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Abstract: In high-dimensional image classification tasks, conventional convolutional neural 

networks (CNNs) suffer from high-frequency feature loss in pooling layers and limited 

robustness of Softmax classifiers when handling complex data distributions. In this paper, 

we propose a novel classification framework that combines multi-scale Haar wavelet pooling 

with a Gaussian Mixture Model Classifier (GMMC), which can simultaneously retain high-

frequency information and optimize multimodal feature distributions. During model training, 

we integrate Selective Multiscale Wavelet Pooling (SMWP) into the Expectation-

Maximization (EM) algorithm to enhance frequency-domain features and jointly improve 

classification accuracy. Our approach achieved classification accuracies of 97.17% on 

CIFAR-10 and 99.98% on SVHN, outperforming the MaxPooling + Softmax baseline by 

7.32% and 4.93%, respectively. This research proposes a promising framework for fine-

grained medical image classification, with potential applicability in low-light image 

enhancement and cross-modal retrieval tasks. 

1. Introduction 

High-dimensional image classification, as a core task in computer vision, has significant 

application in scientific research areas such as environmental perception for autonomous driving and 

computer-aided diagnosis in medical imaging. At present, the primary challenges lie in extracting 

robust and discriminative features from high-dimensional heterogeneous data and constructing 

efficient decision-making mechanisms based on these features. Early studies predominantly relied on 

hand-crafted features such as SIFT [1] and SURF [2], but their representational capacity is inherently 

limited when addressing the requirements of high-level semantic abstraction and nonlinear modeling 

in complex visual scenes [3]. Deep learning, particularly Convolutional Neural Networks (CNNs), has 

made great progress by learning features end-to-end [4]. However, fundamental components including 

subsampling operations and classification modules remain primary limiting factors in model 

performance. These limitations are mainly reflected in the following two aspects: 

First, pooling layers cause loss of high-frequency information. Pooling methods such as max 

pooling[5] and average pooling [6] reduce spatial resolution by selecting maximum values or averaging 

local regions. This reduces feature dimensions but also destroys important frequency details. As 

shown in Figure 1(b)-(c), max pooling blurs edge textures (like a cat’s ear or an airplane’s wing). 
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Average pooling further weakens high-frequency signals. These effects are worse under illumination 

variations or object occlusions, which harms fine-grained classification accuracy. 

Second, the limitation of unimodal distribution assumptions in classifiers. Fully connected 

classifiers based on Softmax inherently assume a Gaussian distribution [7-8], making them ineffective 

in modeling intra-class multimodal feature distributions. For instance, in animal subtype 

classification tasks, morphological variations within the same category may form multiple feature 

subclusters in medical imaging analysis, the heterogeneity of pathological tissues may exhibit non-

Gaussian distribution characteristics. Current classifiers lack the capability to represent such complex 

distributions, leading to blurred decision boundaries and increased misclassification rates. 

In response to these challenges, existing enhancement strategies still suffer from significant 

limitations. For example, the aspect of feature information loss, particularly in optimizing pooling 

layers, frequency-domain methods such as Wavelet Pooling [9], preserve low-frequency subbands but 

discard high-frequency details, energy correction strategies [10] fail to incorporate frequency-domain 

analysis, learnable wavelet packet transforms [11] drastically increase computational cost, with a 2.5× 

increase in FLOPs [12], and do not support adaptive subband fusion. Recent deep learning approaches, 

such as multi-level wavelet convolution [13] and dynamic threshold suppression [14], explore multi-

scale feature extraction but still rely on traditional pooling and lack directional subband optimization. 

Regarding classifiers, most still assume a single Gaussian distribution. Mixture models are more 

flexible, but practical issues remain. For example, Dirichlet Process Mixture Models (DPMM) [15] can 

model any distribution, but their high computation cost limits deep learning use. Adaptive Softmax 
[16] accelerates computation by adjusting classifier capacity, but it is primarily suited for hierarchical 

class structures, not multimodal intra-class distributions. Gaussian Mixture Models (GMM) [17] can 

model multiple modes, but they depend on dimensionality reduction and EM convergence, which 

may fail in high-dimensional spaces. Other studies integrate wavelets into CNNs to extract multi-

scale features. For example, channel attention with wavelet coefficients [18] enhances key channels, 

and wavelet-domain feature pyramid networks [19] decompose features at multiple resolutions. 

