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Abstract: Fatigue driving is a major contributing factor to traffic accidents. Accurately and 

real-time identification of driver fatigue has become a research priority in the field of 

intelligent driving safety. This paper proposes a face recognition method that integrates 

YOLOv8 and FaceMesh to achieve high-precision fatigue driving detection. This method 

first uses the YOLOv8 model to rapidly locate the driver's face. Furthermore, the FaceMesh 

model is introduced to extract facial key points. Fatigue behavior features such as the eye 

aspect ratio (EAR) and mouth opening/closing ratio (MAR) are calculated, and state 

discrimination is performed using time-series statistical logic. Experimental results show 

that this method achieves 93.4% accuracy, 91.6% recall, and 92.5% F1-score on a public 

dataset, outperforming the traditional YOLOv5 and keypoint method combination. It also 

maintains robustness in complex scenarios such as nighttime and occlusion. These results 

demonstrate the effectiveness and practicality of this method in fatigue driving detection, 

providing a viable technical path for intelligent vehicle monitoring systems. 

1. Introduction 

With the continuous development of intelligent transportation and in-vehicle safety systems, 

driver fatigue has become a major factor in traffic accidents. According to statistics from the World 

Health Organization and transportation departments of various countries, driver fatigue is a 

significant contributing factor to highway accidents, and its harmful effects cannot be ignored [1]. 

Traditional fatigue detection methods rely on physiological sensors (such as EEG, ECG, and EMG) 

or driving behavior parameters (such as steering wheel deviation and braking frequency) [2]. While 

these methods offer certain advantages in accuracy, practical deployments face challenges such as 

inconvenience, low user acceptance, and poor real-time performance. Therefore, achieving non-

contact, real-time fatigue detection using computer vision technology has become a hot research 

topic [3]. 

In recent years, deep learning-based visual detection technology has made significant progress in 
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driving behavior analysis. Facial recognition, as an important means of obtaining driver status 

information, plays a key role in fatigue behavior detection. By dynamically monitoring the driver's 

eyes and mouth, it is possible to automatically identify fatigue characteristics such as blinking, eye 

closure, and yawning [4]. The widespread application of object detection algorithms in this field 

provides strong support for real-time detection. The YOLO (You Only Look Once) family of 

algorithms, in particular, is widely used in tasks such as face and expression detection due to its 

high speed and high accuracy. YOLOv8, the latest version of this family, boasts significant 

improvements in both accuracy and real-time performance, providing a superior foundation for 

fatigue detection [5]. 

Although YOLOv8 performs well in facial region detection, it still suffers from insufficient 

resolution and less precise feature localization when detecting smaller local areas, such as the eyes 

and mouth. To address this challenge, this paper introduces the FaceMesh model for auxiliary 

feature extraction. FaceMesh regresses 468 3D facial landmarks to achieve high-precision 

localization of key areas such as the eyes and mouth. Fusion of yolov8 and facemesh allows yolov8 

to quickly locate the facial ROI, reducing the FaceMesh computational scope and improving overall 

efficiency. Furthermore, FaceMesh refines YOLO detection results, thereby improving the accuracy 

of local fatigue feature detection. This fusion strategy balances detection speed with enhanced local 

feature extraction, demonstrating promising practical application prospects [6]. 

In summary, this paper aims to design and implement a facial fatigue feature detection method 

based on the fusion of YOLOv8 and FaceMesh for use in fatigue driving status recognition. By 

extracting and analyzing key metrics such as eye closure (EAR) and mouth opening/closing ratio 

(MAR), combined with a temporal behavior judgment mechanism, this method achieves high-

precision fatigue status recognition. This paper will validate the effectiveness of this method using 

public datasets and real-world acquisition scenarios, analyzing its robustness under varying lighting 

and occlusion conditions, further promoting the practical and intelligent development of fatigue 

driving detection technology [7]. 

2. Related Work 

As a crucial component of intelligent driving safety systems, driver fatigue detection has been 

extensively researched and gradually applied in real-world traffic scenarios. Existing driver fatigue 

detection methods can be broadly categorized into three categories: those based on physiological 

signals, those based on driving behavior, and those based on visual information. While the first two 

methods demonstrate high accuracy under specific conditions, they typically require additional 

hardware for data acquisition, resulting in high costs and potential driver discomfort [8]. In contrast, 

visual-based methods are gaining increasing attention due to their non-contact and convenient 

nature. Especially with the advancement of embedded computing power, computer vision is 

becoming the mainstream technology for driver fatigue detection [9]. 

