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Abstract: Existing algorithms fail to fully utilize the rich semantic and spatial information 

contained in images, leading to inaccurate pixel segmentation across different categories 

and severe loss of detail. We propose a semantic segmentation network that focuses on 

multi-scale spatial information (Focusing on Multi-Scale Spatial Information for Semantic 

Segmentation Networks, FMSI-DeepLab). Based on the DeepLabv3+ framework, the 

network is improved in two main parts. In the encoder, deformable convolutions are 

combined with the Global Grouped Coordinate Attention (GGCA) mechanism to 

reconstruct the Atrous Spatial Pyramid Pooling (ASPP) module, enhancing the model's 

ability to capture global information across both height and width spatial dimensions, 

thereby enabling efficient multi-scale feature extraction. In the decoder part, “interest flow” 

processing is added to the low-level features, enabling them to have global connectivity at 

the low-level stage. Subsequently, the Multi-Scale Channel Spatial Enhanced Attention 

(MSEA) module is introduced to further enhance the model's focus on the edge 

information of the low-level features extracted by the backbone network, thereby 

strengthening the model's emphasis on details. Compared to the original DeepLabv3+ 

semantic segmentation model, the model achieves a 2.62% improvement in average 

intersection-over-union (mIoU) on the VOC2012 dataset, addressing issues of inaccurate 

image segmentation and severe loss of details. 

1. Introduction 

Semantic segmentation is an important research topic in the field of computer vision and plays a 

crucial role in many practical applications. Image semantic segmentation is a prerequisite for 

computer recognition and understanding of images. It is widely used in many fields such as 

autonomous driving [1], medical auxiliary diagnosis[2], indoor and outdoor scene analysis[3], etc., 

and has broad application prospects and social value . 

With the increasing power of deep learning technology, semantic segmentation has entered a 

new phase of development. Deep learning methods can extract more and deeper feature information 

from images, enabling end-to-end pixel-level classification of image objects, significantly 

improving the accuracy and efficiency of semantic segmentation. In 2017, Chen et al.[4] improved 
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the DeepLab method based on DeepLabv1 to create DeepLabv2. DeepLabv3[5] is based on 

DeepLabv2 and eliminates the corresponding cascaded convolutions, while DeepLabv3+ introduces 

new encoding and decoding based on DeepLabv3 and performs related cascaded processing to 

obtain the final features. However, the drawbacks remain evident, particularly in terms of learning 

long-range dependencies and spatial correlations. This limitation restricts their ability to capture 

global information, leading to poor performance in tasks requiring detailed analysis of complex 

scenes. In 2022, Azad R proposed a new image segmentation algorithm, TransDeepLab[6], based 

on the DeepLab and Transformer[7] architectures. This algorithm introduces an adaptive fusion 

mechanism for multi-scale features across contexts, achieving significant performance 

improvements in image segmentation tasks. In 2023, Ouyang [8] et al. proposed a new efficient 

multi-scale attention module (Efficient Multi-Scale Attention Module with Cross-Spatial Learning, 

EMA) to improve channel or spatial attention mechanisms, achieving notable results in image 

classification and object detection tasks. Jiao[9] et al. constructed a multi-scale dilated transformer 

(DilateFormer) by stacking MSDA blocks at lower stages and global multi-head self-attention 

blocks at higher stages, enabling more efficient interaction between domain blocks. In 2025, Si[10] 

et al. proposed combining channel-spatial attention mechanisms (SCSA), aiming to explore and 

leverage the synergistic relationship between spatial attention and channel attention to mitigate 

semantic differences between different feature maps. 

Currently, most models struggle to fully exploit the full potential of data with rich details and 

multi-level structures, fail to fully uncover all potential correlations within the data, leading to 

issues such as blurred edge segmentation, severe loss of detail, poor segmentation performance for 

small and multi-scale objects, and low robustness. This paper proposes the FMSI-DeepLab model, 

which adopts a design more suited for multi-scale feature fusion. By leveraging spatial information 

in the input image and focusing more on contextual relationships, it addresses the issues of low 

segmentation accuracy for small objects and blurred edge segmentation, thereby improving the 

segmentation accuracy of multi-scale objects in images. 