However, these methods still focus on spatial representation. They lack targeted design to preserve 

high-frequency components during pooling, which are critical for fine-grained classification. 

To address the above limitations, we propose an innovative framework that combines multi-scale 

frequency-domain features with Gaussian Mixture Models. The core contributions are as follows: 

(1) A three-level learnable Haar wavelet pooling module  is designed to preserve critical 

frequency-domain information during dimensionality reduction by adaptively fusing low-frequency 

approximations with horizontal, vertical, and diagonal high-frequency subbands, thereby overcoming 

the limitation of high-frequency loss in traditional pooling. 

(2) A GMM classifier based on the EM algorithm is constructed to capture intra-class subcluster 

structures (e.g., morphological differences among animal variants) via multi-component probabilistic 

modeling, and to enhance the representation of heterogeneous data through log-likelihood 

optimization. By integrating frequency-domain feature preservation (via SMWP) with probabilistic 

modeling of intra-class multimodality (via GMM), the proposed method systematically addresses the 

limitations of high-frequency information loss and unimodal distribution assumptions in traditional 

CNNs. 

2. Problem formulation and modeling 

2.1 Definition of the problem 

Image classification fundamentally aims to construct a robust mapping from pixel space to 

semantic space. Its performance depends heavily on two aspects: feature extraction and distribution 

modeling. This study formalizes the core challenges of conventional CNNs from two perspectives: 
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(1) preserving frequency-domain feature integrity, and (2) modeling intra-class multimodal 

distributions. 

Let H W CX   be the input image. Its frequency-domain representation ( ) DF X   is obtained 

via a linear transformation , where D denotes the dimensionality of the frequency space. Traditional 

pooling operations downsample X into low-dimensional features Z. However, these operations 

discard high-frequency components, violating the principle of frequency-domain completeness. The 

frequency-domain energy loss can be defined as the difference between the reconstructed and original 

frequency-domain representations: 

 
    2

freq F XFZ ‖ ‖
 (1) 

As illustrated in Figure 1, both max pooling and average pooling lead to a significant loss of high-

frequency energy. This is due to the removal of subbands that encode texture edges and 

microstructural features. Such loss reduces the model’s ability to capture fine-grained distinctions. 

In the classification stage, given the low-dimensional feature vector iz , obtained through pooling 

or other dimensionality reduction techniques, the traditional Softmax classifier estimates the 

conditional probability of the image belonging to the classs k-th as: 
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Figure 1 Comparison of high-frequency information retention in traditional pooling methods 

(a) Original image, (b) Result of max pooling, (c) Result of average pooling 

Where 
jw  denotes the weight vector and 

jb the bias term for the j-th class. This formulation 

assumes that features of each class form a single, compact cluster in the feature space. However, in 

real-world scenarios, intra-class samples often exhibit multimodal structures—for example, 

morphological variations among animal subspecies or heterogeneity in lesion regions of medical 

images. 
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2.2 Modeling Process 

Based on the problem formulation above, we propose an image classification framework that 

integrates multi-scale frequency-domain features with a probabilistic mixture model. The original 

dataset is divided into mutually exclusive training sets   
1

,
U

train i i i
D x y


 and test sets 

  est
1

,
V

t j j
j

D x y


 , where the input image , H W C

i jx x    has height H, width W, and channel C. 

The corresponding label  , 1,2,i jy y K  denotes its class label. The model process is divided 

into the following two stages: 

Multi-scale Frequency-domain Feature Extraction: We design a Selective Multiscale Wavelet 

Pooling (SMWP) module , which  applies a three-level two-dimensional discrete wavelet transform 

to intermediate feature map B H W CX    , where B is the batch size. This module decomposes 

features into two parts, that is, low-frequency approximation subbands 
2 2s sB H W C

sLL    and high-

frequency detail subbands  s 1 , , ,, ,S

s HL s LH s HHD D D D . The low-frequency approximation sub-

band sLL preserves the main structure and global content of the signal, the horizontal sub-band 
,s HLD

encodes vertical edges and horizontal texture details, the vertical sub-band 
,s LHD captures horizontal 

edges and vertical texture details, and the diagonal sub-band 
,s HHD represents diagonal edges and 

complex texture details. A dynamic weight matrix  0 ,, s dW w w  is designed to adaptively fuse 

subbands, where d denotes the number of subbands. An energy correction factor   is used to 

compensate for spectral distortion caused by downsampling. The final pooled output is reconstructed 

by aggregating the weighted subbands, ensuring preservation of frequency-domain energy. The 

resulting high-dimensional feature representation is denoted by DG . 

