage technology has promoted the rapid 

development of the new energy vehicle industry due to its clean and efficient characteristics and has 

gradually become an important technical path to replace fossil fuel transportation vehicles. The 

popularization of new energy vehicles can not only effectively alleviate the pressure of oil resource 

shortages, but also greatly reduce the harm caused by noise to the human body. In order to promote 

the development of the new energy industry and promote the transformation of transportation energy, 

the Chinese government has introduced a series of policies to support the research and development 

of new energy vehicle technology, clearly deploy and plan for the leapfrog development of China's 

automobile industry and provide opportunities for the promotion of electric vehicles and their power 

battery technology. [1] 

At present, lithium-ion batteries are widely used in the production of new energy vehicles. As the 

core component of new energy vehicles and energy storage systems, the accuracy of their state 

estimation directly affects the safety and efficiency of the system. In the actual working environment, 
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lithium-ion power batteries will be affected by many factors, which may reduce the accuracy of 

battery state estimation and increase the error. Among them, the working environment temperature 

will not only affect the material activity and charge and discharge performance of lithium-ion batteries, 

but also the maximum available capacity of lithium-ion batteries will change accordingly after 

temperature changes. In addition, the state of charge (SOC) and state of health (SOH) of lithium-ion 

batteries are nonlinear functions of ambient temperature. All of the above will lead to a decrease in 

the accuracy of battery state estimation and an increase in error, which seriously affects the durability 

of new energy vehicles and even causes the battery management system (BMS) algorithm to not 

converge, increasing the safety risks in vehicle use. [2] For example, the non-uniformity of the 

temperature gradient inside the lithium-ion battery affects the inconsistency of the electrochemical 

reaction rate, resulting in a decrease in the accuracy of SOC estimation; the fluctuation of the charge 

and discharge rate under dynamic conditions and the coupling of mechanical vibration cause the 

hysteresis effect of the open circuit voltage (OCV) and the interference of SOH evaluation. Therefore, 

real-time online estimation of the operating temperature of lithium-ion power batteries is particularly 

important. 

Traditional battery temperature monitoring is based on thermocouples on the surface of lithium-

ion batteries. The instantaneous change rate of ambient temperature is low, and the accuracy is not 

high. With the increasing demand for lithium batteries, many studies have been conducted on 

temperature estimation of lithium batteries at home and abroad. Fan Wenjie et al.[3] summarized a 

variety of methods for estimating the temperature of lithium-ion batteries. CHEN Lunguo et al.[4] 

used the charging and discharging experiments of lithium iron phosphate batteries at different 

temperatures to simplify the variable parameter thermal model and identify the equivalent internal 

resistance and thermal parameters, combined with the extended Kalman filter algorithm to achieve 

the estimation of the internal temperature of the lithium battery. Huang Tengfei [5] established a set 

parameter two-state thermal model of lithium-ion batteries, coupled the thermal model with the 

temperature-related second-order RC equivalent circuit model, and forms an electrothermal model of 

lithium-ion batteries. The temperature of lithium batteries is estimated using the Kalman filter 

adaptive calculation method. Sun Yongkuan[6] established a multi-parameter time-varying electric 

thermal coupling model (MPET) for batteries. The current was input into the electrical model to 

obtain open circuit voltage, terminal voltage and SOC. The calculation results of the electrical model 

were then input into the heat generation model to obtain the heat generation and heat transfer of the 

battery to calculate the internal and surface temperature of the battery. WANGY et al.[7] established a 

thermal-electric coupling model based on the dynamic internal resistance model (DIRM) to study the 

heat generation characteristics of battery cells and the thermal management temperature distribution, 

which can achieve accurate prediction of the operating temperature of lithium batteries. 

