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Abstract: Temporal knowledge graphs (TKGs), as an effective means of modeling dynamic 

relationships among entities, have shown great potential in tasks such as event prediction in 

recent years. However, most existing reasoning approaches tend to overlook the diversity 

and complexity of historical information. In reality, reasoning at the current timestamp is 

often constrained by the limited scope of historical data and the influence of unobserved 

latent factors. There are three major limitations in current TKG reasoning methods: (1) the 

inability to effectively highlight the importance of historical snapshots relevant to the 

current query when integrating both local and global history; (2) the neglect of temporal 

trends inherent in the evolution of facts, resulting in insufficient modeling of evolutionary 

patterns; and (3) the lack of effective mechanisms for capturing abrupt, short-term changes 

in the temporal dimension of facts. To address these challenges, we propose a novel Trend- 

and Variation-aware Contrastive Learning Network. Specifically, we introduce a local-

global contrastive learning mechanism to guide the model's focus toward historical 

information that is more relevant to the current query. We further design a trend-aware 

attention module to capture the regularities and temporal evolution patterns in long-term 

entity representations. Additionally, a time-aware convolution module is developed to 

perceive abrupt dynamic changes in entity states across consecutive time slices, enabling 

the model to better integrate this information with current context representations. 

Experimental results on four benchmark TKG datasets demonstrate that our model 

outperforms several state-of-the-art baseline models in prediction tasks, showcasing its 

superior generalization ability and effectiveness in modeling complex temporal evolution 

patterns. 

1. Introduction 

In numerous real-world applications such as event prediction, financial risk control, and social 

behavior modeling, understanding the dynamic evolution of entity relationships over time is of 

significant importance. Traditional Knowledge Graphs (KGs), as structured tools for representing 

entities and their relationships, demonstrate strong performance in static environments. However, 

real-world entity interactions often exhibit significant temporal evolution, which has gradually 
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shifted research focus towards the construction and reasoning of Temporal Knowledge Graphs 

(TKGs). 

TKGs model facts as quadruples (subject, relation, object, time) by incorporating a temporal 

dimension, thereby more closely capturing the dynamic evolution of the real world. TKG reasoning 

tasks are primarily divided into two categories: historical completion (interpolation) and future 

prediction(extrapolation).Comparatively, extrapolation tasks are more aligned with practical needs 

but face greater uncertainty and modeling challenges. To enhance models' ability to capture 

temporal evolution, numerous methods have been proposed in recent years. Early TKG reasoning 

methods, such as Know-Evolve [1] and DyRep [2], introduced event-driven dynamic representation 

update mechanisms capable of capturing the temporal dependencies of interactions between entities. 

These methods effectively simulate representation changes triggered by events by modeling the 

evolving trajectories of entity and relation embeddings as temporal point processes. However, they 

often focus on modeling event time distributions while lacking the ability to capture complex 

spatio-temporal dependencies within the graph structure. 

 

Fig. 1 An illustrative example that highlights the importance of capturing historical information 

related to queries. And in the process of historical information evolution, the significance of regular 

trend information and emergency event information. The blue arrows indicate the most important 

facts related to the query 

To better integrate graph structure and temporal information, subsequent studies like RE-NET 

[3]and T-GCN [4] combined Graph Neural Networks (GNNs) with temporal modeling modules. 

These approaches encode historical snapshots at each timestep, enhancing the model's contextual 

understanding of entity representations. These methods significantly improve the modeling of long-

term temporal dependencies and have achieved performance breakthroughs on multiple TKG 

benchmark datasets. 

Furthermore, to address uncertainty in extrapolative prediction, some works have introduced 

contrastive learning and attention mechanisms, such as HiSMatch [5] and TiRGN [6]. By 

emphasizing historical segments relevant to the query and suppressing irrelevant information, these 

methods enhance the model's discriminative power and generalization ability. These advances 

progressively address key challenges in TKG reasoning, including temporal dependency modeling, 

graph structure integration, and noise suppression, laying the groundwork for building more robust 

and efficient TKG reasoning models. Nevertheless, existing research still possesses several 

limitations and areas for improvement: 
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1.1 Weak Extraction Capability for Query-Relevant Historical Information 

Most Temporal Knowledge Graph (TKG) extrapolation methods assume chronologically closer 

KG snapshots are more relevant for prediction. HiSMatch [5] constructs historical structure graphs 

but rigidly handles chronological order, failing to dynamically capture shifting importance of distant 

snapshots. Crucially, query entities (e.g., France in query (𝐹𝑟𝑎𝑛𝑐𝑒, 𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒, ? , 𝑡𝑞),  may be 

absent in recent snapshots 𝑡𝑞−1  rendering them minimally useful (Fig 1). Conversely, earlier 

snapshots containing related entities (e.g., China) may prove more predictive. Existing methods lack 

mechanisms to identify these fundamentally relevant historical patterns, impairing future fact 

prediction. Thus, filtering irrelevant KG snapshots based on query context is essential for enhancing 

TKG reasoning performance. 

1.2 Lack of capturing regular trend information within historical information 

Current models lack deep semantic mining in entity neighborhood networks, particularly in 

capturing historical trends for future prediction. LGTQ [7] captures multi-granularity semantics but 

is limited by fixed time windows and cannot adaptively filter key trend paths. 

These approaches neglect explicit modeling of relationship evolution patterns, overlooking long-

term semantic evolution paths. For instance, Figure 1 shows Germany-Italy relationships 

progressively evolving: from Express intent to meet → Engage in negotiation → Sign formal 

agreement. 

Such sequences reveal temporal dependency structures with high predictive value. Modeling 

these historical trends enhances long-term dependency understanding and provides structured 

semantic guidance for future event reasoning. 

1.3 Lack of effective modeling of abrupt short-term changes of facts along the time dimension 

Real-world events often involve pivotal occurrences that are neither trend continuations nor 

regular patterns. They arise abruptly from latent/sudden factors, disrupting established paths and 

impacting fact distribution over time. Existing models struggle to capture such abrupt changes. 

GHNN [8] models event self-excitation via Hawkes processes but lacks inhibitory/interrupted 

state modeling (e.g., India's abrupt support withdrawal from Brazil in Fig 1). CRNet [9] targets 

concurrent interactions but fails to recognize sudden event termination or discontinuous leaps. 