Gaussian Mixture Probability Modeling: To enhance the discriminative capacity of the extracted 

features, we first apply Principal Component Analysis (PCA) for dimensionality reduction, followed 

by Zero-phase Component Analysis (ZCA) for whitening. This results in a compact and decorrelated 

feature vector, which we denote as 
d ( )Z d D . Unlike traditional classifiers that assume 

unimodal Gaussian distributions, our approach models intra-class multimodality. We introduce a 

Gaussian Mixture Model Classifier (GMMC), which learns class-conditional distributions, for a 

feature vector iz  from class k, its distribution follows: 
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Where kM is the number of mixture components, 
,k m is the mixture coefficient , satisfying
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Where  , , ,, ,k k m k m k m  Σμ represents the model parameters for the k-th class. 

This framework addresses two major weaknesses of traditional CNNs: (1) Loss of high-frequency 

features, mitigated by SMWP through adaptive wavelet subband fusion. (2) Inflexibility of unimodal 
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classifiers, resolved by GMMC, which models complex intra-class structures with Gaussian mixtures. 

By seamlessly combining frequency-domain preservation with probabilistic modeling, the proposed 

method provides a robust and interpretable solution for fine-grained image classification, especially 

in domains where intra-class variability is high, such as medical imaging or natural scene 

understanding. 

3. Algorithm Process 

This section introduces the proposed image classification algorithm. The model consists of two 

main components: a feature extraction module based on multi-scale frequency-domain analysis and 

a probabilistic classification module using Gaussian mixture modeling. Together, they form an end-

to-end framework designed to address limitations of conventional CNNs. The detailed 

implementation process is described below. 

3.1 Multi-scale Pooling Based on Haar Wavelets 

The SMWP module performs an S-level two-dimensional discrete wavelet transform (2D-DWT) 

on the input feature map. Multi-scale decomposition is performed using the Haar wavelet, which 

employs predefined low-pass and high-pass filters as follows: 

 Low-pass filter:  low

1
1,1

2
h  (5) 

 High-pass filter:  
1

1,1
2

high  h  (6) 

The input image B H W CX    , after passing through the convolutional layer, generates an 

intermediate feature map B H W CF    . The input feature map F undergoes S-level decomposition, 

generating low-frequency approximation subbands sLL and high-frequency detail subbands 

 s 1 , , ,, ,S

s HL s LH s HHD D D D . The decomposition process at level s is as follows: 
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The filter is applied to each column of rowL  to generate the low-frequency subband SLL : 
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subbands: 

 

s, 2

s, 2

s, 2

( )

( )

( )

   


  
   

h

h

h

T

LH row col high

T

HL row col low

T

HH row col high

D L

D H

D H

 (9) 

136



Where  represents the convolution operation, ↓2 denotes downsampling by a step of 2, 

 1,2,...,s S , and the initial input is denoted as 0LL F . In order to dynamically adjust the fusion 

ratio of the frequency band features, we introduce a learnable weight matrix  0 ,, s dW w w  , which  

consists of low-frequency weights 
0

Cw  and multi-level high-frequency weights 

  , 1, , ; , ,C

s dw s S d HL LH HH   , initialized to a vector of ones and optimized through 

backpropagation. The dynamic frequency band weighted fusion formula is: 
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Where ⊙ represents the channel-wise multiplication. 

