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Abstract: With the deepening energy transition and the advancement of smart grids, 

intelligent power informatization has become a crucial enabler for improving grid 

efficiency and reliability. This paper first reviews the definition, developmental 

background, and the current state of research—both domestic and international—in 

intelligent power informatization, and analyzes the challenges posed by surging data 

volumes, heterogeneous sources, and security protection. Building on this foundation, we 

propose a suite of advanced data-processing techniques, including integrated multi-source 

data acquisition and cleansing methods, as well as intelligent analysis and mining 

algorithms based on machine learning and deep learning, to achieve precise perception and 

prediction of power-system operational states. Simultaneously, to counter network attacks 

and data-leakage threats, we design a multi-layered network-security framework and a 

comprehensive data-security mechanism that combines encryption, access control, and 

privacy protection. A case study of a real-time smart-grid monitoring platform and 

corresponding experimental evaluation demonstrate the superiority of the proposed 

methods in both data-processing performance and security enhancement. Finally, we 

outline future research directions in large-scale deployment, cross-domain collaboration, 

and adaptive security. 

1. Introduction 

As global energy structures undergo profound transformation and renewable energy penetrates 

power systems at scale, grids face unprecedented complexity and demand for flexibility. Traditional 

grid management—relying on manual monitoring and static scheduling—struggles to handle the 

vast, heterogeneous data streams and real-time requirements introduced by variable wind and solar 

output, distributed generation, and electric-vehicle charging. At the same time, the grid’s status as 

critical infrastructure exposes it to network attacks, data tampering, and privacy breaches. 

Integrating data-driven intelligence with robust security measures—while ensuring efficient 

operation—has thus become a core challenge in modernizing power systems.Intelligent power 

informatization integrates information and communication technologies, big-data platforms, and 

artificial intelligence deeply into every stage of the power-system lifecycle: monitoring, dispatch, 

operation, maintenance, and market transactions. By enabling real-time data acquisition, analysis, 

and intelligent decision support, it undergirds reliability, economy, and sustainability. In recent 
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years, both academia and industry have proposed SCADA-and-beyond frameworks leveraging 

cloud and edge computing to monitor and dispatch grids, and explored machine-learning and 

deep-learning approaches for load forecasting, fault diagnosis, and asset-health assessment. Yet 

most studies focus on isolated scenarios or point solutions, with few offering a systematic 

architecture that unifies advanced data processing and comprehensive security enhancement. 

Moreover, balancing computational performance with layered defense remains an open problem 

requiring more scalable and adaptive solutions.This work aims to develop an end-to-end technical 

framework for intelligent power informatization that addresses efficient multi-source data 

preprocessing and intelligent analytics, alongside enhanced security against cyber-attacks and 

data-privacy threats. We first design a unified data-ingestion and cleansing mechanism to aggregate 

and validate time-series measurements, operational logs, and market transactions. Next, we 

introduce a hybrid algorithmic framework—combining graph neural networks with ensemble 

learning—to improve situational awareness and load-trend prediction. Finally, we establish a 

multi-layered network-security architecture and integrate homomorphic encryption, differential 

privacy, and role-based access control to safeguard data throughout transmission, storage, and 

analysis. A deployment at a provincial dispatch center and accompanying simulation studies verify 

the proposed methods’ advantages in processing efficiency, forecasting accuracy, and security 

robustness[1]. 

2. Intelligent Power Informatization: Overview 

2.1. Definition and Developmental Background 

Intelligent power informatization refers to the deep integration of next-generation information 

and communication technologies—such as big data, cloud computing, and artificial 

intelligence—into all stages of the power-system lifecycle: monitoring, dispatch, operation, 

maintenance, and market transactions. By realizing real-time data acquisition, transmission, storage, 

and analysis, it transforms grid management from isolated “sense–communicate–decide” loops with 

slow response into a closed-loop of “data-driven insights + model support + intelligent 

decision-making.” This paradigm shift moves the grid from passive protection to proactive defense, 

from experience-based scheduling to precise forecasting, and from manual intervention to 

autonomous operation. Beyond visualizing equipment status and issuing early-warning alerts within 

substations, intelligent power informatization extends to complex scenarios such as 

distributed-renewable integration, electric-vehicle charging management, and demand-response, 

emphasizing coordinated optimization across all elements, layers, and dimensions of the 

system.Historically, its evolution can be divided into three stages. The first stage (late 1990s to early 