2. Model Overview 

 

Figure 1 FMSI-DeepLab network structure 

The overall structure of the FMSI-DeepLab network consists of two parts: an encoder and a 

decoder. The encoder uses Xception as the backbone network. Based on the original DeepLab 
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model, it uses deformable convolution layers and global group attention blocks to encode the input 

image into a space with high attention to height and width. More specifically, the encoder module 

employs five parallel deformable convolutions with different hole rates and global average pooling 

to perform multi-scale sampling, capturing the feature information of the image. Then, the obtained 

multi-scale contextual information is fused into the decoder module using a global coordinate group 

attention mechanism. In the decoder, the extracted low-level semantic information is first subjected 

to “interest flow” processing, followed by a multi-scale spatial attention enhancement (MSEA) 

module to compensate for the lack of cross-channel correlation in feature extraction by the 

backbone network. Next, high-level multi-scale features are bilinearly upsampled, and finally, the 

processed low-level and high-level features are concatenated (Concat) to refine the feature 

representation. Through the final upsampling, pixel points are classified and restored to a 

segmentation map of the input image size. The overall network structure is shown in Figure 1, and 

the details of each component of the network will be described in detail in the following sections. 

2.1 Encoder 

A reconstruction of the ASPP module in the original Deeplabv3 to leverage more spatial 

information, specifically composed of two parts: deformable convolutions and a global coordinate-

based attention mechanism. Experiments were conducted by modifying the original ASPP module's 

convolution dilation rate (r=6, 12, 18) to (r=6, 8, 12, 18, 24). The more densely sampled approach 

effectively improves segmentation accuracy. The dilation rate r controls the sampling interval, 

expanding the receptive field without increasing the number of parameters. For example, a 3×3 

convolution with a dilation rate of 6 is equivalent to covering a 13×13 pixel region. By combining 

the wide-area coverage capability of dilated convolutions with the geometric adaptability of 

deformable convolutions, the model can simultaneously capture details and global information in 

complex scenes. Information about irregular targets or targets that have been rotated or deformed 

can be effectively collected. Finally, a global group attention mechanism is introduced to further 

enhance the model's ability to process multi-scale targets. 

The Deformable Convolution (Def-Conv) block has two types of convolution kernels: traditional 

convolution kernels and convolution kernels corresponding to learned offsets. First, a standard 

convolution operation is used to perform preliminary feature encoding on the input image, yielding 

a basic feature map. The basic feature map is then input into the offset prediction branch, where a 

dedicated convolution layer (with 2N channels) analyzes the spatial deformation patterns of the 

features. Deformable convolution adds learnable offsets (Offset) to each sampling point, as shown 

in Equation 1: 

 1
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(1) 

 

Figure 2 Principle of Deformable Convolution 
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Among these, the  for the Kth sampling point is determined through deformable convolution, 

which learns the offset to shift the sampling point toward key feature locations, dynamically 

optimizing the receptive field and achieving more efficient and robust feature extraction. The 

additional convolutional layer prediction enables the convolution kernel shape to dynamically adapt 

to input features. Both types of convolution kernels undergo parameter updates simultaneously via 

bilinear interpolation backpropagation. The module principle is shown in Figure 2, achieving end-

to-end deformable adaptive learning. Among them, Figure 2 (a) shows the common 3x3 

convolution kernel sampling method, (b) shows the sampling of deformable convolution, and the 

changes in sampling points after adding the offset, and (c) shows a special form of deformable 

convolution: 

Traditional attention mechanisms lack the ability to simultaneously capture global information in 

both the height and width spatial dimensions, resulting in limited feature representation capabilities. 