So far, the bottlenecks that restrict the development of battery technology are mainly the following 

three aspects: (1) During the charging and discharging process, the battery exhibits highly nonlinear 

characteristics due to internal chemical reactions, heat and charge transfer processes, etc., which 

makes it difficult to accurately model it. (2)The internal state of the battery cannot be obtained by 

direct measurement methods, and is easily affected by ambient temperature, which reduces the 

accuracy of the internal state estimation of the battery. (3)The inconsistency of the battery pack 

directly affects the efficiency of the battery pack, resulting in battery performance and safety 

hazards.[8] Based on the existing literature, this paper collects and organizes the current domestic and 

foreign research results on the relationship between temperature and lithium-ion battery state 

estimation, as well as the results of lithium-ion battery temperature estimation research, and describes 

it from the analysis of the two driving methods of model and data and the existing SOH estimation 

method. 
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2. The influence mechanism of ambient temperature on lithium-ion battery aging 

Ambient temperature has a significant impact on the working stability and cycle life of lithium-

ion batteries, mainly manifested in high temperature accelerated aging and low temperature induced 

damage. At the same time, the internal volume expansion of the battery caused by changes in ambient 

temperature will also aggravate the aging of the battery. Yan Yukun[9] showed that the optimal 

working ambient temperature range for lithium-ion batteries is between 15 and 35 °C. Under low 

temperature conditions, the reduced conductivity of the electrolyte leads to a decrease in the lithium 

ion transfer rate, which reduces the material utilization rate during the charging and discharging 

process, further leading to a decrease in the available capacity of the lithium-ion battery. When 

working in a high temperature environment, the internal side reactions of the battery are accelerated, 

resulting in the accelerated oxidation and decomposition of the electrolyte and the formation and 

thickening of the SEI film [10] , which is intuitively manifested as capacity loss and increased 

impedance. 

2.1 Attenuation mechanism of battery aging under high temperature environment 

2.1.1 Oxidative decomposition of electrolyte 

The discharge process of lithium-ion batteries is often accompanied by varying degrees of gas 

expansion, of which electrolyte oxidation and decomposition are the most important gas production 

reaction. There are two situations in which electrolyte decomposition occurs. One is that due to poor 

battery sealing, moisture in the air enters the soft-pack battery and comes into contact with the 

electrolyte, causing the electrolyte to decompose and produce gases such as CO2, H2, and O2; the 

other is that electrons pass through the SEI membrane and react with substances in the electrolyte to 

produce a large amount of hydrocarbon gas. [11] 

Before lithium deposition, at a temperature above 40°C, the exposed lithium metal surface 

undergoes uncontrollable redox reactions with the organic electrolyte, such as solvent decomposition 

and LiPF₆ hydrolysis, to generate a mixed SEI film composed of Li2O, LiF and organic lithium salt 

(ROCO2Li). In addition, the side reactions continue to consume active lithium and degrade the 

electrolyte, while producing gas byproducts (CO2, C2H4), increasing the interface porosity and 

forming a porous SEI layer. 

Ethylene carbonate (EC) at high temperature to generate SEI components such as Li2CO3 and LiF, 

as shown in reaction formula (1); LiPF6 has poor thermal stability and is easily hydrolyzed at high 

temperature. The HF generated at the same time will accelerate its hydrolysis reaction [12] , as shown 

in reaction formula (2-3); HF generated by the hydrolysis of LiPF₆ reacts with Li2O to form an 

inorganic salt LiF (lithium fluoride) crystalline layer deposition, which hinders the transport of 

lithium ions, as shown in reaction formula (4). The reaction of the organic lithium salt ROCO2Li is 

shown in reaction formula (5).  

EC (C3H4O3)+2e-+2Li+→Li2O+C2H4↑+CO2↑    (1) 

LiPF6+H2O→LiF+POF3+2HF           (2) 

2HF+2Li++2e-→2LiF+H2↑              (3) 

Li2O+2HF→2LiF+H2O               (4) 

EC+2e-+2Li+→CH2OCO2Li(ROCO2Li)+Li2CO3     (5) 
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2.1.2 Uncontrollable thickening of solid electrolyte interphase (SEI) 

In addition to the known reversible volume change caused by the insertion and removal of lithium 

ions in the negative electrode graphite , lithium-ion batteries also undergo irreversible expansion, 

which causes the battery thickness to increase continuously. During the first charge and discharge 

process of lithium-ion batteries, the surface of the graphite electrode material is prone to irreversible 

reaction with the electrolyte to form a solid electrolyte membrane SEI, and the SEI membrane slowly 

grows with the increase in the number of cycles, which is the key reason for battery aging and 

thickness increase.( Figure 1) 

 