A representative challenge is exemplified by events exhibiting abrupt discontinuities. For 

instance, consider a scenario where India supports Brazil at one timestep but terminates this support 

abruptly in the subsequent time step. Such rapid reversals or temporal mutations violate common 

stationarity and trend assumptions. Effectively capturing these discontinuous changes is crucial, as 

it would reduce future misjudgments and enhance model adaptability, while enabling the simulation 

of complex phenomena like "intention reversal" and policy shocks for Temporal Knowledge Graph 

prediction. 

To address this, we propose the Trend and Variation-aware Contrastive Learning Network 

(TVCL-Net) (Fig 2). It integrates local/global historical information via contrastive learning, 

enhancing key information discrimination to reduce noise interference. During encoding, TVCL-

Net simultaneously models long-term trends and abrupt change dynamics, significantly improving 

robustness to complex temporal patterns. Key contributions include: 

(1) Local-global query module integrating global/local contexts via contrastive learning, 

enhancing identification of query-relevant history. 

(2) Global trend-aware encoder mining underlying regular/progressive trends, strengthening 

entity temporal continuity. 
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(3) Local variation-aware encoder recognizing mutational events, maintaining robustness in 

volatile extrapolation tasks. 

  

Fig. 2 Overall Model Architecture 

The remainder of this paper is organized as follows: Section 2 reviews existing work related to 

this study; Section 3 introduces symbol definitions, the problem statement, and the detailed design 

of the TVCL-Net model; Section 4 presents the experimental setup and performance analysis on 

multiple standard datasets; Section 5 summarizes the research work and outlines future research 

directions. 

2. Related Work 

2.1 Static Graph Reasoning 

Static Knowledge Graph (SKG) reasoning, a core topic in knowledge representation, 

encompasses four main approaches: Rule-based, Matrix decomposition-based, Large Language 

Model (LLM)-based, and Graph Neural Network (GNN)-based methods. Among these, GNNs excel 

in structure-aware modeling, CNNs in feature abstraction, while matrix factorization and rule-based 

methods maintain advantages in interpretability and efficiency. Recent work increasingly integrates 

multiple approaches for enhanced generalization. 

Rule-based methods include AMIE [10], RLvLR [11], etc., which reveal co-occurrence or 

dependency patterns between items based on their occurrence in transactions or events. Matrix 

factorization methods include TransE [12], RESCAL [13], etc., which employ tensor factorization 

to model multi-relational data in knowledge graphs, capturing interactions between latent factors of 

each entity and relation for reasoning. Among GNN-based methods, R-GCN [14], etc., learn 

embeddings of nodes, edges, and relations by receiving adjacency information to learn 

representations for each node, updating nodes by receiving messages from neighbors via message 

passing. Unlike GCN, R-GCN can learn multi-relations, yielding better predictive power. LLM-

based methods like KBERT [15] convert KGs into sequences and utilize pre-trained LLMs for 

reasoning, with the core task being the understanding, completion, or inference of entities and 

relations within the KG. Static graph reasoning methods demonstrate good performance and high 

efficiency when handling static data, but they do not consider temporal information, making 

dynamic fact evolution modeling difficult. 
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2.2 Dynamic Graph Reasoning 

Dynamic Knowledge Graph Reasoning focuses on the temporal evolution of graph structures. 

Unlike static graphs, evolving nodes and edges render traditional embedding methods inadequate 

for capturing semantic shifts. Researchers address this via two primary frameworks: snapshot-based 

and event-based reasoning. Early methods include EvolveGCN [16], which updates representations 

through time-evolving graph convolutional kernels, and DySAT [17], modeling multi-snapshot 

graphs with structural and temporal attention. Event-driven models like TGN [18] encode 

individual interactions, balancing fine-grained temporal modeling with contextual understanding. 

Recent work includes APAN [19], enhancing cross-temporal node fusion via an awareness 

mechanism to improve perception of evolution trends, and HIPNetwork [20], propagating historical 

information across temporal, structural, and repetitiveness dimensions to model event evolution, 

intra-timestep interactions, and known patterns. HIPNetwork specifically updates relation 

representations using multiple scoring functions to boost accuracy. 

2.3 Temporal Graph Reasoning 

In recent years, driven by the rapidly growing demand for modeling time-sensitive information, 

Temporal Graph Reasoning (TGR) has emerged as a significant branch within Graph Neural 

Network (GNN) research. This task emphasizes the explicit modeling of temporal factors within 

graph structures to effectively capture the rich semantic information arising from the evolution of 

nodes, edges, and their relationships over time. 

Early representative methods include TGAT [21], which introduced a temporal encoder to 

achieve context modeling based on event sequences by combining structural neighbors and 

temporal neighbors. TGN [18] further incorporated a memory module and message-passing 

mechanism, successfully enabling real-time online updates for event-stream graphs and 

significantly enhancing modeling capabilities for large-scale dynamic graphs. Subsequently, RE-

GCN [22] fused graph convolution with temporal gating mechanisms, effectively modeling the 

evolution of entities and relations across timestamps by leveraging local historical dependencies, 

thereby capturing long-term dependencies between entities. 

More recent advancements include CAWN [23], which proposed an attention mechanism 

centered on causal neighbor sampling to better model temporal paths of influence propagation. 

Furthermore, multimodal temporal graph models (e.g., DyRep [2]) have begun integrating user 

behavior, content information, and structural events, promoting the widespread application of 

temporal graphs in domains such as recommendation systems, financial risk control, and social 

computing. 

However, when processing Knowledge Graph (KG) snapshots, the aforementioned methods 

generally lack the capability to model the importance of historical facts relevant to specific queries. 

This makes it difficult for them to discriminate the varying importance of different KG snapshots 

for predicting a given query. Additionally, these approaches remain insufficient in effectively 

capturing trend features and abrupt events within historical information. They struggle to extract 

stable, regular patterns from the event evolution process while also failing to adequately explore 

and learn the significance of abrupt events. 