The Global Coordinate Group Attention (GGCA) module captures multidimensional global 

information by performing global average pooling and max pooling in the height and width 

directions, respectively, thereby enhancing the comprehensiveness of feature extraction. The 

specific structure of this module is shown in Figure 3.First, we divide the input feature map 
B H C WX R    into “G” groups according to the number of channels, with each group containing 

“C/G” channels. Here, “B” is the batch size, “C” is the number of channels, and ‘H’ and “W” are 

the height and width of the feature map, respectively. The feature map after grouping is represented 

as /B H C G WX R    , then we perform global average pooling and global max pooling operations on the 

feature map after grouping in the height and width directions, respectively, as shown in Equations 

(2-5): 

 

C
B G H 1

G
h,avg = AvgPool(X X) R

   


                                                   

(2) 

 

C
B G H 1

G
h,max = MaxPool(X X) R
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
                                                   

(3) 
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B G 1 W
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w,avgX = AvgPool(X) R

   


                                                  

(4) 

 

C
B G 1 W

G
w,maxX = MaxPool(X) R

   


                                                  

(5) 

For each group feature map, we apply a shared convolutional layer for feature processing. This 

shared convolutional layer consists of two 1×1 convolutional layers, a batch normalization layer, 

and a ReLU activation function, which are used to reduce and restore the channel dimension. 

Finally, we weight the input feature maps according to the attention weights to obtain the output 

feature map as shown in Equation 6: 

 

Figure 3 Global Grouped Coordinate Attention 

kp
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                                                         (6) 

Here, the attention weights are expanded in the height and width directions to match the size of 

the input feature map. The GGCA module groups the input feature maps by channel number 

through batch processing, reducing the computational load of each group of feature maps while 

maintaining the diversity and richness of feature expressions. 

2.2 Decoder 

For the main Xception network, channel-independent depth-separable convolutions are used to 

reduce the number of parameters while sacrificing cross-channel interaction capabilities. 

Additionally, different spatial locations may contain information of varying importance, but 

traditional convolution operations treat all spatial locations equally, failing to highlight critical 

regions. To achieve more efficient feature extraction, this paper employs “interest flows” to 

enhance the richness of low-level semantic information. The backbone network is divided into 

Entry Flow (early layers), Middle Flow (deep layers), and Exit layers. Low-level features are only 

derived from the early layers, resulting in a significant lack of spatial information from other parts. 

Therefore, we propose combining the Exit layer features with the Middle layer features after 2x 

upsampling, and then combining the resulting features with the Entry layer feature maps after 

another 2x upsampling. This process is inspired by the Feature Pyramid Network (FPN)[11]. This 

“interest flow” operation ensures that the low-level information extraction process incorporates 

more comprehensive spatial information. Additionally, a multi-scale spatial attention mechanism 

(MSEA) is designed, which enhances feature representation through multi-scale convolutions and 

dual attention mechanisms (channel attention and spatial attention). The structure is shown in 

Figure 4.It effectively addresses issues such as insufficient expression of multi-scale features, 

insufficient attention between channels, and insufficient exploration of the importance of spatial 

regions when convolutional neural networks process images. The overall structure is shown in 

Figure 4. Before merging low-level feature information in the decoder, features at different spatial 

scales are captured through separable convolutions of varying depths. Then, by evaluating the 

importance of each channel through channel attention and performing corresponding adjustments, 

useful feature channels are strengthened while unimportant channels are suppressed, thereby 

improving the quality of feature representation. The average pooling formula and max pooling are 

given by Equations (7-8): 

 
   k=1 k=1fcl_avg = Conv ReLU Conv avg_out

                                       
(7) 

 
   = k=1 k=1fcl_max Conv ReLU Conv max_out

                                       
(8) 

The channel attention model is as follows: aC =σ(fcl_avg+ fcl_max) Spatial attention is then 

introduced: focusing on the importance of specific regions in an image helps the model concentrate 

on processing the local regions that have the greatest impact on the final task. In the spatial attention 

submodule, channel-wise average pooling and max pooling operations are performed on the input 

features. The results of these two pooling operations are combined through a convolutional layer, 

and the Sigmoid activation function generates spatial attention weights to highlight important 

spatial regions.σ represents the sigmoid function.  AvgP x denotes average pooling,  xMaxP denotes 

max pooling, and spatial attention is given by equation (9): 

  ( ([ , ], ))aS Conv concat AvgP(x) MaxP(x) dim= 1
                                    

(9) 

After generating channel attention and spatial attention, they are respectively weighted and fused 

D C H W
h wO = X A A R     
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with the original features. The final output combines enhanced features with channel and spatial 

attention information. The final output is given by Equation (10): 

 input ifinal a anputX = X * S + X * C
                                                     

(10) 

By optimizing the main features and using the attention mechanism, the lower-level semantic 

features have more spatial information before being fused with the higher-level semantic features, 

thereby improving the model's comprehensive grasp of the contours of the segmentation target and 

enhancing the segmentation accuracy. 

