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Abstract: This paper presents a novel approach to architectural visualization through the 

development of improved diffusion models capable of local precise redrawing in 

architectural scheme renderings. We address the critical limitation of current diffusion 

models in performing targeted, localized modifications while maintaining overall design 

coherence and architectural accuracy. Our methodology combines advanced diffusion 

architectures with sophisticated local control mechanisms, including enhanced inpainting 

techniques, multi-scale attention mechanisms, and architectural domain-specific fine-tuning. 

Through extensive experimentation on a curated dataset of 10,000+ architectural images, 

we demonstrate significant improvements in local precision control, achieving a local SSIM 

score above 0.85 and FID score below 50. Our integrated framework incorporates 

ControlNet for multi-modal control, LoRA fine-tuning for architectural domain adaptation, 

and novel loss functions designed specifically for architectural constraints. Human 

evaluation studies with 15 expert architects and 50 general users validate the practical 

applicability of our approach, showing professional assessment scores above 4.0/5.0. The 

proposed system enables architects to perform precise local modifications in seconds rather 

than hours, fundamentally transforming the iterative design process while maintaining high 

visual quality and architectural integrity. 

1. Introduction 

The integration of artificial intelligence into architectural design workflows has emerged as a 

transformative force, fundamentally altering how architects conceptualize, visualize, and refine 

their designs [1].  

Traditional architectural rendering workflows suffer from significant limitations when designers 

need to make targeted modifications [2]. Current practices often require complete regeneration of 

visualizations even for minor changes, resulting in time-consuming processes and potential 

inconsistencies between iterations. This inefficiency becomes particularly problematic during the 

iterative design phase, where rapid exploration of alternatives is crucial for effective decision-

making [3]. 

Diffusion models have demonstrated remarkable capabilities in generating high-quality images 
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through progressive denoising processes [4]. However, their application to architectural 

visualization faces unique challenges: the need for precise geometric accuracy, maintenance of 

architectural constraints, and the ability to perform localized modifications while preserving global 

coherence. These requirements exceed the capabilities of general-purpose diffusion models, 

necessitating specialized architectures and training strategies[5]. 

This research addresses these challenges through the development of an improved diffusion 

model architecture specifically designed for local precise redrawing of architectural renderings. Our 

approach combines state-of-the-art diffusion techniques with architectural domain knowledge, 

enabling targeted modifications that maintain both visual quality and design integrity. 

Secondary objectives include: 

 Creating a comprehensive architectural dataset with high-quality annotations for training and 

evaluation 

 Implementing and validating local precision enhancement techniques specifically tailored for 

architectural applications 

 Establishing evaluation frameworks that combine quantitative metrics with human assessment 

by domain experts 

 Demonstrating practical applicability through integration with existing architectural design 

workflows  

 

Figure 1: Architectural Rendering Variations Generated by Our System. 

Figure 1 demonstrates the core capabilities of our proposed system, showcasing how our 

architectural diffusion model can generate diverse atmospheric and lighting conditions while 

maintaining strict geometric consistency and architectural integrity. The figure illustrates our 

system's ability to transform a single architectural concept through various environmental contexts - 
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from bright daylight conditions that emphasize crisp shadows and material details, to atmospheric 

effects like fog and dramatic storm lighting, and finally to sophisticated night renderings with 

architectural illumination. The circular building design featured in Figure 1 particularly 

demonstrates our system's strength in handling complex curved geometries under varying lighting 

conditions, a scenario that often challenges traditional rendering approaches. The seamless 

transitions between different atmospheric conditions, while preserving the precise architectural 

details and spatial relationships, exemplify the local precision capabilities that form the core 

contribution of this research. 

2. Related Work 

2.1. Diffusion Models in Computer Vision 

Diffusion models have emerged as a powerful class of generative models, demonstrating 

superior performance compared to GANs in various image generation tasks. The foundational work 

by Ho et al. introduced denoising diffusion probabilistic models (DDPMs), establishing the 

theoretical framework for progressive image generation through iterative denoising. Subsequent 

research has focused on improving efficiency and controllability, with notable advances including 

DDIM sampling strategies and classifier-free guidance techniques [6]. 

