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Abstract: Candy color is a new phenomenon in the field of photography, and its high 

brightness, low saturation, and low contrast bring a unique color experience to the world. 

The CandyCycleGAN network is good at realizing the transformation from ordinary color 

to candy color. Still, there will be problems as some of the image details are not dealt with 

properly, so to solve the above problems, this paper designs a candy based on the local 

feature enhancement of the image color coloring method (ELF-CandyGAN). Based on the 

generator of the U-Net network, a color learning module is designed in the downsampling 

process to learn the distribution, relationship, and features of candy color, which helps the 

network to better learn and understand the color information and keep the naturalness and 

authenticity of the color, and at the same time, a unique jump connection is designed to add 

the results in the upper layer convolution as part of the results in the lower layer convolution; 

secondly, a global context module is introduced in the color learning module. To ensure that 

the chromaticity values learned during the entire network training process remain within the 

candy color range, a global context module is introduced. This module also reduces 

computational complexity and accelerates network training. Subsequently, a feature 

enhancement module is designed, which introduces additional enhancement operations to 

enable deeper mining and processing of network features, thereby improving the 

performance and effectiveness of the network in the coloring task. This module also helps to 

enhance and restore the detail information lost during the downsampling process. 

Furthermore, a dual discriminator network based on PatchGAN is constructed. The first 

discriminator, D1, adopts a multi-scale discriminative structure to guide the generator toward 

producing richer image details. The second discriminator, D2, is designed to compute the 

structural similarity between the generated image and the original input image, encouraging 

the generator to produce structurally consistent outputs. Finally, a feature structure loss 

function is proposed to impose constraints on the structural similarity between the generated 

and input images, ensuring that the generated images retain more original detail features and 

exhibit higher realism. 
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1. Introduction 

In 2018, a participant named Ben Thomas won the Hasselblad Masters photography competition 

with a fresh and unique post-processing style called candy color, which subsequently became widely 

recognized and popular as a new tonal mode. Characterized by low contrast and high saturation, candy 

color makes the colors in images more vivid, conveying richer color information. With its distinctive 

tonality, candy color has introduced a novel photographic perspective to the photography industry 

and provided the world with a fresh color experience. Currently, the realization of the candy color 

tone is primarily achieved through image recoloring technology, which alters visual image effects by 

modifying an input image’s color, brightness, and contrast. Researchers have designed various 

methods to implement image recoloring. 

Zongnan Chen et al [1] improved the activation function of the CycleGAN model, using the 

Parametric Rectified Linear Unit activation function in the generator to facilitate model training. The 

discriminator employs the PatchGAN network architecture to enhance color detail at high resolutions. 

Shisong Zhu [2] proposed a Candy CycleGAN network based on chrominance verification to achieve 

candy color recoloring. Based on the CycleGAN network, multi-scale fusion was implemented to 

enhance detailed features in output images and improve overall image quality; additionally, a 

chrominance verification process was designed to constrain the generated chrominance value range, 

ensuring the final results meet expectations. Wenhua Ding et al.[3] adaptively learn style features for 

images of different styles through the layer-consistent dynamic convolution method and achieve 

multi-image-domain translation by fusing content and style features of input images. Wenhui Qin et 

al.[4] designed a model named MCGAN, capable of transforming multiple artistic styles in a single 

operation. Based on the CycleGAN network combined with CGAN, this model addresses the issue 

of style homogenization among multiple styles by introducing channel-wise and spatial attention 

mechanisms as well as a style discretization loss function. Jiawei Zhou [5] proposed a novel image 

recoloring algorithm based on moving least squares, significantly improving the locality and accuracy 

of color editing. Sihong Meng[6] introduced an image colorization algorithm based on semantic 

similarity propagation. This approach utilizes a deep neural network to extract semantic features from 

an input grayscale image. The image colorization problem is addressed by solving for chrominance 

values of the grayscale image through energy function optimization, thereby propagating user-

specified stroke colors to other regions of the image. Hong’an Li [7] proposed a grayscale image 

coloring method combining Pix2Pix Generative Adversarial Network. It first improves the U-Net 

architecture, then employs both L1 loss and smooth L1 loss to measure the difference between 

generated and real images, and finally introduces a gradient penalty to construct new data 

distributions between the generated and real image distributions. LIANG et al.[8] combined the 

Control Net with a coloring model, leveraging the diffusion model to achieve finer control over image 

generation while also realizing multimodal coloring effects. 