2.4 Contrastive Learning 

Contrastive Learning, as a self-supervised learning paradigm, has achieved remarkable success 

in fields like computer vision and recommendation systems in recent years and is gradually being 

applied to KG-related tasks. It aims to enhance the discriminative ability of entity and relation 
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representations by constructing positive and negative triple pairs, while learning high-quality 

representations by comparing similarities and differences between samples. The method guides 

model training through constructed "positive- negative sample pairs," making positive samples 

closer in the representation space while distancing negative samples. In self-supervised contrastive 

learning, augmented instances are typically obtained by augmenting the original samples and 

randomly drawing a mini-batch of size 𝑁 instances. Given a positive instance pair (𝑖, 𝑗), the original 

and augmented instances are used to optimize the following loss function. The contrastive loss is 

expressed as: 

ℒ𝑖,𝑗 = −𝑙𝑜𝑔
exp⁡(𝑋𝑖∙𝑋𝑗∕𝜏)

∑ exp⁡(𝑋𝑖∙𝑋𝑗∕𝜏)
2𝑁
𝐾=1,𝐾≠𝑖

,                                                 (1) 

Where 2𝑁 is the sum of the number of original and augmented instances, 𝑋𝑖  is the projected 

embedding of instance 𝑖, 𝜏 is a temperature parameter that helps the model learn from hard negative 

samples, and • denotes the dot product operation used to calculate similarity between instances 

under different views. However, its application in Temporal Knowledge Graph (TKG) reasoning 

remains relatively limited. For example, the recently proposed CENET [24] is a single-view 

historical contrastive learning method designed to enhance the representation ability of entities with 

sparse historical interactions through a contrastive strategy, thereby improving the model's ability to 

predict their future behavior. 

3. Research 

3.1 Notations and Definitions 

A Temporal Knowledge Graph (TKG)(TKG)𝐺 is formally a sequence of KG snapshots, e.g 𝐺 =

{𝐺1, 𝐺2, 𝐺3, … , 𝐺|𝜏|} ,Each KG snapshot 𝐺𝑡 = (𝐸, 𝑅, 𝐹𝑡)  is essentially a directed multi-relational 

graph at time 𝑡, A fact or event is represented as a quadruple (𝑒𝑠, 𝑟, 𝑒𝑜, 𝑡),where the subject entity 

𝑒𝑠 ∈ 𝐸,the object entity 𝑒𝑜 ∈ 𝐸 and the relation⁡𝑟 ∈ 𝑅 connect them at time 𝑡 ∈ 𝑇. 

The TKG extrapolation task involves predicting the missing object entity or subject entity given 

a query (𝑒𝑞 , 𝑟𝑞, ? , 𝑡𝑞) or (? , 𝑟𝑞, 𝑒𝑞, 𝑡𝑞).Without loss of generality, (𝑒𝑜, 𝑟
−1, 𝑒𝑠, 𝑡)is added to the TKG 

dataset Therefore, the TKG extrapolation task can be simplified to object entity prediction. 

3.2 Model Architecture 

We first elaborate on the overall framework of the model, as shown in Figure 3. The model 

mainly consists of two key modules: Global Historical Information Modeling and Local Historical 

Information Modeling. In the global path, we design a Global Trend-Aware Encoder to mine 

structural patterns with temporal trends in historical evolution. 

 

Fig. 3 Local and global coding 

This module integrates information from multiple temporal snapshots combined with a trend 

attention mechanism to extract node representations with global evolutionary significance. 

In the local path, we propose a Local Variation-Sensitive Encoder to capture fine-grained 

changes evolving over time within the entity's neighborhood. This module introduces Time 
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Difference Coding and Dynamic Embedding Matrices and achieves local updating and aggregation 

of node representations through structure-aware convolution and entity-aware attention mechanisms. 

As shown in Figure 3, the model further introduces a Local-Global Query Contrast Module to 

guide better semantic alignment and fusion of global and local historical representations, thereby 

enhancing the model's robust modeling capability for sudden events and complex evolutions. 

Finally, the model combines local and global embedded representations to complete entity 

prediction and reasoning tasks. 

3.3 Global Trend-Aware Encoder 

The Global-Aware Attention Encoding module captures long-term historical patterns under-

represented in local KG snapshots. Unlike CyGNet [25] and TiRGN [6] that rely solely on single-

hop query entities to learn repetitive fact patterns, we incorporate candidate multi-hop facts and 

multidimensional dynamics (e.g., abrupt node changes) to enhance entity prediction. 

For instance, while country diplomatic relations show regularity, involved nations vary 

temporally. Capturing such multi-hop facts improves relationship prediction. We thus construct 

semantically rich historical query subgraphs via multi-level sampling. Specifically, given a 

sequence of historical KG snapshots 𝐺<𝑡𝑞 = {𝐺1,𝐺2, … , 𝐺𝑡𝑞−1},we first sample single-hop historical 

facts containing the current query entity 𝑠⁡denoted⁡as⁡𝐺𝑔1
′ . We then further sample single-hop 

historical facts associated with the target object entities linked to the query entity-relation pair, 

denoted as 𝐺𝑔2
′ .Finally, we combine these two sets of historical facts to obtain a historical query 

subgraph closely related to the current query, i.e., 𝐺𝑔
′ = 𝐺𝑔1

′ ∪ 𝐺𝑔2
′ . 

After obtaining the historical query subgraph, we model its rich structural and semantic features 

to update the global entity representations. In the implementation, we combine the Relational Graph 

Convolutional Network (RGCN) with trend-aware convolution to perform message aggregation on 

the historical query subgraph. Since the historical query subgraph does not explicitly incorporate 

temporal information, we directly use randomly initialized entity and relation embeddings as input 

to the RGCN module. The entity representations are updated using 

the following formula: 

ℎ𝑔
𝑙+1 = 𝑅𝐺𝐶𝑁𝐺𝑙𝑜𝑏𝑎𝑙(ℎ𝑔,𝑒𝑠

𝑙 , 𝑟𝑙 , ℎ𝑔,𝑒𝑜
𝑙 ).                                    (2) 

Here, ℎ𝑔
𝑙+1 represents the output embeddings of entities in the historical query subgraph at the l-

th layer of the RGCN network. For conciseness, we denote the final layer output of RGCN as 𝐻𝑔
𝐴𝑔𝑔

, 

To enhance the final entity representations using global historical information, we further design 

and incorporate a global trend-aware attention module. This module captures latent long-term trend 

patterns in historical facts, with the formal representation: 

ℎ⃗ 𝑔
𝑒𝑞 = 𝑇𝑟𝑒𝑛𝑑 (𝐺<𝑡𝑞).                                                              (3) 

ℎ⃗ 𝑔
𝑒𝑞

 represents the final entity embedding obtained  through global entity-aware encoding, 

and⁡𝑇𝑟𝑒𝑛𝑑 denotes our proposed global trend-aware attention mechanism, which we will elaborate 

below. 