2000s) focused on foundational ICT deployments—ERP and SCADA systems—within utilities, 

achieving initial digitalization and automation of grid monitoring and dispatch. The second stage 

(2005–2015) saw the proliferation of fiber-optic networks, broadband, and GIS, enabling 

interconnection between grid operations and market platforms, spurring widespread deployment of 

distribution automation and intelligent substations, and driving exponential data growth that laid the 

groundwork for big-data platforms. Since 2015, driven by mature AI and cloud-computing 

technologies and large-scale renewable integration, grids have faced heightened demands for 

real-time responsiveness and flexibility. In response, governments and grid operators worldwide 

have launched “Internet+” and “Energy Internet” initiatives, promoting edge computing, microgrids, 

and virtual power plants, thereby establishing a new architecture driven by data, hosted on unified 

platforms, and powered by intelligent algorithms.On the policy front, many countries have issued 

smart-grid plans and action roadmaps, aiming to leverage informatization for optimized operation, 

enhanced renewable-energy integration, and strengthened energy security. Simultaneously, research 
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institutions, universities, and industry stakeholders have advanced large-scale data-sharing and 

interoperability efforts—such as IEC 61850 and CIM standards—laying the foundation for a 

cohesive ecosystem. Overall, intelligent power informatization arises both from the grid’s need for 

more efficient, reliable, and sustainable operation and from the digital-economy wave’s catalyst 

effect, providing a solid basis for building the resilient, self-healing, and intelligent grids of the 

future[2]. 

2.2. Research Status and Challenges 

Recent research worldwide exhibits multi-layered, multi-dimensional progress in intelligent 

power informatization. In mature-grid regions—Europe, North America, and Japan—studies have 

emphasized stability assessments under high renewable penetration, real-time data-processing 

architectures based on distributed edge computing, and the use of deep learning and graph neural 

networks for load forecasting and fault diagnosis. For example, several European grid operators 

have implemented cloud–edge hybrid architectures to achieve low-latency acquisition and analysis 

of wind and solar farm outputs, while U.S. universities have proposed reinforcement-learning-based 

self-healing strategies to accelerate response to sudden faults. In China, driven by “Internet+” and 

“Energy Internet” policies, major grid operators and research institutes have deployed pilot 

projects—intelligent substations, proactive distribution networks, and virtual power plants—and 

have conducted large-scale data-integration and dispatch-control research on platforms like State 

Grid and China Southern Power Grid. Particularly in demand-response, distributed storage, and EV 

charging management, they have accumulated rich application experience.Despite these advances, 

several key challenges remain. First, reconciling real-time requirements with reliability for 

multi-source heterogeneous data is difficult: limited edge compute resources and bandwidth 

constraints of cloud platforms often create processing bottlenecks. Second, most intelligent 

algorithms target isolated optimization tasks; few address system-level, global coordination that 

balances economic and security objectives[3]. Third, as the grid’s attack surface expands, 

end-to-end adaptive defense frameworks integrating network security and data-security mechanisms 

are still lacking, and the feasibility of homomorphic encryption and differential privacy in actual 

grid environments needs further validation. Finally, interoperability issues persist: inconsistent data 

models across vendors and platforms hinder cross-domain collaboration and unified dispatch. 

Addressing these challenges demands a unified, high-efficiency data-processing framework and an 

adaptive security architecture to ensure scalable, sustainable intelligent power informatization. 

3. Advanced Data Processing Techniques 

3.1. Multi-Source Data Acquisition and Preprocessing Methods 

An intelligent power system monitors a wide variety of objects, including data collected by 

traditional SCADA devices; real-time telemetry from fiber-optic ring network units (ADMS) and 

substation RTUs; high-frequency synchronized phasor measurements from Phasor Measurement 

Units (PMUs); environmental and equipment-status data from various IoT sensors; and information 

from market-trading platforms, maintenance logs, and demand-response systems. These sources 

differ markedly in sampling frequency, communication protocols, accuracy requirements, and 

network infrastructure. Efficient, secure, and reliable collection of these massive, heterogeneous 

data streams is therefore the foundation of any intelligent power-informatization platform.To 

address multi-source heterogeneity, a layered acquisition architecture is typically employed. At the 

edge layer, lightweight gateways or edge-compute nodes handle protocol adaptation for each 

vendor’s equipment and provide local caching[4]. Time synchronization (e.g., GPS or IEEE 1588 
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PTP) ensures consistent timestamps across sources. In the transport layer, message brokers (such as 