2. Related Work 

The CandyCycleGAN network achieves good results for candy color coloring. However, since the 

original image is fed into the generator for image generation, part of the image feature information is 

lost during the learning process, which leads to insufficient utilization of the input image information. 

To address some issues existing in the coloring results of the CandyCycleGAN network, this article 

continues to research candy color coloring methods based on Generative Adversarial Network, 

aiming to solve problems such as loss of local feature information after coloring.   

Therefore, this article proposes a candy color coloring method based on image local feature 

enhancement (Candy color coloring method for image local feature enhancement) (ELF-CandyGAN), 

capable of addressing issues like partial detail feature loss in generated images while also improving 
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computational efficiency. In the generator network, this chapter adopts a structure based on the U-

Net network as the foundation. An RGB image is used as input to the generator, and a color learning 

module is designed to capture chrominance information in the image. Additionally, a feature 

enhancement module is designed to recombine features from the original input image and the output 

image, forming a new output image. In the discriminator network, this chapter uses a structure based 

on PatchGAN as the foundation and implements a dual-discriminator architecture. One discriminator, 

referred to as the first discriminator D1, is used to determine the authenticity of the generated image. 

The D1 discriminator network employs a multi-scale discrimination structure to guide the generator 

network in producing images with richer details. The other one, referred to as the second discriminator 

D2, is used to calculate the structural similarity between images. The D2 discriminator computes the 

structural similarity between the generated image produced by the generator and the original input 

image, helping the generator produce images with higher structural consistency and thereby 

improving the quality of the generated images. Using the original input RGB image and the output 

image as inputs to the discriminator network, they first pass through the D1 discriminator network. If 

the D1 discriminator identifies the image as real, the image proceeds to the D2 discriminator network. 

Otherwise, the loss of the D1 discriminator is calculated as the total discriminator loss. If the image 

passes through the D1 discriminator and is identified as real by the D2 discriminator, the generator 

loss is calculated. Otherwise, the loss of the D2 discriminator is computed. Finally, the losses from 

both the D1 and D2 discriminators are summed to obtain the final discriminator loss. 

3. Network Model 

The CandyCycleGAN network employs an image coloring algorithm based on chrominance 

verification and candy color, which demonstrates certain advantages in transforming images from 

base colors to candy color. However, it also has several limitations. First, due to the unique 

architecture of the network-featuring two generators and one discriminator-it consumes significant 

memory and computational resources during subsequent network training, demanding a high-

performance experimental environment and resulting in relatively long overall training times. 

Second,the complexity of the CandyCycleGAN network requires tuning numerous hyperparameters 

to achieve optimal results; this parameter adjustment process is excessively time-consuming and 

affects the overall experimental progress. Lastly, some image details are lost during the convolution 

process in the coloring output. To address the aforementioned issues, this article designs the ELF-

CandyGAN network. 

3.1 The Candy Color Coloring Network Generator Based on Enhanced Local Image Features 

The generator structure in this article based on U-Net is shown in Figure 1, named the ELF-

CandyGAN network generator. It consists of three main parts: the encoding module (downsampling 

section), the feature enhancement module, and the decoding module (upsampling section). 

In the encoding module, the input image first passes through a 3×3 convolutional layer, then 

proceeds through four cascaded downsampling modules and color learning modules alternately 

before reaching the feature learning module. The color learning modules learn and understand the 

characteristics and patterns of candy color, enabling them to assign appropriate candy color tonal 

values to the colored regions within the image. Feature maps processed by the downsampling modules 

have their dimensions halved and channel count reduced by half. Conversely, feature maps passing 

through the color learning modules maintain the same output dimensions and number of channels. 

The feature enhancement module of the generator comprises nine local feature enhancement 

blocks. This part of the network transforms and strengthens edge features and color features into 

generated image features, reinforcing the relationship between inputs and outputs to achieve more 

9



effective feature learning. The detailed structure is shown as follows.   

Finally, the generator's upsampling operation performs the inverse of the downsampling operation, 

gradually restoring the image size and number of channels. This network fuses feature maps from 

skip connections and outputs from the previous layer via convolutional layers, enhances feature 

learning through residual modules, and finally applies the Pixel Shuffle [9] method for upsampling 

to restore the original resolution. 