Figure 1 Principle of uncontrollable thickening of SEI film [13] 

During the deposition process, the lack of constraints from the intercalation matrix will lead to a 

huge volume expansion during the deposition of lithium metal, which will cause the SEI film to 

mechanically rupture and expose the fresh lithium surface. In addition, due to the uneven and non-

dense structure and composition of the original SEI film, the desolvated lithium ions will 

preferentially deposit at locations with high electronic and ionic conductivity, which will show 

synaptic growth and form lithium dendrites. The lithium dendrites will continue to grow and thicken 

on the original dendrites and form new dendrites. Some dendrites will break due to the release of 

internal stress to form "dead lithium", and some residual dendrites will penetrate the diaphragm 

causing micro short circuits. During the discharge process, the deintercalated lithium ions will 

generate a large number of pits and holes on the surface of the lithium metal electrode and leave a 

broken original SEI. The subsequent deposited lithium metal reacts with the electrolyte to form a 

composite inorganic/organic SEI thick layer. Its high impedance characteristics aggravate 

polarization, forming a heterogeneous deposition mode of "dead zone-active zone" alternation[13] . At 

this point, a large amount of active lithium is consumed. The loss of active lithium leads to a decrease 

in available capacity. The principle of SEI film thickening is shown in Figure 1. Liu Tong[14] selected 

four single lithium iron phosphate batteries and selected 15A to fully charge them in constant and 

current constant voltage (CCCV) mode and then discharged them at a constant current to a battery 

discharge cut-off voltage of 2.5V.  

2.2 Impact of low temperature environment on battery health status 

There are three main mechanisms for the impact of the low temperature environment on the state 

of health (SOH) of lithium-ion batteries: (1) capacity decay dominated by irreversible lithium 

deposition; (2) degradation of electrolyte ion transport performance; (3) triple coupling effect of 

interface stability destruction. At low temperatures (<0°C), the kinetic barrier for lithium ion 

embedding into the graphite negative electrode increases, causing some lithium ions to be directly 

reduced to metallic lithium on the negative electrode surface (lithium deposition reaction), forming 

dendritic or mossy deposits; at the same time, low temperatures cause the electrolyte viscosity to 

surge, causing concentration polarization to intensify, further amplifying the risk of lithium 
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deposition. In addition, the solid electrolyte interface (SEI) is prone to mechanical rupture due to 

increasing brittleness at low temperatures, and the exposed fresh lithium surface continues to react 

with the electrolyte to form a thick and uneven composite SEI, resulting in a surge in interface 

impedance and blockage of lithium-ion transmission channels. 

3. Health status estimation method under wide temperature range 

Battery state of health (SOH) is usually used to characterize the degree of battery aging and is 

specifically defined as the ratio of the maximum charge capacity available in the current cycle to the 

rated capacity of the battery when it leaves the factory, as shown in formula (6) [15] . 

                (6) 

Among them, Q(C)MAX represents the maximum charge capacity available in the current cycle, 

and QN represents the rated capacity of the battery when it is produced . At present, there are three 

main methods for estimating SOH : model-driven method, data-driven method and test analysis 

method, and their detailed classification is shown in Figure 2. Among them, the test analysis method 

directly obtains the characteristic parameters of the battery for SOH estimation, the model-driven 

method estimates SOH based on the battery model combined with filters and sliding mode observers, 

and the data-driven method obtains battery aging information and establishes a model based on 

experience and existing databases and combines advanced intelligent algorithms to realize battery 

SOH evaluation . 

 

Figure 2 Classification of SOC estimation methods 

3.1 Model-driven approach 

 

Figure 3 Detailed classification of battery models 
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The model-driven approach estimates SOH based on the battery model combined with filters and 

sliding mode observers , and battery modeling is a necessary prerequisite for estimating battery SOH. 

At present, lithium-ion battery models mainly include electrical characteristic models, thermal 

models, electrothermal coupling models, and aging models[16], as shown in Figure 3. The model-

based approach mainly combines the battery model with other methods. Currently, the most studied 

and widely used method is the method that combines the battery model with filters or observers. This 

chapter summarizes the current equivalent circuit model, electrothermal coupling model, and SOH 

estimation under various filtering algorithms. 