 

Figure 4 Multi-Scale Channel Spatial Enhanced Attention 

3. Experiment results and analysis 

3.1 Dataset Introduction 

This paper uses the VOC 2012 dataset (PASCAL Visual Object Classes Challenge 2012, VOC 

2012) to validate model performance. Initiated by the EU PASCAL network, it is a classic dataset 

in the field of computer vision, used for tasks such as object detection and segmentation. Data scale: 

Number of images: 11,530, divided into training and testing sets at a 9:1 ratio. Annotated objects: 

21 categories (including background, people, vehicles, cats, dogs, airplanes, etc.). 

3.2 Experimental conditions 

3.2.1 Experimental environment 

The experiment was based on the PyTorch deep learning framework and CUDA 11.8 library, 

using a Python 3.8 environment. The training parameter BatchSize was set to 4, and NVIDIA 

GeForce RTX 4090 was used for training. The downsampling rate of the main network was 16, the 

maximum learning rate was 0.007, the minimum learning rate was 7×10-5, and the total number of 

training epochs was 100. 

3.2.2 Evaluation criteria 

The experiment used the F1 score, mean intersection over union (mIoU), and mean pixel 

accuracy (MPA) metrics for evaluation. mIoU and MPA are commonly used evaluation metrics in 

image semantic segmentation tasks. mIoU measures the accuracy of the model by calculating the 

ratio of the intersection and union between the predicted region and the true label. It considers the 

overlapping region between the prediction and the true label, reflecting the quality of the 
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segmentation boundaries between different categories. MPA is used to measure the model's 

prediction capability for each category of pixels. The specific formulas are (11-13): 

2 P R
F1=

P+ R

 

                                                                       
(11) 

0
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k FN FP TP


  


                                                             
(12) 
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i=1 i i

TP1
mPA=

k TP + FP


                                                                 
(13) 

3.3 Analysis of experimental results 

3.3.1 Comparison and visualization of segmentation results from different models 

To validate the effectiveness of the proposed algorithm in this paper, it was compared with 

multiple models on the VOC2012 dataset. The effectiveness of the proposed model was validated 

using F1-score, mIoU and MPA metrics. The models included in the comparison were U-Net, 

PSPNet, HRNet, Deeplabv3+ and SwinU-Net. The results of the comparison experiment are shown 

in Table 1. As shown in the table, the proposed model achieved 86.4%, 90.13%, and 81.65% on the 

F1-score, mIoU, and MPA metrics, respectively. Compared to the original Deeplabv3+ model, the 

average intersection-over-union (78.98%) was improved by 2.62%, and the model achieved better 

results in edge object and multi-scale object segmentation. 

Table 1 Comparison of experimental results from different models 

Model Backbone F1/% MPA/% mIoU/% 

Unet[12] VGG 83.3 72.30 60.14 

PSPnet[13] Mobilenetv2 81.5 81.11 69.93 

Hrnet[14] Hrnetv2 80.9 83.17 73.29 

Deeplabv3+ Xception 83.5 85.45 78.98 

SwinUnet[15] Swin-T - - 67.80 

Ours Xception 86.4 90.13 81.65 

 

Figure 5 Visualization of Comparison Experiments from Different Models 
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To further illustrate the segmentation results of different models, Figure 5 presents partial 

visualization comparison results between the proposed network and other network models. It is 

evident that the proposed model performs more smoothly in extracting complex objects and 

captures details of small objects more effectively. Overall, the proposed model demonstrates a 

significant advantage over other models. For example, in the first row, the U-Net model exhibits 

issues such as the bottom of a bottle being missed, while in the third row, the arm of a person is not 

segmented, and in the fourth row, the herd of cows is not properly segmented. Although the PSPNet, 

Deeplabv3+, and HRNet models do not miss any objects, their segmentation results are blurry. As 

shown in the sixth column of the fifth comparison experiment, the SwinU-Net model exhibits 

severe blurring of object edges during segmentation. The model proposed in this paper achieves 

complete segmentation, accurate detection of small objects, and overall performance superior to 

other models. 