The feature map X  is reconstructed using the inverse wavelet transform (IDWT), and energy 

correction is performed: 

    2

/ /

s,IDWT S dX L D ，  (11) 

This operation ensures energy conservation between the input and output features. The total feature 

capability of a feature map, denoted as 
2

F
F   for the input F  and 

2

F
X  for the output X , is 

defined as the sum of the squares of all elements: 
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Where ↑2 represents upsampling by a step of 2, used to eliminate the energy loss caused by 

downsampling. To compensate for this, a global energy correction factor is introduced: 
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F

F
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X

   (14) 

 poolX X   (15) 

The global energy correction factor   ensures energy consistency between the input and output 

features, yielding the final pooled feature map poolX
. This energy-preserving representation poolX

 is 

subsequently used as input for dimensionality reduction (PCA + ZCA) and probabilistic modeling 

via the Gaussian Mixture Model Classifier (GMMC), ensuring that frequency-domain details are 

retained throughout the classification pipeline. 

3.2 Probability Classification Based on Gaussian Mixture Model 

Based on the previously constructed Gaussian Mixture Model for each class’s feature distribution, 

the mixture coefficients
,k m , means 

,k m , and covariances matrices 
,k m  are optimized iteratively 

using the Expectation-Maximization (EM) algorithm. To improve computational efficiency, the 
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covariance matrices are constrained to be diagonal. The initial cluster centers  (0)

,k mu  and the 

covariance matrix (0)

,k m  for EM are determined by the K-means++ algorithm. The optimal number 

of mixture components
kM  for each class is automatically selected based on the Bayesian 

Information Criterion (BIC), validated through contrastive experiments, balancing model complexity 

and fitting accuracy.  

During testing, input images 
j testx D  are processed by the trained network to extract features 

( )j jf f x and reduce their dimensionality, resulting in low-dimensional feature vectors 
j testz Z . 

The log-likelihood of each feature vector  zlog j kp ∣  is then computed for every class-specific 

GMM. The class label is assigned by: 

    1, ,
argmax logj kk K jy p z 

 
 ∣  (16) 

The overall process of parameter estimation and model selection is illustrated in Figure 2, which 

highlights the joint end-to-end optimization of the feature extraction and classification modules. 

 

Figure 2 Research Framework Flow chart 

4. Experimental Results and Analysis 

4.1 Experimental Setup 

All experiments were conducted using the PyTorch framework. The dataset was split into training 

and testing sets using stratified sampling with a 7:3 ratio, ensuring balanced class distributions across 

both sets. Preprocessing included data standardization (zero mean and unit variance), dimensionality 

reduction via PCA, which retained 98% of the original variance and reducing feature dimensionality 

to 800, followed by ZCA whitening to eliminate feature correlations. 

Training employed the Adam optimizer with an initial learning rate of 0.001 and a momentum of 

0.9. A dynamic learning rate scheduler was used, reducing the learning rate by a factor of 0.1 every 

25 epochs. Early stopping was implemented with a patience threshold of 5 epochs to prevent 

overfitting. To improve computational efficiency and memory utilization, mixed-precision training 

(FP16) was utilized with a gradient accumulation step of 4. The batch size was set to 128. 
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4.2 Datasets 

This study adopts the CIFAR-10 and SVHN datasets to establish a comprehensive evaluation 

framework, leveraging their complementary characteristics in data distribution and scene complexity. 

CIFAR-10 serves as a standard benchmark for general image classification, consisting of 32×32 pixel 

images and uniformly distributed samples across 10 categories (e.g., airplane, automobile), with 

6,000 images per class. Its variations in illumination and occlusion make it suitable for evaluating 

theoretical performance under ideal conditions. In contrast, the SVHN dataset presents more 

challenging scenarios by using real-world house number images from street views. It exhibits natural 

lighting, non-uniform backgrounds, digit overlapping, and geometric distortions. Compared with 

controlled datasets like MNIST, SVHN exhibits significantly higher background complexity and real-

world relevance, facilitating a systematic analysis of model robustness degradation in complex 

environments. By transitioning from CIFAR-10’s standardized setting to SVHN’s noisy scenario, this 

study enables quantitative evaluation of the generalization gap between theoretical and practical 

settings, providing multi-dimensional insights for real-world applications. 