 

Figure 1: ELF-CandyGAN Network Generator 

3.2 Color Learning Module 

This article opts for a more effective Global Context Network (GC Net) module [10], which 

models relationships among all image pixels, helping the network better learn inter-pixel correlations 

and improve the final image colorization quality. 

The GC Net module combines the advantages of both Non-Local Networks (Non-Local Net, NL 

Net) and SE Net. It can establish long-range dependencies and capture global information like NL 

Net [11], as well as reduce computational complexity similar to SE Net. The detailed architecture is 

shown in Figure 2: Comparison of GC Block network structure and related modules. 
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Figure 2: GC Block network structure and its related module structure comparison 

Specifically, (a) represents the traditional NL Block. In NL Net, the attention feature maps 

calculated for different pixel positions are essentially identical. By computing pairwise relationships 

between each search position and all other positions to form an attention map (a). (b) denotes the 

simplified NL Block (SNL Block). SNL Block simplifies the original block by employing a global 

attention map computed from all pixels, thereby reducing the computational cost to a fraction of the 

original. It first performs Global Attention Pooling (GAP), where the attention weights are obtained 

through a 1×1 convolution Wk, followed by pooling to acquire global contextual features. The second 
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step involves feature transformation via another 1×1 convolution Wv. Finally, the global contextual 

features from each position are aggregated through an addition operation. (c) is the SE Block, which 

first applies global average pooling, utilizes a Bottleneck Transform (BoT) module to compute the 

importance of each channel, and then employs matrix multiplication to recalibrate the channel 

features. (d) is the GC Block, which can be viewed as a combination of (c) and (d). It first performs 

context modeling, then replaces the original convolution process with the BoT module to learn inter-

channel dependencies, computes the number of parameters, and adds the feature weights to the 

mapping of input features for feature fusion. Additionally, a normalization layer is added before the 

activation function in the BoT module to reduce the optimization complexity caused by stacking two 

BoT modules and improve generalization performance.  

The color learning module is shown in Figure 3 Color Learning Module. The convolution kernel 

size is 3×3, the stride is 2, the padding value is 1, and the activation layer is LeakyReLU. Additionally, 

a GC block is added to learn and maintain the candy color style. InstanceNormalization is applied to 

all layers except the sixth and the final convolutional layers. The first three steps are used for learning 

the candy color style, while the following five steps utilize convolution and deconvolution operations 

to restore the input image size, ensuring that the proposed color learning process does not affect the 

subsequent generation network's convolutional operations. 

 

Figure 3: GC Block network structure and comparison of its related module structures 

3.3 Local Feature Enhancement Module 

This article designs a local feature enhancement module applied to adjacent local regions to 

strengthen the expression of local features, as shown in Figure 4, the structural diagram of the local 

feature enhancement module. Starting from the image center as the adjacent local region, this 

approach aggregates local features with high similarity to supplement missing information in features 

extracted by the backbone network [12]. ResNet is employed in this article as the base network for 

local feature enhancement, aiming to improve the model's perception capability for subtle image 

features and color variations, thereby enhancing overall performance and effectiveness. The depth of 

the ResNet architecture facilitates learning complex image features, enabling a better understanding 

of image content and improving the accuracy of image coloring. 

The output features T1 and T2 from adjacent layers of the U-Net network are first normalized. 

Taking T1 as an example, two linear mapping functions (v ands) are used to generate dimension-

reduced features Tv1 and Ts1. Additionally, T1 and T2 are concatenated to form an integrated feature 

Tq, which combines features from T1 and T2. Then, interactions between these features and their 

respective inputs are leveraged to enhance the features. Specifically, another linear mapping function 

q is applied on Tq to reduce its dimensionality to c/2, followed by a softmax function to generate 

the weight map Tωq. Subsequently, the mapping result is used to perform a weighting operation on 

Tv1 via element-wise multiplication, followed by an adaptive average pooling operation (P(.)) to 

reduce computational cost. This group of operations can be represented as F(.), as formulated in 
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Equation 1: 

` `

` ( , ) ( max( ( )))sq s q qq
T F T T P T soft T                       (1) 

 

Figure 4: Structure of the Local Feature Enhancement Module 

Finally, the features Tv1 and Tq1 are combined to form Tg. Then, a deserialization operation is 

applied to obtain the locally enhanced feature map To1. Similarly, Ti can undergo the above 

operations to obtain the locally enhanced feature Toi. 