Apache Kafka or RabbitMQ) or dedicated power-communication meshes aggregate edge data to the 

cloud or a data lake, guaranteeing both high throughput and low latency. Finally, in the cloud or 

dispatch center, a unified metadata catalog and distributed file system (for example, HDFS or object 

storage) enable centralized data management and efficient indexing.The preprocessing stage 

focuses on improving data quality and structuring. First, an automated cleansing module detects and 

corrects packet loss, duplicates, framing errors, and outliers (such as sensor drift or communication 

jitter). Common techniques include isolation forests based on statistical distributions and 

sliding-window anomaly detection from time-series models. Second, to align streams with differing 

sampling rates, multi-resolution resampling and interpolation align high-frequency PMU data with 

lower-frequency SCADA measurements for subsequent fusion. Next, raw data are converted and 

standardized—for example, mapping each device’s proprietary codes to a common Common 

Information Model (CIM) and applying normalization or z-score scaling to mitigate the impact of 

differing units on algorithm performance. Additionally, lightweight feature-engineering modules at 

the edge or in the cloud extract and compress key indicators (such as voltage unbalance, frequency 

deviation, and power factor) in real time, reducing both transmission and storage burdens.By 

employing these multi-source acquisition and preprocessing methods, the 

intelligent-power-informatization platform ensures data integrity and temporal accuracy, providing 

uniformly managed, high-quality datasets that form a solid foundation for downstream analytics and 

security modules[5]. 

3.2. Intelligent Analysis and Mining Algorithms 

After preprocessing and fusing multi-source heterogeneous data, advanced analytics and mining 

algorithms are needed to uncover operational patterns and anomalies, supporting accurate 

forecasting and autonomous decision-making. For high-precision load and renewable-output 

prediction, deep-learning time-series models such as Long Short-Term Memory (LSTM) or Gated 

Recurrent Unit (GRU) networks can be enhanced with an attention mechanism to assign greater 

weight to critical time windows and features, improving both peak-valley load forecasts and 

renewable-energy fluctuation predictions. External variables—such as weather forecasts, market 

transactions, and historical fault logs—can be incorporated as multidimensional inputs within a 

multi-task learning framework, jointly optimizing load, generation, and price predictions, thereby 

reducing training cost and improving overall robustness[6].For operational safety monitoring and 

fault diagnosis, Graph Neural Networks (GNNs) can jointly model grid topology and measurement 

data. By representing substations and line connection points as nodes, and transmission lines and 

transformers as edges, GNNs capture spatial correlations and fault-propagation characteristics, 

accurately identifying potential fault paths. In parallel, anomaly detection methods—such as 

reconstruction errors from autoencoders or anomaly scores from isolation forests—can continuously 

compare PMU and SCADA data to rapidly localize abnormal equipment or line conditions and 

automatically trigger alerts in the operations system.In the domain of adaptive control, 

Reinforcement Learning (RL) can be employed to develop self-healing grid strategies. By defining 

the grid’s operational state as the environment observation and actions such as load adjustment, 

storage dispatch, or switch operations as the action space, an RL agent learns optimal recovery 

paths through trial-and-error in simulations, guided by a multi-objective reward function that 

balances power equilibrium, economic efficiency, and security constraints. To address class 

imbalance and overfitting, Ensemble Learning techniques (e.g., bagging or boosting) can combine 

multiple weak learners—such as decision trees, support vector machines, or lightweight neural 

networks—leveraging each model’s strengths while improving overall generalization and 
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stability.In summary, the coordinated application of deep learning, multi-task learning, graph neural 

networks, reinforcement learning, and ensemble learning enables the extraction of critical patterns 

from massive, high-dimensional power data, real-time operational forecasting, and the autonomous 

generation of optimal control strategies, thus providing robust decision support for an intelligent 

power-informatization platform[7]. 

4. Security Enhancement Strategies 

4.1. Network Security Defense Architecture Design 

Within an intelligent power-informatization environment, the network-security framework must 

adopt a multi-layered, comprehensive “defense-in-depth” approach to counter both internal threats 

and external attacks. The first layer is the perimeter defense, where Next-Generation Firewalls 

(NGFWs) and distributed Denial-of-Service (DDoS) mitigation devices inspect all incoming traffic, 

blocking known threats and suspicious connections. The second layer involves network 

segmentation and micro-segmentation: production control networks, monitoring and acquisition 

networks, operations management networks, and business access networks are isolated—physically 

or virtually—and enforced with least-privilege, whitelist-based access controls, ensuring that even 

if one zone is compromised, lateral movement into core control systems is prevented.Building on 

these measures, the third layer is the intermediate security-monitoring tier, comprising Intrusion 