4.3 Ablation Study 

To evaluate the effectiveness of the proposed Selective Multiscale Wavelet Pooling (SMWP) 

module, we conducted an ablation study across three classical CNN architectures: AlexNet, DenseNet, 

and VGG. For each architecture, two variants were implemented: one using traditional max pooling 

(e.g., AlexNet-Max, DenseNet-Max, VGG-Max), and one incorporating the SMWP module via 

discrete wavelet transform (e.g., AlexNet-SMWP, DenseNet-SMWP, VGG-SMWP). All models 

were trained under identical settings, and their performance was evaluated on the same test sets in 

terms of classification accuracy and loss. The best-performing architecture (e.g., AlexNet-SMWP) 

was then selected as the feature extractor in the subsequent classification pipeline. 

Figures 3 and 4 illustrate the changes in test loss and accuracy for the CIFAR-10 and SVHN datasets, 

respectively. 

 

Figure 3 Comparison of Different Networks on CIFAR-10 
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Figure 4 Comparison of Different Networks on SVHN 

On CIFAR-10, the performance gain achieved by wavelet-based pooling diminishes with 

increasing network depth, as summarized in Table 1. In the shallow AlexNet, wavelet pooling 

improves accuracy by 1.73% (from 87.53% to 89.26%). In the medium-depth DenseNet, the 

improvement narrows to 0.9% (from 76.3% to 77.2%). However, in the deep VGG-16, performance 

slightly decreases by 0.3% (from 87.5% to 87.2%), potentially attributable to gradient vanishing and 

structural incompatibility between deep residual layers and the wavelet decomposition mechanism. 

In the more complex SVHN dataset, the benefits of wavelet pooling are less pronounced. For both 

shallow and medium-depth networks (AlexNet and DenseNet), accuracy differences between max 

pooling and wavelet pooling are negligible (e.g., 91.2% vs. 90.5%). However, applying wavelet 

pooling to VGG-16 results in a 0.8% accuracy drop (from 89.0% to 88.2%) and a corresponding 

increase in test loss by 0.15, further highlighting the limitations of DWT in deeper architectures. 

Table 1 Performance comparison of different pooling methods on CNN architectures 

Model CIFAR-10-Loss CIFAR-10- Acc (%) SVHN-Loss SVHN- Acc (%) 

AlexNet-DWT 0.25±0.05 89.26 ±1.73 0.087±0.005 91.2±0.8 

AlexNet-Max 0.3±0.05 87.53±1.2 0.089±0.006 90.5±1.1 

DenseNet-DWT 0.4±0.02 77.2±0.9 0.09±0.002 89.5±0.6 

DenseNet-Max 0.42±0.02 76.3±0.8 0.092±0.003 88.2±0.5 

VGG-DWT 0.5±0.02 87.2±0.3 -- -- 

VGG-Max 0.48±0.02 87.5±0.4 -- -- 

Based on these findings, AlexNet with wavelet pooling was selected as the backbone feature 

extractor for feature extraction. Its final classification layer was removed, and the resulting high-

dimensional features were reduced via PCA, preserving 98% of the variance to balance 

expressiveness and computational cost. GMM was then trained on the reduced features. The optimal 

number of mixture components per class was determined to be three, selected through a grid search 

guided by the Bayesian Information Criterion (BIC). During inference, classification was performed 

by calculating the log-likelihood of each test sample under the GMMs, and assigning the label 

corresponding to the highest likelihood. 

The proposed hybrid method (AlexNet-SMWP + GMMC) achieved classification accuracies of 

97.17% on CIFAR-10 and 99.98% on SVHN, demonstrating both high accuracy and strong 

generalization. These results offer practical insights for lightweight model design: wavelet pooling is 

most beneficial in shallow networks, while deeper architectures might require residual connections 

or hybrid integration strategies to realize similar gains. 
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Figure 5 Confusion matrices for (a) CIFAR-10 and (b) SVHN datasets 

Testing across the CIFAR-10 and SVHN datasets confirms that integrating wavelet pooling with 

GMM classification significantly enhances model performance. On CIFAR-10, The confusion 

matrices in Figure 5(a)-(b)indicates over 950 correctly classified samples per class, resulting in an 

overall accuracy of 97.17%, a substantial improvement over the traditional AlexNet with max pooling 

(89.26%). All key metrics—precision, recall, and F1-score—exceed 0.97, with misclassifications are 

sparse and predominantly occurring between semantically similar categories. 