The architectural improvements in diffusion models have been substantial, with the introduction 

of transformer-based architectures (DiTs) demonstrating superior scalability compared to traditional 

U-Net approaches. These models leverage self-attention mechanisms to capture long-range 

dependencies, proving particularly valuable for architectural applications where global coherence is 

essential [7]. 

2.2. Architectural Design Automation 

The application of AI in architectural design has evolved from simple parametric tools to 

sophisticated generative systems. Early approaches focused on rule-based systems and evolutionary 

algorithms, while recent work has embraced deep learning techniques for more flexible and creative 

design generation. The integration of text-to-image models like Stable Diffusion has opened new 

possibilities for conceptual design exploration, though challenges remain in achieving the precision 

required for professional architectural practice. 

Research on architectural style transfer and adaptation has demonstrated the potential for AI 

systems to learn and apply specific architectural languages. Fine-tuning approaches using LoRA 

have proven particularly effective, enabling efficient adaptation to architectural domains without 

extensive retraining [8]. 

2.3. Local Image Editing and Inpainting 

Traditional inpainting methods relied on patch-based approaches or simple interpolation 

techniques, often producing artifacts in complex architectural contexts. The advent of deep learning 

brought CNN-based inpainting methods, which improved quality but still struggled with 

maintaining architectural constraints. 

Recent diffusion-based inpainting techniques have shown superior performance, particularly in 

maintaining semantic consistency and handling complex boundaries. The development of mask-

guided diffusion and region-specific control mechanisms has been crucial for enabling precise local 

modifications. However, existing methods often lack the architectural domain knowledge necessary 

for professional applications [9-12]. 
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2.4. Conditional Control in Generative Models 

The ability to control generative processes through various conditioning mechanisms has been a 

major focus of recent research. ControlNet introduced a framework for adding spatial control to 

pre-trained diffusion models without modifying the original weights, enabling various forms of 

conditional generation including edge-guided, depth-guided, and segmentation-guided synthesis. 

Multi-modal conditioning approaches have further enhanced controllability, allowing 

simultaneous use of multiple control signals. These techniques are particularly relevant for 

architectural applications where designers need to specify constraints at multiple levels of 

abstraction [12-15]. 

3. Methodology 

Our proposed architecture represents a significant advancement in diffusion-based architectural 

rendering, specifically designed to address the unique challenges of local precise modifications. The 

system builds upon the foundational Stable Diffusion v1.5 architecture while introducing three 

critical enhancements that work synergistically to enable unprecedented control over localized 

architectural modifications. 

The core innovation lies in the integration of ControlNet modules that provide multi-modal 

conditioning capabilities, allowing architects to specify modifications through various input 

modalities including edge maps, depth information, and semantic segmentation masks. This multi-

pathway approach ensures that the model can understand and respect architectural constraints from 

multiple perspectives simultaneously. The architecture further incorporates Low-Rank Adaptation 

(LoRA) modules specifically fine-tuned on architectural imagery, enabling efficient domain 

adaptation without requiring complete model retraining. This approach not only reduces 

computational overhead but also preserves the general image generation capabilities of the base 

model while enhancing its understanding of architectural-specific features and constraints. The local 

precision enhancement module represents our most significant technical contribution, implementing 

a sophisticated mask-guided attention mechanism that enables the model to focus computational 

resources on regions requiring modification while maintaining awareness of the global architectural 

context. This selective attention approach ensures that local changes remain coherent with the 

overall design, preventing the common issue of disjointed modifications that plague traditional 

inpainting methods. 

3.1. Local Precision Enhancement Mechanism 

The development of our local precision enhancement mechanism addresses one of the most 

challenging aspects of architectural rendering modification: maintaining geometric and semantic 

coherence while enabling precise, localized changes. Traditional approaches often struggle with the 

boundary between modified and unmodified regions, resulting in visible artifacts or inconsistencies 

that compromise the professional quality required for architectural visualization. 

Our approach introduces an adaptive mask generation system that goes beyond simple user-

defined regions. The system analyzes the input image to understand architectural semantics, 

automatically identifying natural boundaries such as walls, windows, and structural elements. This 

semantic understanding is crucial for ensuring that modifications respect the inherent structure of 

the architectural design. The mask generation process can be formally expressed as M = Φ(I, S, E), 

where M represents the generated mask, I is the input image, S captures semantic segmentation 

information, and E represents edge detection results. The function Φ implements a learned 

weighting mechanism that prioritizes architectural boundaries, ensuring that modifications align 
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with the natural divisions within the design. 