Detection and Prevention Systems (IDS/IPS), Security Information and Event Management (SIEM) 

platforms, and Security Operations Center (SOC) tools[8]. By deploying passive monitoring and 

active blocking at critical links and network nodes, these systems collect network flow, device logs, 

and security events in real time. Threat-intelligence feeds enable deep analysis and correlation of 

anomalous traffic or new threats, quickly detecting zero-day exploits, ransomware propagation, and 

Advanced Persistent Threats (APTs). Machine-learning models are continuously refined to reduce 

false positives and accelerate detection of emerging threats.Finally, to ensure lasting effectiveness 

of security policies, a robust security-operations and incident-response mechanism is established. 

Regular red-team/blue-team exercises and vulnerability scans identify and patch system weaknesses, 

while baseline network-behavior analysis detects anomalous logins or unauthorized access and 

automatically isolates and alerts. Integration with Security Orchestration, Automation, and 

Response (SOAR) platforms streamlines incident workflows—automating alert triage, notification, 

and audit-closing processes. Through these layered designs and continuous operations, a 

full-lifecycle network-security defense is constructed, safeguarding the stability and reliability of 

the intelligent power-informatization platform [9]. 

4.2. Data Security and Privacy Protection Mechanism 

In the intelligent power information platform, data security and privacy protection run through 

all stages of the data's entire life cycle, from data collection, transmission, storage to analysis and 

sharing, strict protection measures must be implemented. To prevent data from being stolen or 

tampered with during transmission, end-to-end encryption technology should be fully adopted: a 

secure channel should be established between the edge gateway and the cloud using TLS/SSL. In 

message queues and storage systems, symmetric encryption algorithms such as AES-256 are used 

for "static encryption" of data; For sensitive fields (such as user-side load curves, transaction prices, 

etc.), homomorphic encryption or searchable encryption schemes can be adopted in the 

preprocessing stage first to support aggregated calculation and retrieval in an encrypted state, while 

ensuring that the data cannot be read in plaintext without authorization.Access control is another 

core mechanism. The platform should allocate the minimum necessary permissions to different 
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users and service providers based on the role and attribute-based access control (RBAC/ABAC) 

model, and conduct dynamic policy evaluation at each request. By integrating detailed audit log 

records with immutable blockchain ledger technology, it can ensure that all data access and 

operation behaviors leave a traceable audit chain, facilitating post-event traceability and compliance 

checks. To prevent internal threats, the platform should also introduce anomaly detection based on 

behavior analysis to intercept and alert atypical data access patterns or large-scale export behaviors 

in real time[10].For data sharing and cross-domain collaboration scenarios, joint analysis and model 

training need to be carried out under the premise of ensuring privacy. A distributed architecture of 

federated learning can be adopted, with the model training tasks assigned to the local environments 

of each participant. Only model parameters or gradient updates are exchanged to avoid the original 

data being out of domain. Meanwhile, a differential privacy mechanism is embedded in the 

parameter exchange stage. By adding noise, the influence of a single record on the final model is 

blurred, thereby further reducing the risk of re-identification. Finally, the platform needs to 

formulate unified data classification, grading and desensitization norms, apply corresponding 

desensitization methods (such as data masking, k-anonymity, L-diversity) to data of different 

sensitivity levels, and conduct regular privacy risk assessment and penetration testing to ensure that 

it meets regulatory compliance requirements while providing efficient and secure data services. 

5. Typical Application Case and Experimental Evaluation 

5.1. An Example of the Real-time Monitoring Platform for Smart Grid 

The real-time monitoring platform for smart grids deployed in a provincial power grid 

dispatching center is designed with the concept of "data-driven, early warning first, and autonomous 

decision-making", integrating the aggregation and visualization of various monitoring data. The 

platform first collects basic measurement values such as voltage, current, frequency and phase 

Angle in real time from devices like SCADA, PMU, smart substation and sub-station RTU through 

the edge gateway. Meanwhile, it connects to the market trading platform and the Demand Response 

system on the user side to form a multi-source heterogeneous data stream. At the transport layer, the 

high-throughput message bus based on Apache Kafka ensures an end-to-end delay of less than 150 

ms for data between the edge and the center. In the storage and computing layer, HDFS+Spark 