On SVHN, the model demonstrates exceptional robustness, achieving an accuracy of 99.98% with 

over 99% of samples correctly classified. This significantly outperforms the 94.85% accuracy 

achieved by AlexNet with wavelet pooling alone. The results validates the synergistic effect of 

wavelet pooling and GMM: the former preserves high-frequency discriminative features, while the 

latter effectively models complex, multimodal class distributions, enabling stable classification under 

real-world conditions. 

 

Figure 6 Probability Density Functions of GMM Components 
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Figure 7 Heatmap of GMM Component Weights 

Further analysis of the GMM component distributions on the CIFAR-10 dataset provides 

additional insight into intra-class variability. The estimated probability density functions (PDFs) in 

Figure 6 closely match with empirical histograms. For example, in class 0, the third Gaussian 

component dominates the overall distribution, as indicated by the highest weight (darkest region) in 

the corresponding heatmap in Figure 7. This demonstrates that the GMM successfully captures multi-

modal characteristics within each class, assigning adaptive component weights to different 

components. 

While minor local fitting inaccuracies may exist, the overall model achieves a consistent 

classification accuracy of 97.17%, confirming the synergy of wavelet pooling and GMM modeling: 

the former enhances spatial-frequency feature representation, while the latter provides a probabilistic, 

flexible framework for classification. Combined, collectively they sharpen decision boundaries and 

enhance robustness across diverse environments. 

Table 2 Model Comparison Table 

Accuracy (%)  AlexNet-max AlexNet-SMWP AlexNet-SMWP-GMMC 

CIFAR-10 87.53 89.26 97.17 

SVHN 95.05 94.85 99.98 

The quantitative comparisons in Table 2 demonstrate that on the CIFAR-10 dataset, the 

combination of Discrete Wavelet Transform (DWT) pooling and Gaussian Mixture Model 

classification significantly enhanced classification performance. The traditional AlexNet with max 

pooling achieved an accuracy of 87.53%, replacing max pooling with DWT improved it to 89.26%, 

and further integrating a GMM classifier boosted accuracy to 97.17%. This validates the 

complementary benefits of frequency-domain detail preservation and multi-modal distribution 

modeling. 

On the SVHN dataset, while DWT alone led to a slight performance drop (95.05% → 94.85%), 

its combination with GMM resulted in a dramatic accuracy increase to 99.98%, demonstrating the 

method’s strong adaptability to complex data distributions. 

5. Conclusions and Future Work 

In this paper, we propose a novel classification framework integrating Selective Multiscale 

Wavelet Pooling (SMWP) with a Gaussian Mixture Model Classifier (GMMC), which efficiently 

addresses the loss of high-frequency information during pooling and the limitation of Softmax 
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classifiers in modeling complex intra-class data distributions. Experiments on CIFAR-10 and SVHN 

show the method achieves accuracies of 97.17% and 99.98%, improving by 7.32% and 4.93% over 

baseline MaxPooling + Softmax models. The SMWP module reduces high-frequency energy loss by 

58% on CIFAR-10. On the classifier side, the GMMC models intra-class multimodality and reduces 

the misclassification rate by 39.2% under complex conditions. Ablation studies indicate the SMWP 

module significantly improves performance on shallow networks (e.g., a 1.73% gain on AlexNet). 

Despite its strong performance, the current framework faces limitations in computational efficiency 

and scalability to multi-task scenarios.  

Future research will explore the following directions: (1) Developing lightweight wavelet 

decomposition structures to mitigate the current 18.7% increase in FLOPs, enabling deployment in 

resource-constrained environments. (2) Exploring cross-modal feature fusion mechanisms to enhance 

the framework’s applicability in challenging domains such as low-light image enhancement, medical 

imaging, and cross-domain retrieval. (3) Investigating variational inference methods for more 

efficient GMM parameter estimation, to facilitate deeper integration of probabilistic modeling within 

end-to-end deep learning frameworks, especially for fine-grained classification tasks. 

Overall, this framework integrates frequency-domain analysis with probabilistic modeling, 

offering a promising approach for enhancing robustness and interpretability in image classification. 
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