We design a context-aware global trend attention mechanism to capture temporal trend patterns 

in KG history. Specifically, we propose a convolutional multi-head self-attention variant (improving 

convolutional self-attention [26]) with shared node-wise parameters, extracting inter-entity 

evolution trends efficiently. Unlike standard self-attention, we replace Query/Key linear projections 

with 1D convolutions. This incorporates local historical context, enhancing perception of fine-
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grained local variation trends. 

Formally, we define tensor 𝑋 ∈ ℝ𝐵×𝑁𝑆×𝑉𝑛×𝐷 , where 𝑁𝑠  represents the number of historical 

timesteps, 𝑉𝑛 denotes the number of entity nodes, and 𝐷 indicates the embedding dimension. The 

trend-aware multi-head self-attention is defined as: 

𝑇𝑟𝑒𝑛𝑑𝐴𝑡𝑡𝑒𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =⊕ (𝑇𝑟ℎ𝑒𝑎𝑑1, … , 𝑇𝑟ℎ𝑒𝑎𝑑ℎ)𝑊
𝑜 

𝑇𝑟𝑒𝑛𝑑𝑗(𝑄, 𝐾, 𝑉) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝛥𝛾𝑗
𝑄 , 𝐾𝛥𝛾𝑗

𝐾 , 𝑉𝑊𝑗
𝑄).                                 (4) 

Here, 𝑄, 𝐾, 𝑉  are derived from tensor ⁡𝑋  through normalization and causal convolution, 𝛥 

represents the convolution operation, 𝛾𝑗
𝑄

and 𝛾𝑗
𝐾 are convolution kernel parameters. This approach 

effectively captures temporal trend characteristics exhibited during entity evolution. At the l-th 

encoding layer, given input 𝑋(𝑙−1),  the updated node features after temporal trend-aware multi-head 

self-attention processing are represented as: 

𝒵(𝑙−1) = (𝑍𝑡−𝑇ℎ+1
(𝑙−1)

, 𝑍𝑡−𝑇ℎ+2
(𝑙−1)

, … , 𝑍𝑡
(𝑙−1)

) ∈ ℝ𝑁×𝑑𝑚𝑜𝑑𝑒𝑙×𝑇ℎ                              (5) 

Where, 𝑁  is the number of nodes, 𝑑𝑚𝑜𝑑𝑒𝑙  represents the model's feature dimension, and 𝑇ℎ 

denotes the historical time window length. This design ensures the model dynamically perceives 

evolutionary information in both global and local contexts while considering long- and short-term 

historical trends, significantly enhancing the expressive power of entity representations.  

3.4 Local Variation-Aware Encoder  

The contribution degree of each KG snapshot at the recent 𝑚⁡ timestamps 

(𝑖. 𝑒. {𝐺𝑡𝑞−𝑚+1, . . . , 𝐺𝑡𝑞−1}) to predicting the query 𝑞 = (𝑒𝑡𝑞 , 𝑟𝑡𝑞 , ? , 𝑡𝑞)is inconsistent. Therefore, it 

is necessary to explicitly model the relevance of KG snapshots to the current query to more 

precisely characterize the evolution patterns of entities and relations within adjacent time segments. 

To address this, we propose an Entity-Aware Attention Encoder that effectively extracts and 

reinforces query-relevant historical information in KG snapshots. Additionally, we introduce a 

Local Variation-Sensitive Encoding Module, which not only captures overall historical information 

but also sensitively perceives fine-grained change features evolving over time within the entity's 

neighborhood. Through the synergistic effect of these two mechanisms, we achieve effective 

modeling of KG snapshot aggregation and KG snapshot sequence evolution, significantly 

improving the model's performance in handling temporal KG tasks. 

For each KG snapshot at a timestamp, we update entity representations by capturing spatial 

structural semantic information between concurrent facts. Considering that some facts in KG 

snapshots occur periodically (e.g., periodic meetings), we first encode temporal numerical 

information following [27] to obtain dynamic entity embeddings. Formally, the dynamic entity 

embedding is as follows: 

𝜑(𝑑) = cos(𝑑𝜔𝑡 + 𝑏𝑡) (6) 

ℎ⃗ 𝑡 = 𝑊0[ℎ𝑡||𝜑(𝑑)]    (7) 

Where 𝑑 = 𝑡𝑞 − 𝑡𝑖 is the time interval modeled by rescaling the learnable unit 𝜔𝑡 with time bias 

𝑏𝑡 ∙ cos(∙), || is the vector concatenation operation, 𝑊0 is a linear transformation matrix, and ℎ⃗ 𝑡 ∈

𝐻⃗⃗ 𝑡 is the dynamic embedding of the entity at timestamp 𝑡 hen, we use R-GCN to capture structural 

dependencies between concurrent facts. The R-GCN is defined as: 
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Fig.4 Change perception module 

ℎ⃗ 𝑡,𝑜
(𝑙+1)

= RGCN𝐿𝑜𝑐𝑎𝑙(ℎ⃗ 𝑡,𝑠
(𝑙), 𝑟(𝑙), ℎ⃗ 𝑡,𝑜

(𝑙)) 

= 𝜎1 (
1

𝑐𝑜
∑ W1

(𝑙)
(ℎ⃗ 𝑡,𝑠

(𝑙)
+ 𝑟(𝑙)) + W2

(𝑙)
ℎ⃗ 𝑡,𝑜

(𝑙)
(𝑒𝑠,𝑟),∃(𝑒𝑠,𝑟,𝑒𝑜)∈𝜀𝑡

)⁡⁡⁡(8) 

Where h⃗ t
l ∈ ℝ|ε|×d, rt

l ∈ ℝ|R|×d represent the entity and relation embeddings in the l-th layer of 

the R-GCN at the t-th timestamp snapshot, respectively. The output of the final layer of the R-GCN 

is denoted as 𝐻𝑡
𝐴𝑔𝑔

, 𝑐𝑜⁡ is a normalization constant equal to the in-degree of the entity. are 

parameters for aggregating features and self-loops in the l-th layer, and 𝜎1(∙)  is the RReLU 

activation function.Variation-Sensitive Temporal Convolution 

The Variation-Sensitive Temporal Convolution Module aims to effectively extract high-level 

dynamic change features over short periods using a set of dilated 1D convolutional filters. As shown 

in Figure 4, this module consists of two parallel dilated Inception layers: one serving as a filter and 

the other as a gating unit. The filter branch passes through a dilated Inception convolutional layer 

followed by a `tanh` activation function to extract rich feature representations; the gating branch 

employs the same structure but uses a `sigmoid` activation function to output gating signals. 