3.3.2 Comparison of accuracy of different convolution hole rates in ASPP improvement 

To further validate the different effects of varying hole rates on ASPP reconstruction as proposed 

in this paper, we conducted comparative experiments with different hole rates. Model a in the table 

has hole rates of 6, 12, and 18, while model b has hole rates of 6, 8, 12, 18, and 24. The original 

ASPP may have “blank areas” in the receptive fields of its expansion branches. Denser parallel 

branches can “fill in” these regions, reducing the risk of local information loss while more 

uniformly and continuously covering the spatial information of the feature map, thereby enhancing 

the capture of multi-scale features. As shown in table 2, the proposed changes in dilation rate result 

in a 0.89% increase in mIoU and a 0.7% increase in MPA for Model B compared to Model A. This 

validates the effectiveness of using different dilation rates from the original model. 

Table 2 Experimental results for different void ratios 

Model Method F1/% MPA/% mIoU/% 

a Deformable 84.5 88.16 79.39 

b Deformable 85.6 88.86 80.28 

3.3.3 Ablation study 

To validate the effectiveness of the Def-Conv convolution block combined with GGCA and 

MSEA attention mechanisms in improving the model's semantic segmentation performance, and to 

validate the accuracy of the evaluation in this paper, ablation experiments were conducted using 

different combinations of the four modules: SAMF, EMA, MSEA, and GGCA. The experiments 

were divided into five groups, and the results are shown in Table 3. Group 1 is the original 

Deeplabv3+ model. Group 2 replaces the original ASPP module with a parallel structure using Def-

Conv convolutions, resulting in an increase in the segmentation metric mIoU to 80.28% and the 

metric MPA to 88.86%. Group 3 builds upon Group 2 by introducing FPN processing at the low-

level semantic layer to enrich the underlying semantic information space. The segmentation metric 

mIoU increased to 80.65%. Group 4 introduced the GGCA attention mechanism to reconstruct the 

ASPP on the basis of Group 3, with metrics increasing to 89.53% and 81.06%, respectively, 

demonstrating the effectiveness of the GGCA attention mechanism. Group 5 is the model proposed 

in this paper, which adds the MSEA attention mechanism after low-level semantic extraction on the 

basis of Group 4. Group 5 achieved an average intersection-over-union ratio of 81.06% and an 

MPA of 89.53%, demonstrating a significant performance improvement and validating the 

correctness of the approach proposed in this paper. 
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Table 3: Ablation Study Segmentation Experiment Results 

Xception Def-Conv FPN MSEA GGCA MPA mIoU 

√     85.45 78.98 

√ √    87.86 80.28 

√ √ √   88.45 80.63 

√ √ √  √ 89.53 81.06 

√ √ √ √ √ 90.13 81.65 

4. Conclusion 

In summary, this paper builds upon Deeplabv3+ by introducing “interest flow” processing during 

the extraction of low-level semantic features, enabling the backbone network to incorporate a small 

amount of global spatial information when extracting low-level information. Subsequently, the 

MSEA attention mechanism is employed to enhance the backbone network's focus on the channel 

spatial dimension, thereby supplementing multi-scale spatial information. When processing high-

level information, the paper introduces deformable convolutions and the GGCA attention 

mechanism to construct an ASPP module that focuses on more spatial information. The efficient 

utilization of multi-scale spatial information significantly improves the model's performance. 

Experimental results show that the proposed network achieves a 2.62% improvement in the mean 

intersection over union (mIoU) metric and a 4.68% improvement in the mean pixel accuracy (MPA) 

metric compared to the Deeplabv3+ model. The proposed model addresses the limitations of 

existing models in terms of spatial information utilization during image segmentation, resolving 

issues such as blurred multi-object segmentation and missing segmentation content. The overall 

effectiveness of the model was validated through multiple ablation experiments. Future research 

will focus on algorithm performance optimization and model lightweighting to further enhance the 

model's practicality and generalization capabilities. 
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