The boundary-aware inpainting process incorporates multiple loss functions specifically 

designed for architectural applications. Unlike generic inpainting methods that focus solely on 

visual plausibility, our approach enforces architectural constraints through a composite loss function: 

L_boundary = λ₁L_edge + λ₂L_semantic + λ₃L_perceptual. The edge loss L_edge ensures that 

geometric features such as straight lines and corners are preserved, while the semantic loss 

L_semantic maintains the functional relationships between architectural elements. The perceptual 

loss L_perceptual guarantees that the modified regions maintain visual quality consistent with the 

original rendering style. 

To address the challenge of maintaining coherence across different spatial scales, we implement 

a hierarchical attention mechanism that operates simultaneously at multiple resolutions. This multi-

scale approach is essential for architectural applications where both fine details (such as window 

frames or material textures) and large-scale features (such as overall building proportions) must be 

preserved. The attention mechanism can be expressed as A_multi = Σᵢ wᵢ · A_scale_i, where each 

scale contributes weighted attention maps that guide the generation process. 

3.2. Training Methodology 

The training of our architectural diffusion model requires careful consideration of domain-

specific requirements and the need for precise local control. Our comprehensive training strategy 

encompasses data preparation, multi-stage training procedures, and specialized loss functions 

designed to capture the unique characteristics of architectural visualization. 

Our training dataset represents one of the most comprehensive collections of architectural 

imagery assembled for AI training purposes, comprising over 10,000 high-quality images carefully 

curated to represent the diversity of architectural styles and visualization techniques. The dataset 

includes 6,000 facade renderings showcasing various architectural styles from classical to 

contemporary, 2,000 interior visualizations demonstrating different spatial configurations and 

lighting conditions, 1,500 architectural floor plans providing geometric precision references, and 

500 architectural sketches that help the model understand the conceptual design process. Each 

image undergoes rigorous annotation by architectural professionals, including style classification, 

building element identification, and precise local region demarcation. 

The multi-stage training pipeline ensures that each component of our architecture is optimized 

progressively, preventing interference between different learning objectives. During the first stage, 

we focus on adapting the base Stable Diffusion model to understand architectural imagery through 

LoRA fine-tuning. This stage employs a conservative learning rate of 1e-4 to preserve the model's 

general image generation capabilities while enhancing its architectural knowledge. The training 

emphasizes recognition of architectural styles, understanding of building elements, and appreciation 

of spatial relationships unique to architectural visualization. 

The second stage introduces control mechanisms through ControlNet integration, enabling the 

model to respond to various conditioning inputs. We gradually increase the control weight from 0.5 

to 1.0 over the training period, allowing the model to smoothly adapt to the additional constraints 

without destabilizing the learned representations from the first stage. This stage is crucial for 

enabling architects to guide the generation process through familiar inputs such as sketches, edge 

maps, or depth information. 

The final training stage focuses specifically on local precision capabilities, introducing varied 

mask patterns and architectural constraints that teach the model to perform targeted modifications 

while maintaining global coherence. The loss function during this stage is carefully balanced to 

prevent overfitting to specific modification patterns while ensuring robust performance across 
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diverse architectural scenarios. Our composite loss function L_total = L_diffusion + αL_boundary + 

βL_architectural + γL_consistency captures multiple objectives, where the weights α, β, and γ are 

dynamically adjusted throughout training to emphasize different aspects as the model's capabilities 

develop. 

3.3. Inference and Application Pipeline 

The inference pipeline of our system is designed to provide architects with an intuitive and 

efficient workflow for making precise local modifications to their renderings. The process begins 

with intelligent input analysis that automatically identifies architectural elements and suggests 

potential modification regions based on the user's intent, expressed through natural language 

descriptions or visual indicators. 

When an architect initiates a modification request, the system first processes the input through 

multiple analysis pathways. The semantic understanding module identifies the architectural 

elements involved in the requested change, while the geometric analysis component ensures that 

proposed modifications respect structural constraints. This dual analysis approach prevents 

physically implausible modifications that could compromise the architectural integrity of the design. 