Subsequently, the outputs of these two branches undergo element-wise multiplication to form a 

gating mechanism, where the sigmoid gate finely controls the information flow of the tanh filter's 

output, thereby effectively filtering the most relevant temporal features. This module accepts a four-

dimensional input tensor of shape (𝐵, 𝐶, 𝑁, 𝑇)⁡𝑤ℎ𝑒𝑟𝑒⁡𝐵 represents the batch size, 𝐶 is the number 

of channels (feature dimension), 𝑁 denotes the number of nodes, and 𝑇⁡is the length of the time 

series. After the above processing, the output tensor shape remains (𝐵, 𝐶, 𝑁, 𝑇) meaning historical 

temporal information is effectively fused into each node's representation. 

Selecting an appropriate convolution kernel size has always been a challenging issue for 

temporal convolutional networks. The traditional `Inception` strategy typically combines outputs 

from 2D convolutional filters of different kernel sizes (e.g., 1 × 1, 3 × 3  and 5 × 5)⁡to capture 

multi-scale features. However, considering that time series data often exhibit specific 

periodicities(e.g., 7, 12, 24, 48 and 60 etc.)these classical 2D filter sizes cannot adequately cover 

these periodic patterns. To address this, we specifically propose a time-aware inception layer design 

containing four 1D filters of different sizes:1 × 2, 1 × 4, 1 × 6 and 1 × 8, For example, to represent 

a periodic pattern of length 12, the model can first acquire coarse-grained information through a 1 ×
8 convolutional filter and then refine it further with a 1 × 6 filter. 

Our temporal convolution module captures multi-scale temporal dependencies using four parallel 

1D convolution branches with different kernel lengths and dilation coefficients. Kernels of size 

(1,k)slide independently along the time dimension, extracting node-specific temporal features. The 

receptive field size for a network with kernel size c and m layers is: 

𝑅 = 𝑚(𝑐 − 1) × 𝑑 + 1          (9)  

Where d is the dilation factor. We use dilated convolution to expand the receptive field without 
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increasing depth: small kernels (e.g., sizes 2,4) capture short-term variations, while large kernels 

(e.g., sizes 6,8) model long-term dependencies. To enhance long-sequence capture, we design 

exponentially growing dilation factors  q  (q>1) across layers. The receptive field becomes: 

𝑅 = 1 + (𝑐 − 1)(𝑞𝑚 − 1)/(𝑞 − 1)           (10) 

This approach enables the network's receptive field size to grow exponentially at rate 𝑞 as the 

number of hidden layers increases, thereby capturing longer sequences. 

Building upon this foundation, we combine Inception with dilated convolution mechanisms to 

propose a Dilated Inception Layer, as shown in Figure 4(b). Formally, given a 1D sequence input 

𝑧 ∈ 𝑅𝑇  and 𝑓1×2 ∈ 𝑅2, ⁡𝑓1×4 ∈ 𝑅4, 𝑓1×6 ∈ 𝑅6, ⁡𝑓1×8 ∈ 𝑅8 . our dilated inception layer adopts the 

following form: 

𝑧 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑧 ⋆ 𝑓1×2, 𝑧 ⋆ 𝑓1×4, 𝑧 ⋆ 𝑓1×6, 𝑧 ⋆ 𝑓1×8)      (11) 

Here, the outputs of the four filter branches are truncated to equal length based on the largest 

filter size before being concatenated along the channel dimension. The dilated convolution 

operation ⋆ is defined as: 

𝑧 ⋆ 𝑓1×𝑘(𝑡) = ∑ 𝑓1×𝑘(𝑠)𝑧(𝑡 − 𝑑 × 𝑠)𝑘−1
𝑠=0       (12) 

Due to differences in kernel sizes and dilation factors, the temporal lengths of branch outputs 

vary. In implementation, we first truncate each branch's output to the shortest length (determined by 

the largest kernel size and highest dilation factor) to ensure temporal alignment. Let 𝑇𝑚.denote this 

minimum output length. The aligned branch features have approximate dimensions(𝐵,
𝐶

4
, 𝑁, 𝑇𝑚). 

Which are then concatenated to form a comprehensive multi-scale representation of 

shape(𝐵, 𝐶, 𝑁, 𝑇𝑚). 

The fused representation is projected to the output via two ReLU-activated linear layers. 

Specifically, we reshape the input tensor (B, C, N, Tm) into (B×N×Tm,C), merging temporal 

dimensions into the batch dimension. The first linear layer projects features from dimension C to C 

(matching the original channel number), followed by ReLU activation. The second linear layer 

projects back to CC. Finally, we reshape the output to (B, C, N, Tm), maintaining the input format 

with temporal length  Tm. With appropriate padding, Tm can equal the original length TT. In 

summary, our variation-aware temporal convolution module integrates gating mechanisms for 

dynamic information regulation, dilated convolutions for expanded receptive fields, and multi-scale 

feature concatenation for precise temporal extraction. Maintaining consistent input/output 

shapes (B,C,N,T)  enables seamless integration with spatial graph convolution modules, providing 

nodes with dynamic, historically enriched feature representations that significantly enhance 

complex temporal dependency and long-term pattern capture. 

3.5 Global-Local Contrastive Learning 

Evidently, the globally and locally defined encoding modules can effectively capture both global 

and local dependencies of queries. However, during actual model training, input data is inevitably 

subject to external noise interference, which significantly compromises the model's reasoning 

performance - an issue that existing methods have not adequately addressed. Inspired by the 

concept of unsupervised contrastive learning [28][29], we further propose a global-local query 

contrast module. By simultaneously identifying highly correlated local and global features of 

entities and relationships within queries, this module effectively filters out external noise. 