3.4 Colorization Network Discriminator Based on Local Image Feature Enhancement candy 

color 

This article designs a dual-discriminator network, one being the first discriminator D1 used to 

distinguish real from generated images, and the other being the second discriminator D2 used to 

calculate structural similarity between images. 

The ELF-CandyGAN network employs the PatchGAN structure for its D1 discriminator, 

incorporating full-size, 1/2-size, and 1/4-size convolution processes. The architecture of the ELF-

CandyGAN discriminator D1 is illustrated in Figure 5 Network Structure of Discriminator D1. 

Finally, three outputs of different sizes are obtained, forming a feature map matrix where each 

element represents the discrimination result of the corresponding region. The average of these three 

outputs serves as the final result.  

 

Figure 5 Discriminator Network D1 Architecture 

The ELF-CandyGAN network discriminator D2 adopts the PatchGAN architecture. As shown in 

Figure 6, the network structure of Discriminator D2 consists of six convolutional layers. The kernel 

size of all convolutional layers is 3×3. The first three layers have a stride of 2 and padding value of 

1. The last three layers use kernels of 3×3 with stride 1 and padding 1. LeakyReLU is used as the 

activation function. Additionally, InstanceNormalization is applied in the first four layers. The final 
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layer changes the number of channels from 512 to 3, followed by an SSIM-Loss function layer that 

outputs the final discriminative matrix. The top input is the image generated by the generator, while 

the bottom input is the original image. 

 

Figure 6: Discriminator D2 network structure 

3.5 Loss function 

The loss function designed in this article mainly consists of two parts: adversarial loss and feature 

structure loss (Feature and Structure loss, FS loss). The adversarial loss is used to learn the differences 

between generated samples and real images. Additionally, considering the particularity of using dual 

discriminators, we introduce the feature structure loss to stabilize the training of discriminator D2. 

The overall loss function expression is given in Eq. (2): 

2( , ) ( , ) ( , )GAN FSL G D L G D L G D 
                       (2) 

Here, LGANrepresents the GAN loss, LFS represents the feature structure loss, and  is a weight 

hyperparameter. In this article's experiments, =10. D2 denotes the D2 discriminator. 

The adversarial loss consists of two components: generator network loss and discriminator 

network loss. Their expressions are given in (3)~(5): 

( , )GAN G DL G D L L 
                              (3) 

~ [ ( ( , ))]
GG x PL E D G x y

                                (4) 

1
~ 1 ~ 2 1[ ( ( , ))] [ ( ( ( , )))]

G DD x P y PL E D G x y E D D G x y 
                (5) 

Here, LG is the loss of the generator network, LD is the loss of the discriminator network, x 

represents the input image, y denotes the generated image, D1 refers to the D1 discriminator, and 

D2 refers to the D2 discriminator. 

The feature structure loss LFS calculates the structural dissimilarity between the generated image 

and the input image. To preserve low-frequency information in the images, an L1 Loss is added to 

the loss function. LFS is shown in Equation (6): 

1 2

32 2 2 2 1
1 2

(2 )(2 )
( , ) 1 ( ( ) )

( )( )

x y xy

FS

x y x y

c c
L x y c E G y x

c c

  

   

 
   

   
         (6) 
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Here, x is the input image, y is the generated image, μx is the mean of x, μy is the mean of 

y, σx
2 is the variance of x, σy

2 is the variance of y, and σxy is the covariance between x and y; 

c1, c2, and c3 are all constants. 

To verify that the LFS  constructed in this article imposes effective constraints on the ELF-

CandyGAN network, LGAN(G, D) and L(G, D) functions are compared. The comparison result is 

shown in Figure 7, which presents a graph comparing the loss functions LGAN(G, D) and L(G, D). 

 

Figure 7: Comparison of the loss functions LGAN (G, D) and L(G, D) 

As can be seen from the Figure 7, compared to using only LGAN(G, D), during the entire network 

training process the loss function does not show a converging trend and exhibits significant overall 

fluctuations. This results in the model failing to converge throughout training, requiring a longer 

training time to achieve ideal performance. In this article, we introduce the LFS loss function to help 

balance the training process between the generator and discriminator, as shown in the Figure 7, 

compared to LGAN(G, D) , the value of the L(G, D)  loss function is significantly lower overall, 

starting to converge at around 50 iterations and gradually stabilizing during later stages of training. 

This indicates that the LFS  loss function helps accelerate the convergence speed of the model, 

making the training process more efficient. 