The mask generation phase adapts to the specific requirements of each modification task, 

creating boundaries that align with architectural features rather than arbitrary user selections. For 

instance, when modifying a window design, the system automatically expands the mask to include 

the entire window unit, ensuring that changes maintain proper proportions and alignment with the 

surrounding structure. This intelligent mask generation significantly reduces the need for manual 

refinement and ensures professional-quality results. 

During the controlled generation process, our system leverages the multi-modal conditioning 

capabilities to maintain consistency with the original design intent. The diffusion process is guided 

not only by the text description but also by extracted edge information, depth cues, and semantic 

understanding of the architectural context. This comprehensive conditioning ensures that generated 

modifications seamlessly integrate with the existing design while introducing the requested changes 

with high fidelity. 

The post-processing phase includes specialized algorithms for boundary refinement and 

consistency checking. Edge enhancement ensures that architectural lines remain crisp and properly 

aligned, while the consistency checker verifies that modified regions maintain appropriate 

relationships with adjacent architectural elements. This final refinement step is crucial for achieving 

the professional quality required in architectural visualization, eliminating the subtle artifacts that 

often betray AI-generated modifications. 

4. Experimental 

The implementation of our system leverages state-of-the-art deep learning frameworks and 

infrastructure to ensure both research reproducibility and practical applicability. We build our 

system using PyTorch 2.0 and the Hugging Face Diffusers library, taking advantage of their 

optimized implementations and extensive ecosystem support. The choice of Stable Diffusion v1.5 

as our base model provides a well-validated foundation with proven generation capabilities, while 

our architectural-specific enhancements are implemented as modular components that can be 

adapted to future diffusion architectures. 

Our training infrastructure consists of a cluster of four NVIDIA A100 GPUs with 80GB memory 

each, enabling efficient parallel training and experimentation. The high memory capacity proves 

essential for our multi-modal architecture, particularly when processing multiple control inputs 

simultaneously. We employ mixed-precision training with automatic mixed precision (AMP) to 
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optimize memory usage and training speed without compromising model quality. The complete 

training process spans approximately two weeks, distributed across our three-stage training pipeline, 

with continuous monitoring and checkpointing to ensure optimal model selection. 

The inference system is optimized for practical deployment, requiring only a single GPU with 

16GB memory for standard 512×512 resolution outputs. This accessibility ensures that architectural 

firms with modest computational resources can benefit from our technology. We implement various 

optimization techniques including attention slicing and CPU offloading for memory-constrained 

environments, enabling deployment even on systems with 8GB GPUs, though with increased 

inference time. 

4.1. Comprehensive Evaluation Framework 

The quantitative metrics provide objective measures of image quality and generation fidelity. 

FID (Fréchet Inception Distance) score evaluates the overall distribution similarity between 

generated and real architectural images, with our target of achieving scores below 50 indicating 

state-of-the-art performance. LPIPS (Learned Perceptual Image Patch Similarity) captures 

perceptual quality differences that align with human vision, particularly important for architectural 

visualization where subtle details matter. The SSIM (Structural Similarity Index) and its localized 

variant provide insights into how well the model preserves structural information during 

modifications, crucial for maintaining architectural integrity. 

Beyond standard metrics, we introduce architectural-specific evaluation criteria that assess 

domain-relevant qualities. The Boundary Coherence Score quantifies how well the model maintains 

clean edges and geometric precision at modification boundaries, addressing a common failure mode 

in generic inpainting methods. Architectural Style Accuracy, evaluated through a combination of 

automated classification and expert review, ensures that modifications respect the stylistic language 

of the original design. Building Element Consistency checks whether functional relationships 

between architectural components are maintained, such as ensuring windows align properly with 

floor levels and structural grids. 

4.2. Baseline Comparisons and Ablation Studies 

To comprehensively evaluate our approach, we conduct extensive comparisons with both 

traditional and state-of-the-art methods across multiple categories of baseline systems. Standard 

Stable Diffusion v1.5 serves as our primary baseline, representing the current state of general-

purpose image generation without architectural specialization. We also compare against ControlNet 

configurations using single-modality control, demonstrating the advantages of our multi-modal 

approach. Traditional inpainting methods including PatchMatch and DeepFill v2 provide context 

for the advances achieved through diffusion-based approaches. 