3.1.1 Equivalent circuit model 

The equivalent circuit model is a circuit composed of resistors, capacitors, voltage sources, 

inductors and other circuit elements used to analyze physical parameters and characterize battery 

characteristics. Equivalent circuit models can be divided into two categories: integral order model [17] 

and fractional order model [18]. 

Common integral-order equivalent circuit models include the Rint model, Thevenin model, the 

PNGV model, second-order RC model, and multi-order RC model.[19] The initial integral-order model 

is the Rint model [19] , which is a resistor-inductor model consisting of only a voltage source and a 

resistor. The model has a simple structure and easy-to-determine parameters. Its basic principle is to 

estimate the inductance and internal resistance by the rate of change of the battery voltage during the 

charge and discharge process, thereby estimating the battery's state of charge. Although accuracy is 

not high, it lays the foundation for establishing a high-order model. The Thevenin model (first-order 

RC model), PNGV model, and second-order RC model are all gradually optimized for the Rint model. 

Specifically, the Thevenin model is based on the Rint model and adds an RC network. The RC 

network is used to simulate transient characteristic factors such as filtering, delay, integration, and 

differentiation in the circuit, and can reflect the polarization effect and internal resistance 

characteristics of the internal resistance; the PNGV model is based on the Thevenin model and a 

capacitor C is connected in series to describe the non-ideal characteristics and dynamic response of 

the battery; the second-order RC model continues to add an RC network to the Thevenin model, and 

further improves the accuracy of SOC estimation through the steady-state response and transient state 

response of the RC network.[20] Figure 4 shows the accuracy iteration process of the integral order 

model. 

 

Figure 4 Iterative process of the integral order model 

In recent years, fractional-order models have been proposed one after another. Their advantage is 

that they use constant phase elements (CPE) to replace the capacitors in the RC circuit to better 

simulate the charge transfer inside the battery in a wide frequency domain.[21] The advantages and 

disadvantages of integral order and fractional order are compared in Table 1. VOC is the open circuit 

voltage, R0 is the ohmic internal resistance, R1 and R2 are the polarization resistances, C1 and C2 are 

the polarization capacitances, ZCPE1 and ZCPE2 are the impedances of the two CPEs respectively, 

and ZWarburg represents the Warburg impedance. 
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Table 1 Advantages and disadvantages of different equivalent circuit models. [22] h 

Model Equivalent circuit model of integral 

order 

Fractional Order Equivalent Circuit Model 

Structure 

  
Advantages The model is simple, easy to recognize 

and compute. 

Applicable across all frequency ranges, 

providing a better simulation of battery physical 

phenomena. 

Disadvantages It is impossible to simulate the battery 

characteristics across the entire 

frequency range, and the extrapolation 

method is unreliable. 

The structure is complex, and the computation is 

slow. 

The most widely used equivalent circuit model is the second-order RC model, which was first 

proposed by Yann Liaw et al.[21] at the Idaho National Laboratory in the United States based on the 

first-order RC model. The state space equation of the second-order RC equivalent circuit model 

considering temperature changes is as follows: 
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                        (7) 

In the formula, R0 is the ohmic internal resistance; R1 and R2 are the polarization internal 

resistances; C1 and C2 are the polarization capacitances, U1 and U2 are the voltages corresponding 

to R1 and R2 respectively, and the polarization phenomenon of lithium ions is described by ohms, 

polarization resistance and polarization capacitance. 

Gu Kangwei[20] used a second-order RC model to obtain the SOC-OCV curve through the static 

voltage method and then identifies the model parameters through the pulse discharge method. The 

sixth-order polynomial is used to achieve a fitting accuracy of 0.995. It is found that the mean absolute 

error (MAE), mean relative error (MRE) and root mean square error (RMSE) of the model at 6 

different temperatures all decrease with the increasing temperature. At the same time, He Yeliang[23] 

compared different battery equivalent circuit models, and finally uses a second-order RC equivalent 

circuit model to identify the parameters of R and C in the circuit at 6 different temperatures, which 

also verifies the high accuracy of the second-order RC model. 