Specifically, for each query at timestamp 𝑡𝑞  the objective of the global-local query contrast 

module is to learn query representations that encompass both local and global semantic information 
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by minimizing a supervised contrastive loss function. This ensures that the local and global 

representations of the same query are closer in the semantic space, while representations of different 

queries are more distinctly separated. Formally, we define the local and global query embedding 

representations as: 

𝑍𝑡 = 𝑀𝐿𝑃[ℎ𝑡
𝐴𝑔𝑔

||𝑟𝑡],                  (13) 

𝑍𝑔 = 𝑀𝐿𝑃[ℎ𝑔
𝐴𝑔𝑔

||𝑟𝑡],                  (14) 

Where 𝑧𝑡  represents the local query embedding at timestamp 𝑡, 𝑧𝑔  denotes the corresponding 

global query embedding. The MLP network serves to normalize the query embeddings and project 

them into a feature space suitable for subsequent contrastive training. It should be noted that since 

the historical query subgraph does not explicitly encode temporal information, we employ initial 

relationship embeddings to represent global queries. Within our framework, global and local query 

representations can be viewed as two complementary perspectives of historical facts in temporal 

knowledge graphs. Therefore, we can consider the query representation generated by the local 

encoder as the baseline view, while the global encoder serves to enhance this baseline view. The 

local and global representations of the same query at timestamp t form a positive sample 

pair(𝑍𝑡,𝑖 , 𝑍𝑔,𝑖), whereas representations of different queries form negative sample pairs (𝑍𝑡,𝑖 , 𝑍𝑔,𝑘). 

Consequently, the supervised contrastive loss ℒ𝑙𝑔 at timestamp  𝑡𝑞 can be defined as:  

ℒ𝑙𝑔 =
1

|𝑄𝑡𝑞|
𝑙𝑜𝑔

𝑒𝑥𝑝(𝑍𝑡,𝑖∙𝑍𝑔,𝑖/𝜏)

∑ (𝑍𝑡,𝑖∙𝑍𝑔,𝑘/𝜏)𝑘∈𝑁𝑡𝑞,𝑘≠𝑖
,                (15) 

Where 𝑄𝑡𝑞 denotes the set of queries at timestamp ⁡𝑡𝑞, 𝑁𝑡𝑞 represents the number of queries in 

the corresponding mini-batch at that timestamp, and 𝜏 is the temperature parameter controlling the 

contrastive distribution. The objective of loss function ℒ𝑙𝑔  is to reduce the semantic distance 

between different views of the same query while enhancing shared features between local and 

global encodings, thereby effectively mitigating noise interference and improving model robustness. 

To further strengthen the model's ability to distinguish between different query representations in 

semantic space, we apply similar constraints to local-local and global-global representations, 

obtaining two additional supervised contrastive losses ℒ𝑙𝑙  and ℒ𝑔𝑔 . This yields four supervised 

contrastive losses in total:  ℒ𝑙𝑔, ℒ𝑔𝑙 , ℒ𝑙𝑙andℒ𝑔𝑔  The final supervised contrastive loss is computed as: 

𝐿𝑐𝑙 = (ℒ𝑙𝑔 + ℒ𝑔𝑙 + ℒ𝑙𝑙 + ℒ𝑔𝑔)/4              (16) 

This multi-view supervised contrastive mechanism enables the model to more comprehensively 

capture semantic differences and similarities at varying granularities, significantly enhancing 

reasoning performance in complex environments. 

3.6 Prediction and Evaluation 

ConvTransE [30], a powerful scoring function widely used in recent TKG reasoning tasks, serves 

as our base decoder for entity prediction at timestamp 𝑡𝑞  The entity prediction scoring function is 

defined as: 

𝜓(𝑒𝑞, 𝑟𝑞, 𝑒, 𝑞) = 𝜎2 (ℎ𝑡𝑞

𝑒𝑞𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝐸 (ℎ̂𝑡𝑞

𝑒𝑞 , 𝑟𝑡𝑞)),                (17) 

Where ℎ̂𝑡𝑞

𝑒𝑞
 represents the query entity embedding combining global and local representations: 
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ℎ̂𝑡𝑞

𝑒𝑞 = 𝜆ℎ⃗ 𝑔
𝑒𝑞 + (1 − 𝜆)ℎ⃗ 𝑡𝑞

𝑒𝑞
,                  (18) 

Where, 𝜆 ∈ ⁡ [0,1]  is an adjustable weighting coefficient balancing global trend and local context 

representations. We formulate entity prediction as a multi-label learning problem, with the 

prediction loss ℒ𝑡𝑘𝑔 defined as: 

ℒ𝑡𝑘𝑔 = ∑ ∑ ∑ 𝓎𝑡
𝑒𝑙𝑜𝑔∅(𝑒𝑠, 𝑟, 𝑒, 𝑡)𝑒∈𝜀(𝑒𝑠,𝑟,𝑒,𝑡)∈ℱ𝑡

𝜏
𝑡=0  ,            (19) 

Where, ∅(𝑒𝑠, 𝑟, 𝑒, 𝑡) denotes the entity prediction score for a given triple, 𝜀  is the entity set, 

and𝓎𝑡
𝑒 ∈ ℝ|𝜀| is the label vector (with value 1 at position e if the fact occurs at time t, 0 otherwise). 

The final loss function combines: 

ℒ = ℒ𝑡𝑘𝑔 + ℒ𝑐𝑙 ,                         (20) 

During training, we jointly optimize both entity prediction loss ℒ𝑡𝑘𝑔 and contrastive supervised 

loss ℒ𝑐𝑙 through synchronous learning. 

Notably, to enhance training symmetry and prediction performance, we introduce inverse 

quadruples during both training and testing phases. The inverse query set is generated from the 

original query set at timestamp 𝑡𝑞. While constructing historical KG snapshots each epoch using 

combined original and inverse quadruples, direct training on this combined set risks data leakage as 

the entity-aware attention module might simultaneously access both subject and object entities. To 

prevent this, we propose a two-phase forward propagation strategy: Phase 1 processes only original 

queries, while Phase 2 handles inverse queries in each training cycle. This design maintains 

expressive power while effectively preventing information leakage. The detailed training procedure 

of model is summarized in table 1. 

Table 1 Training procedure of TVCL-Net 

Algorithm 1: Training procedure of  TVCL-Net 

Input: the historical KG snapshot sequence{𝐺1, 𝐺2, …𝐺𝑡𝑞},query set 𝑄𝑞𝑢𝑒𝑟𝑦 with unknow object entities at time 𝑡𝑞. 