Our ablation studies systematically evaluate the contribution of each component in our 

architecture. We examine configurations including the base model alone, progressive addition of 

LoRA fine-tuning, ControlNet integration, local precision modules, and finally the complete system 

with multi-scale attention. This systematic evaluation reveals that while LoRA fine-tuning provides 

substantial improvements in architectural understanding, the local precision modules contribute the 

most significant gains in targeted modification quality. The multi-scale attention mechanism, while 

computationally intensive, proves essential for maintaining coherence between local modifications 

and global architectural context. 
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4.3. Human Evaluation Methodology 

The human evaluation component of our research provides crucial validation of practical 

applicability, involving both domain experts and general users in comprehensive assessment tasks. 

We recruit 15 licensed architects with at least five years of professional experience to provide 

expert evaluation of architectural accuracy, technical feasibility, and professional utility. These 

experts evaluate our system's outputs across multiple criteria using standardized rubrics developed 

in consultation with architectural education institutions. 

The general user study involves 50 participants from diverse backgrounds, assessing aspects 

such as visual appeal, perceived realism, and ease of use. Participants complete structured tasks 

including preference ranking between different methods, quality assessment of individual outputs, 

and usability evaluation of the interface. The study design includes both controlled tasks with 

predetermined modifications and free-form exploration where participants can test the system with 

their own design ideas. 

To ensure statistical validity and minimize bias, we employ a double-blind evaluation protocol 

where neither participants nor evaluators know which method generated specific outputs during 

comparison tasks. The evaluation interface presents images in randomized order with consistent 

viewing conditions. We collect both quantitative ratings and qualitative feedback, with the latter 

providing valuable insights into practical advantages and limitations that may not be captured by 

numerical scores. 

5. The comprehensive quantitative analysis 

Our experimental results demonstrate substantial improvements across all evaluation metrics, 

validating the effectiveness of our approach for architectural rendering applications. The 

comprehensive quantitative analysis reveals that our method achieves an FID score of 47.2, 

significantly outperforming all baseline methods and meeting our target of sub-50 performance. 

This improvement represents a 34.8% reduction compared to standard Stable Diffusion and a 19.6% 

improvement over ControlNet with single-modal control, indicating that our architectural-specific 

enhancements provide meaningful benefits for domain-specific generation quality. 

The perceptual quality metrics further reinforce our method's superiority, with LPIPS scores of 

0.186 representing a 40.4% improvement over the baseline. This dramatic improvement in 

perceptual quality is particularly important for architectural applications where subtle details such 

as material textures, shadow consistency, and geometric precision significantly impact the 

professional utility of generated images. The structural similarity metrics show equally impressive 

gains, with overall SSIM reaching 0.847 and local SSIM achieving 0.862, demonstrating our 

method's ability to preserve both global structure and local details during modification operations. 

Perhaps most significantly for practical applications, our inference time of 4.6 seconds per image 

remains competitive with simpler approaches while delivering substantially superior quality. This 

performance characteristic ensures that architects can iterate on designs in near real-time, 

maintaining the fluid creative process essential to architectural design while benefiting from AI-

assisted capabilities. The boundary coherence score of 0.857 represents a breakthrough in 

addressing the persistent challenge of artifact-free local modifications, with our method producing 

seamless transitions that are virtually indistinguishable from professionally edited renderings. 

5.1. Ablation Study Results 

The systematic ablation study provides crucial insights into the contribution of each architectural 

component, revealing a clear progression of improvements as capabilities are added to the base 
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model. Starting from the standard Stable Diffusion baseline with an FID of 72.3, the addition of 

LoRA fine-tuning on architectural data reduces this to 61.4, demonstrating the immediate value of 

domain-specific training. This 15.1% improvement comes primarily from the model's enhanced 

understanding of architectural elements and styles, enabling more coherent generation even without 

explicit control mechanisms, as shown in Figure 2. 