4. Experimental Results and Analysis 

4.1 Dataset 

 

Figure 8: Scenic Spot and Landscape Image Dataset 

The dataset in this article was collected through mobile phone photography and online sources, as 

shown in Figure 8: the landmark and scenic image dataset. This dataset contains a total of 6287 images 

across 8 categories, with each category containing approximately 600 to 800 images, evenly 
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distributed in quantity. The image sizes are respectively 1024×1024, and the total file size of the 

dataset is 2.1GB. 

4.2 Experimental Setup 

The experimental environment is based on the Linux operating system and the PyTorch deep 

learning framework, with an NVIDIA GeForce RTX 4090 (GPU). 

Regarding the parameters during the training process, after comparing experimental results and 

considering the actual GPU memory capacity, the final parameter settings were chosen as follows: 

The Batchsize was set to 10, the number of epochs was set to 200 (number of iterations), the ADAM 

optimization algorithm was used with decay rates β1 set to 0.5 and β2 set to 0.999. Additionally, 

the network learning rate was set to 0.00003. All experiments were conducted on a single computer 

system. 

4.3 Experimental Results and Analysis 

4.3.1 Experimental evaluation metrics 

Inception Score (IS) is a standard often used to measure the quality of generated samples from 

generative models such as GANs. It is defined as shown in Equation (7): 

~ [ ( ( ) ( ))]

( )
x P KLg

E D p y x p y

gIS P e
                   (7) 

Here, x~pg denotes the images generated by the generator, p(y|x) represents the probability 

distribution of the generated x across all categories, p(y) indicates the probability obtained from 

N generated images, and KL is used to measure the distance between two probability distributions.   

User subjective evaluation (User Study)[13] subjectively assesses tasks that cannot be measured 

by fixed metrics through questionnaires. User subjective evaluations not only help accurately assess 

the strengths and weaknesses of each coloring algorithm but also provide suggestions for improving 

future algorithms.   

PSNR is a full-reference image quality assessment method that uses mean squared error to measure 

the difference between the generated image and the input image, evaluating the similarity between 

the generated image and the ground truth image. A higher PSNR value indicates lower distortion in 

the generated image, meaning better image colorization results. The formula is shown in (8): 

2

1010log
MAX

PSNR
MSE

 
  

                          (8) 

To better evaluate the final image colorization results, the color richness metric (COLORFUL)[2] 

is used to measure the diversity of colors. This indicates the richness of colors in the colorized image 

and thus assesses the image quality, with larger values representing better performance. The 

calculation formula is shown in Equation (9): 

rgyb rgybCOLORFUL σ 0.3 μ  
                    (9) 

Here, σrgyb and μrgyb denote the standard deviation and mean value, respectively, along the 

matrix rgyb resulting from the element-wise multiplication operation. As shown in Equations 

(10)~(11): 
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2 2
:rgyb rg yb   

                         (10) 

2 2
:rgyb rg yb

   
                         (11) 

Here, σrg  and μrg denote the standard deviation and mean along the matrix rg dot product 

operation, respectively, as shown in Equations (12)~(13): 

rg R G                                (12) 

1
( )

2
yb R G B  

                            (13) 

FLOPs are used to measure the training time, resource consumption, and inference efficiency of a 

model during training. The smaller the FLOPs, the better. As shown in Equation (14): 

2 H W in outFLOPs K K C C H W      
                (14) 

Here, KH and KW are the height and width of the convolution kernel, Cin is the number of input 

channels, Cout is the number of output channels, and H and W are the height and width of the 

output feature map, respectively. 

4.3.2 Qualitative Analysis 

To intuitively demonstrate the coloring performance of the proposed network model, we conduct 

comparative experiments between the improved algorithm ELF-CandyGAN and four existing 

algorithms: CandyCycleGAN, Bo Li, Hong'an Li, and Zongnan Chen. All comparative experiments 

are conducted under the same experimental environment. The results of the comparative experiments 

are shown in Table 1, which presents the evaluation metrics of the comparison experiments. 