Streaming is adopted to achieve integrated stream and batch processing, and through Kubernetes 

elastic scaling deployment, a data processing capacity of 100,000 entries per second during peak 

periods is achieved. The front end of the platform combines large-screen visualization with the 

operation and maintenance workstations to display key indicators such as the power grid topology, 

dynamic load curves, renewable energy output, and market electricity prices in real time. It also 

supports operation and maintenance personnel to conduct in-depth traceability and analysis of 

historical data and algorithm model results through interactive analysis pages.In terms of 

experimental evaluation, the platform compared the performance and effects of different algorithms 

and deployment strategies in the actual operating environment. In terms of load forecasting, a 

bidirectional LSTM model with an attention mechanism was adopted to make rolling predictions of 

the load for the next 24 hours. The mean absolute percentage error (MAPE) reached 1.8%, which 

was approximately 15% higher than that of the traditional unidirectional LSTM. In fault early 

warning and anomaly detection, a topological sensing model based on graph neural networks was 

used to monitor the synchronous phasor data of 50 transmission lines. The experimental results 

show that the platform can successfully issue early warnings with a recall rate of 94% and an 

accuracy rate of 96% within 3 to 5 minutes before a fault occurs. The False Alarm Rate is controlled 

below 2%. Network performance tests show that under concurrent 500 service requests, the average 

response delay of the system remains within 200 ms, and the security module combining intrusion 
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detection and federated learning can reduce the risk of sensitive information leakage by more than 

40% during the parameter exchange stage. The overall assessment results prove that this real-time 

monitoring platform not only has efficient data processing and prediction capabilities, but also 

achieves multi-dimensional guarantees for the safe operation of the power system. 

5.2. Comparative Analysis of Security Enhancement Effects 

In this section, the performance of the deployed security enhancement modules and traditional 

protection solutions in key indicators is compared, with a focus on four aspects: intrusion detection 

effect, data leakage risk control, system performance overhead, and response timeliness.Compared 

with the traditional solution that only relies on static firewalls and basic access control, the network 

security module integrating IDS/IPS and SIEM based on machine learning has increased the 

intrusion detection recall rate from approximately 82% to 94%, and reduced the false alarm rate 

from 8% to 2%. The average detection delay has been shortened from 120 ms to 45 ms, enabling 

earlier capture of abnormal traffic and rapid triggering of responses. After adopting the SOAR 

platform, the average time consumption for the automatic confirmation and isolation process of 

security alerts has been reduced from 15 minutes to 3 minutes, further enhancing the defense 

capability against advanced persistent threats (APT).In terms of data security and privacy protection, 

although traditional static encryption schemes can ensure the security of data storage, they cannot 

take privacy into account during cloud analysis. After introducing homomorphic encryption and 

searchable encryption, the platform's throughput for executing simple aggregated queries in the 

encrypted state reached 80% (compared to plaintext processing), and the query latency was 

controlled within 200 ms. In the cross-domain joint training scenario, the scheme combining 

federated learning with differential privacy reduces the model accuracy by only 1.2%, but lowers 

the risk of re-identification for a single sensitive record by 60%. The combination of log auditing 

and blockchain ledgers has increased the efficiency of post-event compliance review by 30%, while 

ensuring that the audit chain is immutable.Overall, the security enhancement solution has 

significantly improved the network and data security of the power system while ensuring or only 

bringing acceptable performance overhead, providing multi-level and all-round protection for the 

stable operation of the smart grid. 

6. Conclusion 

This paper presents an end-to-end solution for intelligent power informatization. A layered 

architecture enables efficient acquisition and preprocessing of multi-source heterogeneous data. 

Advanced algorithms—such as deep learning, graph neural networks, and reinforcement 

learning—enhance load forecasting, fault warning, and self-healing dispatch accuracy. A 

defense-in-depth network-security framework, combined with homomorphic encryption, 

differential privacy, and federated learning, secures data throughout transmission, storage, and 

computation. In the provincial dispatch center’s real-time monitoring platform, the proposed 

methods reduced load-forecasting MAPE to 1.8 %, achieved fault-warning recall and precision of 

94 % and 96 % respectively, increased security-monitoring recall to 94 % with a 2 % false-alarm 

rate, and enabled encrypted-state aggregate query throughput at 80 % of plaintext speeds while 

cutting re-identification risk by 60 %. The overall evaluation demonstrates that this framework 

balances performance and security, offers excellent scalability and deployability, and significantly 

enhances grid reliability, economic efficiency, and safety—laying a strong foundation for future 

large-scale smart-grid construction and operation. 
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