 

Figure 2: Quantitative Results Comparison 

The integration of ControlNet provides the second-largest improvement, reducing FID to 54.2 

and significantly enhancing local SSIM to 0.803. This component's contribution stems from its 

ability to incorporate multiple control modalities, allowing architects to guide generation through 

familiar representations such as sketches and technical drawings. The local precision modules 

contribute an additional 8.1% improvement in FID while dramatically enhancing boundary quality, 

validating our hypothesis that specialized architectural inpainting mechanisms are essential for 

professional-quality results. 

The final addition of multi-scale attention, while providing the smallest individual improvement 

in FID terms, proves crucial for achieving the coherent integration of local and global features that 

distinguishes professional architectural visualization. The boundary score improvement from 0.823 

to 0.857 with this component demonstrates its particular value in eliminating the subtle 

inconsistencies that often reveal AI-generated modifications. 

5.2. Qualitative Analysis and Visual Results 

The qualitative evaluation of our results reveals capabilities that extend beyond what numerical 

metrics can capture, demonstrating practical advantages that directly address real-world 

architectural design challenges. Visual inspection of generated modifications shows remarkable 

preservation of architectural logic, with the system correctly inferring implicit constraints such as 

structural alignment, material continuity, and lighting consistency. When modifying facade 

elements, for instance, the system automatically maintains window grid alignments and ensures that 

new elements respect the established rhythm of the design. 

Our method excels particularly in challenging scenarios that typically confound traditional 

approaches. Complex curved surfaces, which often produce visible artifacts in standard inpainting 

methods, are handled smoothly with proper perspective and shading. The system demonstrates 

sophisticated understanding of architectural materials, correctly propagating surface properties such 

as reflectivity and texture patterns across modified regions. This material awareness extends to 

understanding how different surfaces interact with lighting, ensuring that modifications maintain 
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photorealistic quality under the established lighting conditions of the original rendering. 

The handling of architectural details represents another significant achievement, with the system 

capable of generating convincing fine-scale elements that match the style and quality of the 

surrounding context. Whether adding decorative elements to a classical facade or modifying the 

glazing pattern of a modern curtain wall, the generated details exhibit appropriate scale, proportion, 

and stylistic consistency. This capability proves particularly valuable during the design 

development phase, where architects need to quickly explore variations in detailing without 

investing time in complete re-rendering. 

5.3. Human Evaluation Results 

Figure 3 provides a compelling demonstration of our method's superiority in handling complex 

lighting transformations, one of the most challenging aspects of architectural rendering modification. 

The comparison reveals fundamental differences in how our approach versus baseline methods 

handle the intricate task of converting daylight scenes to nighttime architectural lighting while 

preserving design integrity. 

 

Figure 3: Qualitative Comparison of Lighting Condition Modification. 

The baseline method's results exhibit several critical failures that underscore the limitations of 

generic diffusion approaches for architectural applications. The highlighted regions in the baseline 

output show significant architectural distortions, including inconsistent perspective rendering, loss 

of geometric precision in curved elements, and unrealistic lighting distribution that fails to respect 

the physical properties of architectural materials. The baseline approach also struggles with 

maintaining the coherent relationship between different building elements, resulting in a fragmented 

appearance that compromises the overall architectural composition. 

In stark contrast, our method demonstrates remarkable consistency in preserving architectural 

logic throughout the transformation process. The generated nighttime scene maintains precise 

geometric relationships, with the circular building form rendered with consistent curvature and 

proper perspective. The architectural lighting is distributed realistically, respecting both the physical 

properties of the building materials and the intended design hierarchy. Crucially, our approach 

preserves fine architectural details such as window frames, material textures, and structural 

elements that are essential for professional architectural visualization. 

This comparison particularly highlights our system's understanding of architectural lighting 
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principles, where illumination enhances rather than obscures architectural features. The warm glow 

emanating from interior spaces creates a natural contrast with the cooler exterior lighting, following 

established conventions in architectural photography and rendering. Such sophisticated 

understanding of architectural presentation standards distinguishes our approach from generic 

image modification methods, demonstrating the value of domain-specific training and architectural 

constraint integration. 

The seamless quality of the transformation, with no visible artifacts or inconsistencies at 

modification boundaries, validates our boundary-aware inpainting mechanism and multi-scale 

attention approach. This level of quality enables architects to use generated images directly in client 

presentations without additional post-processing, significantly streamlining the design 

communication workflow. 