Table 1: Results of comparison experiments on evaluation metrics 

Method PSNR IS COLORFUL FLOPs/B 

Bo Li 20.8667 0.6928 36.9423 1018.3846 

Hong'an Li 21.9942 0.7162 27.2753 932.9320 

Zongnan Chen 24.0943 0.7936 45.2850 993.8429 

CandyCycleGAN 30.9647 0.9318 53.8438 810.1649 

ELF-CandyGAN 33.6791 0.9560 58.1097 786.5327 

Note: Bold indicates the optimal value 

The table records the average values of various metrics on the validation set. As shown in the table, 

ELF-CandyGAN achieves the best results across all metrics. Compared with the worst-performing 

method, Bo Li, ELF-CandyGAN reduces model computational cost by 22.77%, improves PSNR by 

61.40%, IS by 37.99%, and COLORFUL by 57.30%. Compared with the second-best model, 

CandyCycleGAN, computational cost decreases by 2.92%, PSNR increases by 8.77%, IS improves 

by 2.6%, and COLORFUL rises by 7.92%. The comparative experimental results demonstrate that 

the ELF-CandyGAN model not only reduces computational cost and enhances model performance 

but also effectively mitigates artifacts present in images generated by the CandyCycleGAN model, 

thereby improving overall image generation quality. Based on objective metrics, the proposed method 

in this chapter demonstrates superiority over the other four algorithms, indicating its effectiveness. 

To more intuitively illustrate the final coloring performance of the ELF-CandyGAN network, 
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comparison results between our model and the four other models are presented in Table 2: 

Comparison of Results Between This Work and Four Other Algorithms. From the experimental 

results, it can be observed that the ELF-CandyGAN network exhibits certain advantages in the final 

output. Compared to the final output images of the CandyCycleGAN network, the final output of the 

ELF-CandyGAN network displays richer detail features. Artifacts observed in some images 

generated by CandyCycleGAN are effectively addressed in the ELF-CandyGAN network, resulting 

in better preservation of input details, reduced information loss during training, and effective retention 

of low-frequency components, leading to higher expressive power in the final images. Among them, 

the image coloring result of Hong'an's Li algorithm is more consistent with the original color of the 

image. The overall color brightness value of the image after Zongnan's Chen algorithm coloring is 

too low, the color saturation is too high, and the contrast between colors is excessive, which does not 

meet the candy color feature requirements. Moreover, these two algorithms-Hong'an Li and Zongnan 

Chen suffer from inaccurate coloring regions, insignificant image detail features, and blurred edges 

during the coloring process. Bo Li's output results are based on reference example images and appear 

relatively worst in coloring performance compared to the other four algorithms, showing less image 

detail and more image noise artifacts.  

Table 2: Comparison of results between this article and four other algorithms 

           

Method 

Real image 

ELF- 

CandyGAN 

Candy- 

CycleGAN 
Bo Li Hong'an Li 

Zongnan 

Chen 

      

      

      

      

      
To ensure fairness in the experimental data, a total of 48 participants were involved in the user 

evaluation method described in this article. Among them, there were 24 participants aged between 18 

and 35 years, 12 participants aged between 35 and 55 years, and another 12 participants aged between 

55 and 65 years. The gender ratio was controlled at 1:1. Each participant was shown four comparison 

experiments along with effect images generated by the ELF-CandyGAN network. Without being 

informed which coloring model corresponds to each colored image, participants were asked to select 
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within five seconds the image they personally considered to have the best coloring effect. The results 

are shown in Table 3 Comparison of User Evaluations for Coloring Experiments Across Different 

Models. The value R on the right side of each image represents the percentage of participants who 

believed that the corresponding model achieved the best coloring effect. It can be seen from the table 

that the percentages obtained by the ELF-CandyGAN network are the highest across all metrics. 

Experimental results indicate that the coloring effects produced by the ELF-CandyGAN network are 

more widely accepted by users. 

Table 3: User Evaluation Comparison of Coloring Experiments on Different Models 

Images 
ELF-

CandyGAN 
R% 

Candy 

CycleGAN 
R% 

Bo 

Li 
R% 

Hong'an 

Li 
R% 

Zongnan 

Chen 
R% 

  
48.5 

 
39.6 

 
0 

 
0 

 
11.9 

  
53.6 

 
40.7 

 
0 

 
0 

 
5.7 

  
45.6 

 
43.5 

 
0 

 
2.2 

 
8.7 

  
50.1 

 
42.3 

 
0 

 
0 

 
7.6 

  
58.7 

 
39.3 

 
0 

 
1.2 

 
0.8 

Note: Bold indicates the optimal value. 