In order to further verify the accuracy of the second-order RC model, Zhang Qichang[26] conducted 

a reverse verification. This literature introduced the concept of electrochemical impedance 

spectroscopy (EIS) to measure the composition of the equivalent circuit model. By measuring the EIS 

curves of the ternary lithium battery at different temperatures and fitting the obtained impedance data, 

the equivalent circuit model LR(RC)(R(CW)) model which is most suitable for the ternary lithium 

battery is obtained. In actual use, the equivalent circuit model is simplified, and the L and W 

components can be omitted. The circuit model of the final model is R(RC)(RC), that is, the second-

order equivalent circuit model. 
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3.1.2 Electrothermal coupling model 

In early studies, thermal models and electrochemical models were usually treated separately. The 

electrochemical model focused on electrical parameters such as voltage, current, and capacity based 

on electrochemistry, while the thermal model focused on the internal temperature distribution and 

heat dissipation of the battery based on lumped parameter models or distributed parameter models. 

The effects of temperature on electrochemical reaction rate, internal resistance, capacity attenuation, 

etc. were not considered, and the dynamic feedback of electrochemical heat generation on 

temperature distribution was not quantified. Therefore, the electrochemical-thermal coupling model 

came into being. 

The electrothermal coupling model uses a mechanism model to describe the electrical 

characteristics of the battery, so its accuracy is higher than that of the general lumped parameter 

model, but the complexity is increased. Therefore, in order to improve the adaptability of the battery 

characteristic model to the ambient temperature and the limitations of sensor equipment in collecting 

the internal temperature of the battery, Wang Xindong.et al.[27] analyzed the heat generation, heat 

transfer and heat dissipation behavior of lithium-ion batteries, and establishes an electrothermal 

coupling model and parameter identification by combining the second-order RC equivalent circuit 

model with temperature changes and the two-state lumped parameter thermal model. This literature 

identifies the thermal physical parameters under a variable temperature environment by the recursive 

least squares method and proves the good accuracy of the established electrothermal coupling model. 

The two-state lumped parameter thermal model in the literature is established based on the heat 

generation and transfer process of the battery. The discretization expression of its second-order RC 

equivalent circuit model and the state space equation of the two-state lumped parameter thermal 

model are shown in Table 2. 

Table 2 Related equations of sub-models of electrothermal coupling model 

Model                      State Space Equation Discrete expressions 
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Total Heat Model 

In the discrete expression of the second-order RC model, △t is the sampling interval; Qn is the 

maximum available capacity; SOC is the battery state of charge; η is the coulomb efficiency. In the 

state space equation of the two-state lumped parameter thermal model, Cc and Cs represent the 

equivalent heat capacity of the battery core and shell respectively; Ri and Ro represent the equivalent 

thermal resistance of the battery respectively, which are reciprocal to the heat transfer coefficient. 

Since the time-varying nature of the parameters of the sub-model of the electrothermal coupling 

model has a great influence on calculation accuracy, Sun Yongkuan further established a multi-

parameter time-varying electric thermal coupling model (MPET)[6]. The model consists of a first-

order RC equivalent circuit model and a four-state thermal model independently established by the 

author. It can quickly adjust the thermal physical parameters according to the changes in the external 

environment and input the heat generation rate into the heat transfer model to calculate the internal 
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and external surface and core temperature of the battery at the next moment, effectively reducing the 

influence of the internal and external temperature of the battery on SOC estimation. 

3.2 Data-driven approach 

Commonly used data-driven SOH estimation methods include neural network (NN), support 

vector machine (SVM), Gaussian process regression (GPR), etc. The specific classification and their 

advantages and disadvantages are shown in Table 3. 

Table 3 Comparison of data-driven methods [22] 

 Category Advantages Disadvantages 

 

 

NN 

FNN Good classification ability 

fast convergence speed 

Algorithms don't work when 

data is insufficient 

BPNN Can simulate and 

approximate any function 

There may not always be a 

solution 

CNN Strong expansion 

capability  easy to train 

No memory function 

LSTM-

RNN 

Long-term storage of 

information 

Calculation time 

GRU-

RNN 

Small number of 

parameters, low risk of 

overfitting 

Difficulty obtaining 

information from long ago 

SVM Good robustness Large computing memory 

and long computing time 

GPR Performs well on nonlinear 

systems 

Failure in high-dimensional 

space 

3.2.1 Neural network model 

The neural network model can perform black-box processing, feature extraction and learning on a 

large amount of input data through a multi-layer neural network structure. During the learning 

process,it continuously adjusts parameters, learns autonomously and has strong robustness. 