The human evaluation studies provide compelling validation of our method's practical utility, 

with expert architects rating our system significantly higher than baseline approaches across all 

evaluation criteria. The overall professional assessment score of 4.25 out of 5.0 indicates strong 

acceptance among domain experts, with particularly high ratings for architectural accuracy (4.3/5.0) 

and professional applicability (4.4/5.0). These scores reflect not just technical quality but practical 

utility in real architectural workflows. 

The general user study reveals broad appeal beyond professional architects, with 78% of 

participants preferring our method's outputs in blind comparison tests. The average usability rating 

of 7.8/10 indicates that the system successfully balances capability with accessibility, enabling non-

experts to achieve professional-quality results. Most significantly, the 65% reduction in task 

completion time compared to traditional workflows demonstrates the transformative potential of our 

approach for accelerating design iteration. 

Qualitative feedback from professional architects highlights several key advantages that 

contribute to the high ratings. Participants particularly appreciated the system's ability to maintain 

"architectural logic" during modifications, with one senior architect noting that "the AI seems to 

understand not just what things look like, but why they're designed that way." The speed of iteration 

was universally praised, with architects reporting that tasks requiring hours of manual work could 

be accomplished in minutes while maintaining professional quality standards. 

5.4. Real-World Application Case Studies 

To demonstrate practical applicability, we conducted several case studies with practicing 

architects using our system in actual project contexts. These real-world applications reveal both the 

capabilities and current limitations of our approach while providing valuable insights for future 

development. The case studies span diverse project types including residential developments, 

commercial buildings, and historic preservation projects, each presenting unique challenges that test 

different aspects of our system, as shown in Table 1. 

Table 1: Human Evaluation Results Summary. Expert Architect Assessment (n=15). 

Criterion Score Std Dev 

Architectural Accuracy 4.3 0.42 

Style Consistency 4.1 0.38 

Technical Feasibility 4.2 0.51 

Professional Utility 4.4 0.36 

Overall Assessment 4.25 0.41 

In a residential development project, architects used our system to rapidly explore facade 

variations for a multi-unit housing complex. The ability to modify individual units while 
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maintaining overall compositional harmony proved particularly valuable, enabling the exploration 

of dozens of variations in a single afternoon. The system successfully maintained consistent shadow 

patterns and material properties across modifications, producing images suitable for client 

presentations without additional post-processing. 

A particularly challenging application involved the adaptive reuse of a historic industrial 

building, where architects needed to visualize various intervention strategies while respecting the 

existing structure's character. Our system demonstrated remarkable capability in this context, 

successfully generating modifications that integrated contemporary elements while preserving the 

industrial aesthetic. The local precision capabilities proved essential for this application, enabling 

targeted modifications to specific building sections while maintaining the patina and weathering 

patterns that contribute to the building's historic character. 

The commercial project case study highlighted our system's utility in client communication, with 

architects using real-time modifications during design meetings to immediately visualize client 

feedback. This interactive capability transformed typically abstract discussions into concrete visual 

explorations, significantly improving communication efficiency and client satisfaction. The 

system's ability to maintain photorealistic quality even with rapid iterations meant that generated 

images could be immediately used for decision-making without the typical "draft quality" 

disclaimers associated with quick visualizations. 

6. Conclusions 

This study presents an advanced diffusion model for precise local redrawing in architectural 

renderings, integrating ControlNet, LoRA, and novel local precision mechanisms. Our approach 

achieves state-of-the-art performance (FID: 47.2, SSIM: 0.862) while reducing task time by 65%, 

earning strong architect approval (4.25/5.0). The multi-scale attention and boundary-aware 

inpainting techniques offer broader applications for controlled image generation.   

Beyond technical innovation, this research enhances design efficiency and democratizes high-

quality visualization, though ethical considerations around AI use remain critical. While limitations 

in resolution and structural reasoning persist, the results mark a significant step toward AI-

augmented architectural workflows. Future work should focus on collaboration between AI and 

design professionals to ensure technology aligns with real-world needs, fostering creativity without 

replacing human expertise. 
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