Output: The reasoning results for each query are in descending order of scores. 

1: Initialize the embeddings of entities, relation. 

2: while 𝑡 < |𝜏| do 

3:      𝑡′ = 𝑡𝑞 − 𝑚 

4:      while 𝑡′ < 𝑡𝑞 and 𝑡′𝑞 > 0 do 

5:           𝑡′ = 𝑡′ + 1 

6:          Aggregate local KG snapshot by Eq.2-Eq.4 

7:             Relation presentation and entity representation with mutation information are obtained by learning KG sequence through 

Eq5-Eq.8 

8:      end while 

9:      Entity representation with historical trend information is obtained by learning the KG sequence through formula Eq.9-Eq.11. 

10:    𝑡′′ = 𝑡 − 𝑚 

11:    while 𝑡′′ < 𝑡 and 𝑡′′ > 0 do 

12:         𝑡′′ = 𝑡′′ + 1 

13:         Compute the local-global query contrast loss by Eq.11-Eq.15. 

14:    end while 

15:    Replace the missing object entities for each query (𝑠, 𝑟, ? , 𝑡) ∈ 𝒬𝑞𝑢𝑒𝑟𝑦 and calculate the scoring function by Eq.16-Eq.20. 

16:   𝑡 = 𝑡 + 1 

17:end while 

4. Experiments 

4.1 Datasets and Baselines 

4.1.1 Datasets 

To comprehensively evaluate the performance of TVCL-Net in entity prediction tasks, we 
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employed four benchmark datasets widely used for TKG extrapolation: ICEWS14, ICEWS18, 

ICEWS05-15 [31], and GDELT [32]. Among these, ICEWS14, ICEWS05-15, and ICEWS18 are 

subsets derived from the Integrated Crisis Early Warning System (ICEWS), containing numerous 

political events with specific timestamps. GDELT is a global event database encompassing 20 types 

of events. Following the preprocessing strategies in [33][34], we split all datasets into training, 

validation, and test sets at a ratio of 80%/10%/10%. The statistical details of all datasets are 

provided in Table 2. 

4.1.2 Baselines 

To comprehensively evaluate the reasoning capabilities of TVCL-Net, we selected multiple 

representative and widely-covered baseline methods for comparison, encompassing two major 

categories: static knowledge graph methods and temporal extrapolation approaches: 

(1) Static Knowledge Graph (SKG) :Methods: 

DisMult [35], ComplEx [36], Conv-TransE [30], RotatE [37]Temporal extensions include: 

TTransE [38], TA-DisMult [40], De-SimIE [39], TNT-ComplEx [41], TANGO-Tucker [42] 

(2) Temporal Knowledge Graph Extrapolation Models: 

xERTE [43], TITer [44], CyGNet [25], RE-NET [3], RE-GCN [22], CEN [45]Latest methods 

include: TiRGN [6], HisMatch [5], RETIA [46], CENET [24] 

These methods exhibit distinct emphases in terms of encoding mechanisms, approaches to 

historical information utilization, and temporal modeling capabilities, collectively forming a 

systematic evaluation framework for TVCL-Net. 

4.2 Experimental Settings 

4.2.1 Evaluation Metrics 

We employ two widely-used evaluation metrics for assessing TKG reasoning methods: Mean 

Reciprocal Rank (MRR) and𝐻𝑖𝑡@𝑘(𝑘 = 1,3,10), MRR calculates the average reciprocal rank of 

the ground truth across all queries, while 𝐻𝑖𝑡@𝑘 measures the proportion of cases where the correct 

entity appears in the top-k ranked candidates. Recent studies [47][48] have shown that traditional 

static filtering settings are unsuitable for TKG extrapolation as they ignore temporal dimensions of 

facts. In practice, only concurrently occurring facts should be filtered. Therefore, we report results 

using the temporally-aware filtering setting that has been widely adopted in recent work, which 

only filters quadruples occurring at the query time. 

Table 2 Details of the dataset 

Dataset ICEWS14 ICEWS05-15 ICEWS18 GDELT 

Entities 6,869 10,094 23,033 7,691 

Relations 230 256 251 240 

Training 74,845 373,018 368,868 1,734,399 

Validation 8,514 45,995 46,302 238,765 

Test 7,371 49,545 46,159 305,241 

Time granularity 24 hours 24 hours 24 hours 15 mins 

Snapshot numbers 365 365 4,017 2,975 

4.2.2 Implementation Details 

For all datasets, we set the embedding dimension d to 200 and the learning rate to 0.001. The 

batch size was configured according to the number of quadruples per timestamp. TVCL-Net 
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parameters were optimized using Adam [49] during training. The R-GCN layers in both the local 

entity-aware attention recursive encoder and global entity attention-aware encoder were set to 2, 

with a dropout rate of 0.2 per layer. The optimal local historical KG snapshot sequence lengths for 

ICEWS14, ICEWS18, ICEWS05-15, and GDELT were set to 7, 7, 9, and 7 respectively. The 

prediction weight λ was set to 0.9 for all datasets, while the temperature coefficients were 

configured as 0.03, 0.03, 0.07, and 0.07 for ICEWS14, ICEWS18, ICEWS05-15, and GDELT 

correspondingly. For the decoder across all datasets, we used 50 filters with kernel size 2×3 and a 

dropout rate of 0.2. 

Table 3 Ablation experiment 

Model 

ICEWS14 ICEWS18 ICEWS05-15 

MRR  Hits

@1 

Hits

@3 

Hits@

10 

MRR  Hits@

1 

Hits

@3 

Hits@

10 

MRR  Hits@

1 

Hits

@3 

Hits

@10 

TVCL-Net 50.20 37.88 55.99 72.85 37.76 24.98 41.20 58.32 57.02 46.51 64.11 78.02 

TVCL-Net-T 49.33 37.13 54.14 72.69 37.02 23.96 39.22 56.78 56.29 45.03 63.48 76.60 

TVCL-Net-A 48.95 36.76 49.04 70.56 36.08 23.57 38.08 55.26 56.51 44.67 64.06 77.24 

4.2.3 Ablation experiment 

To analyze individual component contributions, we conducted ablation studies (Table 3) with 

two variants: 

(1) TVCL-Net-A: Removes the trend-aware module while retaining the variation-aware 

component, isolating the impact of short-term variation features. 