Therefore,the memory and learning capabilities of the neural network model are suitable for SOH 

estimation of lithium-ion batteries. Feedforward Neural Network (FNN) is the most common model 

in practice. It is a unidirectional model and each layer of neurons is a nonlinear function of the 

previous layer. In order to solve the problem of excessive errors in the data propagation process of 

each layer of neurons, an error back-propagation (BP) neural network was introduced. Since the 

traditional BP algorithm is a local search algorithm of gradient descent,Kong Deyang et al.[24] used 

genetic algorithm (GA) to improve the BP neural network, and uses the GA-BP neural network to 

accurately predict SOH based on the mean absolute error (MAE) and mean square error (MSE) as 

indicators . Recurrent Neural Network (RNN) is a type of neural network with short-term memory 

and a loop structure. In order to overcome the problem of gradient explosion or gradient diffusion of 

RNN, the structure of the original recurrent neural network is improved by redesigning the memory 

unit . A Long Short-term Memory Recurrent Neural Network (LSTM) is proposed. Lin Hao [25] used 

LSTM with current, voltage, and temperature as the time input data of the input layer. The simulation 

results show that the prediction accuracy of this model for SOH is better than other models. However, 

due to the large number of internal unit gates of the LSTM model, the gradient vanishing problem 

still occurs when there is a lot of data. In order to solve the problem of reducing the gradient vanishing 

while retaining long-term sequence information, a gated recurrent unit recurrent neural network 
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(GRU) is introduced. The GRU neural network model is used to estimate the SOH, which can add 

the estimation time and reduce hardware consumption [26]. 

3.2.2 Support Vector Machine Method 

Support vector machine (SVM) is a new type of learning machine based on statistical learning 

theory. Compared with NN, it can improve the generalization ability of machine learning[27] and is 

often used to solve problems such as small samples, high dimensions and local minima [28]. Wang 

Yuyuan et al.[29] used the Least Squares Support Vector Machine (LSSVM) model based on SVM, 

and compared the estimation with SVM using the root mean square error RMSE and determination 

coefficient R2 as evaluation criteria. It is found that the LSSVM estimation value is more consistent 

with the SOH value. Zhang Yue[30] proposed an SOH estimation based on the Gray Wolf Optimized 

Support Vector Machine (GWO-SVM) algorithm, which optimizes the penalty parameter C and the 

width coefficient of the Gaussian kernel function. The overall estimation error is lower than SVM 

error, which effectively improves the accuracy and robustness of the battery state. Compared with 

SVM , the Relevance Vector Machine (RVM) can express the uncertainty of the prediction results 

and reduce the calculation amount of the kernel function. 

4. Summary and Outlook 

As a core component of new energy vehicles, the accuracy of state estimation of lithium-ion 

batteries directly affects system safety and efficiency. However, changes in ambient temperature 

significantly affect battery performance, resulting in increased errors in state of charge (SOC) 

estimation. High temperatures can cause loss of active lithium and capacity decay; low temperatures 

can cause a surge in interface impedance and obstruction of lithium ion transmission. In view of the 

mechanism of temperature's influence on SOC, existing studies have proposed two types of 

estimation methods based on model-driven and data-driven. The model-driven method is based on 

the equivalent circuit model, simulates the battery polarization effect through the second-order RC 

model, combines the electrothermal coupling model to quantify the dynamic relationship between 

temperature and electrochemical parameters, and uses the Kalman filter algorithm to improve 

estimation accuracy. The data-driven method uses machine learning techniques such as neural 

networks (such as BP, LSTM) and support vector machines (SVM) to autonomously learn the 

nonlinear characteristics of the battery by inputting voltage, current and temperature data. 

Comparative experiments show that the GRU model and adaptive filtering algorithms (such as 

ASTSCKF) have higher robustness and accuracy under variable temperature conditions. However, 

high model complexity, time-varying parameters and strong data dependence are still the current 

technical bottlenecks. 
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