4.3.3 Quantitative Analysis 

To investigate the performance improvement of the ELF-CandyGAN network model compared to 

the baseline U-Net Generative Adversarial Network model, ablation experiments were conducted by 

comparing the baseline U-Net Generative Adversarial Network with the proposed ELF-CandyGAN 

network model in this article. The results are shown in Table 4 Ablation Experiment Results. 

Table 4: Ablation Experiment Results 

Network model PSNR IS COLORFUL FLOPs/B 

U-Net 21.6293 0.5589 35.2910 1168.3790 

U-Net + Color Learning 26.3672 0.5896 50.1793 991.3712 

U-Net + Local Feature Enhancement 30.4790 0.7892 42.2730 961.8023 

U-Net + Color Learning + Local Feature Enhancement 31.5802 0.7918 52.5843 920.4769 

U-Net + D2 28.1949 0.6901 37.1939 876.3696 

U-Net + D2 + FS Loss 30.2617 0.7768 45.2948 870.2793 

U-Net + Color Learning + Local Feature Enhancement 

+ D2 + FS Loss 
35.2368 0.9583 60.2696 781.3649 

Note: Bold indicates the optimal value. 
From the results shown in the evaluation metrics, it can be observed that compared to the original 

U-Net, adding the color learning module and local feature enhancement module individually leads to 

slight improvements across all metrics. When both modules are added simultaneously, PSNR 

improves by 46.00%, IS improves by 41.67%, COLORFUL improves by 49.00%, and computational 

cost decreases by 21.22%. After incorporating the D2 discriminator, PSNR increases by 30.36% and 

computational cost reduces by 24.99%. Furthermore, when the FS loss is added upon the D2 

discriminator, all metrics achieve additional small improvements, among which PSNR improves by 

39.91%, IS improves by 38.99%, COLORFUL improves by 28.35%, and computational cost 
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decreases by 25.51%. The final ablation experiment involves the ELF-CandyGAN network, where 

all metrics show significant improvement compared to the U-Net network: PSNR improves by 

62.91%, IS improves by 71.46%, COLORFUL improves by 70.78%, and computational cost 

decreases by 34.66%. These experimental results validate that the coloring capability of the ELF-

CandyGAN network is credible. 

4.4 Experimental Results 

This article performs coloring based on RGB images, resulting in candy color-styled images that 

are rich in color and detailed features, aligning with the characteristics of candy color-high brightness, 

low contrast, and high saturation. From the experimental results, it is evident that this article 

significantly improves both image color representation and detail feature preservation compared to 

CandyCycleGAN. Additionally, it effectively reduces artifacts present in some generated images and 

emphasizes the preservation of low-frequency image information. The result visualization of the ELF-

CandyGAN network is shown in Figure 9: ELF-CandyGAN Result Demonstration. 

In this article, ELF-CandyGAN is designed to better achieve candy color-style coloring. A color 

learning module is designed to capture the unique color characteristics of candy color, while a global 

context module is introduced to better constrain the chrominance value range of the generated images, 

ensuring the output conforms to the candy color traits of high brightness, low contrast, and high 

saturation. Furthermore, a local feature enhancement module is designed to enrich the detail features 

of the output image and improve overall image quality. A D2 discriminator is also designed to enforce 

structural similarity between the generated and input images, reconstructing structural features from 

the input and enhancing training stability of the Generative Adversarial Network. Finally, a feature 

structure loss is designed to guide the ELF-CandyGAN network in preserving image structural 

information, avoiding distortions and blurring, thereby improving both the accuracy and stability of 

the coloring process. 

 

 

 

 

 

Figure 9: ELF-CandyGAN Results Display 
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5. Conclusion 

To better achieve candy color coloring, reduce network training time, minimize artifacts in 

generated images, and improve the final image generation quality, this article constructs the generator 

of this chapter using a U-Net network. We design a color learning module and a local feature 

enhancement module, and simultaneously develop a dual discriminator to construct the candy color 

coloring model. This article first introduces in detail the basic architecture and related concepts of the 

ELF-CandyGAN network. Secondly, it describes the dataset used for the candy color coloring task 

in the experiments and presents the hyperparameter settings of the model. Subsequently, it briefly 

explains the evaluation metrics used to assess the model. Finally, through qualitative analysis 

comparing with four algorithms-CandyCycleGAN, Bo Li, Hong'an Li, and Zongnan Chen-and 

quantitative analysis of the ELF-CandyGAN network itself, we verify the effectiveness of the ELF-

CandyGAN network in the candy color coloring task. 
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