(2) TVCL-Net-T: Removes the variation-aware module while keeping the trend-aware 

component, evaluating long-term trend effects. 

Results demonstrate that while both mechanisms contribute to performance gains, the trend-

aware module shows more significant improvements across all datasets, highlighting the critical 

importance of long-term evolutionary information for entity prediction. The variation-aware module 

specializes in capturing local abrupt events, effectively addressing limitations of traditional methods 

in handling non-stationary patterns. 

4.2.4 Comparative Results 

Table 4 presents comprehensive experimental results across all four benchmark datasets, 

demonstrating TVCL-Net's superior overall performance. Key findings include: 

(1) TVCL-Net outperforms state-of-the-art methods on all four benchmarks, achieving 

improvements of 5.9%, 5.4%, 2.3%, and 3.6% on ICEWS14, ICEWS18, ICEWS05-15, and GDELT 

respectively. 

(2) While HisMatch considers local historical information queries, it lacks capability to evaluate 

the importance of different historical information elements. 

(3) Although CENET employs contrastive learning, its performance is limited by not accounting 

for trend patterns and abrupt changes in historical information. 

(4) Comparative analysis confirms that our contrastive learning approach effectively enhances 

both model performance and prediction accuracy. 

5. Conclusion 

This paper presents TVCL-Net, a novel contrastive learning model integrating trend and 

variation awareness mechanisms for extrapolation reasoning tasks in Temporal Knowledge Graphs 

(TKGs). The proposed model adopts a dual-path global-local encoding architecture to 

comprehensively model entity evolution behaviors across different timescales. In the global 
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encoding path, we introduce a trend-aware convolution mechanism to effectively extract latent 

patterns from long-term historical evolution, while the local encoding path incorporates a variation-

aware module to capture fine-grained changes occurring in node neighborhoods over short time 

intervals. 

Furthermore, we propose a global-local contrastive learning mechanism that enhances the 

model's discriminative capability for key features in historical events through contrastive 

optimization of positive and negative sample pairs, significantly improving entity prediction 

accuracy. Experimental results on four authoritative datasets demonstrate that TVCL-Net 

outperforms existing mainstream methods in both accuracy and robustness. Future work may 

explore incorporating multimodal information (e.g., text and images) into temporal-aware graph 

modeling to further enhance the model's applicability in complex real-world scenarios. 
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Table 4 Comparison of predicted performance 

Model 
ICEWS14 ICEWS18 ICEWS05-15 GDELT 

MRR  Hits@1 Hits@3 Hits@10 MRR  Hits@1 Hits@3 Hits@10 MRR  Hits@1 Hits@3 Hits@10 MRR  Hits@1 Hits@3 Hits@10 

DisMult(2014) 15.44 10.91 17.24 23.92 11.51 7.03 12.87 20.86 17.95 13.12 20.71 29.32 8.68 5.58 9.96 17.13 

ComplEx(2016) 32.54 23.43 36.13 50.73 22.94 15.19 27.05 42.11 32.63 24.01 37.50 52.81 16.96 11.25 19.52 32.35 

ConvE(2018) 35.09 25.23 39.38 54.68 24.51 15.23 29.25 44.51 33.81 24.78 39.00 54.95 16.55 11.02 18.88 31.60 

Conv-

TransE(2019) 

33.80 25.40 38.54 53.99 22.11 13.94 26.44 42.28 33.03 24.15 38.07 54.32 16.20 10.85 18.38 30.86 

RotatE(2019) 21.31 10.26 24.35 44.75 12.78 4.01 14.89 31.91 24.71 13.22 29.04 48.16 13.45 6.95 14.09 25.99 

TTransE(2016) 13.72 2.98 17.70 35.74 8.31 1.92 8.56 21.89 15.57 4.80 19.24 38.29 5.50 0.47 4.94 15.25 

TA-

DisMult(2018) 

25.80 16.94 29.74 42.99 16.75 8.61 18.41 33.59 24.31 14.58 27.92 44.21 12.00 5.76 12.94 23.54 

DE-SimIE(2020) 33.36 24.85 37.15 49.82 19.30 11.53 21.86 34.80 35.02 25.91 38.99 52.75 19.70 12.22 21.39 33.70 

TNTComplEx 

(2020) 

34.05 25.08 38.50 50.92 21.23 13.28 24.02 36.91 27.54 9.52 30.80 42.86 19.53 12.41 20.75 33.42 

RE-NET(2020) 36.93 26.83 39.51 54.78 28.81 19.05 32.44 47.51 43.32 33.43 47.77 63.05 19.62 12.42 21.00 34.01 

CyGNet(2020) 35.05 25.73 39.01 53.55 24.93 15.90 28.28 42.61 36.81 26.61 41.63 56.22 18.48 11.52 19.57 31.98 

TANGO-Tucker 

(2021) 

36.80 27.43 40.89 54.93 28.68 19.35 32.17 47.04 42.86 32.72 48.14 62.34 19.53 12.43 20.79 33.19 

xERTE (2021) 40.02 32.06 44.63 56.17 29.98 22.05 33.46 44.83 46.62 37.84 52.31 63.92 18.09 12.30 20.06 30.34 

RE-GCN (2021) 40.39 30.66 44.96 59.21 30.58 21.01 34.34 48.75 48.03 37.33 53.85 68.27 19.64 12.42 20.90 33.69 

TiRGN (2022) 44.04 33.83 48.95 63.84 33.66 23.19 37.99 54.22 50.04 39.25 56.13 70.71 21.67 13.63 23.27 37.60 

HisMatch (2022) 46.42 35.91 51.63 66.84 33.99 23.91 37.90 53.94 52.85 42.01 59.05 73.28 22.01 14.45 23.80 36.61 

RETIA (2023) 42.76 32.28 47.77 62.75 32.43 22.23 36.48 52.94 47.26 36.64 52.90 67.76 20.12 12.76 21.45 34.49 

CENET (2023) 39.02 29.62 43.23 57.49 27.85 18.15 31.63 46.98 41.95 32.17 46.93 60.43 20.23 12.69 21.70 34.92 

TVCL-Net 50.20 37.88 55.99 72.85 37.76 24.98 41.20 58.32 57.02 46.51 64.11 78.02 24.03 14.88 26.30 42.99 
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