In the field of visual fatigue detection, facial recognition and local feature analysis are key 

components for identifying fatigue behavior. Research has shown that fatigue is often accompanied 

by facial behaviors such as eye closure, increased blinking frequency, and yawning with an open 

mouth. Therefore, detecting the state of the eyes and mouth has become a crucial approach. 

Traditional image processing methods, such as feature detection based on Haar cascades or 

HOG+SVM, are limited by their robustness and real-time performance, and struggle to adapt to 

complex lighting and posture variations. In recent years, deep learning methods have become 

mainstream. The combination of object detection and facial landmark localization is particularly 

well-suited for detailed analysis of the eye and mouth regions in fatigue detection, improving 

detection stability and accuracy [10]. 
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The YOLO family, a representative method in the field of object detection, strikes a good 

balance between real-time performance and detection accuracy. From YOLOv3 to YOLOv8, the 

algorithm architecture has been continuously optimized, resulting in continuous improvements in 

detection accuracy [11]. YOLOv8 introduces a more flexible anchor-free mechanism, an adaptive 

multi-scale feature fusion architecture, and a lightweight design, making it particularly suitable for 

real-time face detection in in-vehicle scenarios. Numerous studies have applied YOLO to driver 

monitoring systems, achieving rapid localization of facial regions. However, its detection accuracy 

for small objects such as eyes and mouths remains limited, especially in complex backgrounds and 

with partial occlusion, which can lead to false or missed detections [12]. 

To further improve the accuracy of local facial feature detection, facial landmark localization 

models such as FaceMesh have been widely adopted. FaceMesh, proposed by Google, can predict 

468 3D facial landmarks from a single frame [13]. It offers extremely high resolution and real-time 

performance, making it suitable for facial behavior analysis [14]. Some research has used FaceMesh 

to calculate the eye aspect ratio (EAR) and mouth opening/closing ratio (MAR) to identify fatigue 

behaviors such as blinking and yawning. Combining YOLO with FaceMesh is a relatively new 

approach with great potential for exploration and application. This paper builds on this approach by 

designing a model architecture that integrates detection and keypoint localization, providing a more 

accurate and robust solution for fatigue state recognition [15]. 

3. Method Design 

3.1. Overall System Architecture 

Figure 1 shows the overall process of the fatigue driving detection system proposed in this paper. 

The system consists of four main modules: video input acquisition, facial region detection, key 

point extraction and fatigue feature analysis, and state determination and output. First, a camera 

captures a video stream of the driver inside the vehicle. The YOLOv8 model is used to detect the 

facial region. Based on this, FaceMesh extracts facial key points. The eye closure (EAR) and mouth 

opening/closing ratio (MAR) are then calculated. Fatigue status is then determined by combining 

temporal features. 

 

Figure 1: System overall structure diagram 

3.2. YOLOv8 Face Detection Module 

YOLOv8, the latest version of the object detection algorithm, utilizes an anchor-free design and 

an improved feature fusion module, significantly improving detection accuracy and inference speed. 

Its network structure primarily consists of a backbone, neck, and head. This article uses YOLOv8 
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for real-time face detection in vehicle-mounted scenarios. 

The detection target is the driver's face area, and the network output is a bounding box (x, y, w, h) 

and a confidence score σ. Yolov8's advantages in this task are: 

It supports lightweight deployment and is suitable for in-vehicle edge devices. 

Multi-scale detection enhances response to small objects (such as eyes and mouths). 

Combined with FaceMesh, it effectively narrows the search area and improves overall efficiency. 

3.3. FaceMesh Key Point Extraction Module 

To further accurately extract subtle motion features in the eye and mouth regions, this paper 

introduces Google's facemesh model, which predicts 468 3D facial key points based on a regression 

strategy. After YOLOv8 detects a face, it only extracts key points in the ROI region, reducing 

redundant computations. 

As shown in Figure 2, FaceMesh can accurately mark the edge points of the eyes and mouth, 

facilitating subsequent feature calculations. 

 

Figure 2: Schematic diagram of facial key points extracted by FaceMesh 

3.4. Fatigue Behavior Feature Extraction 

This study focuses on extracting two key visual features associated with fatigue: 

Eye aspect Ratio (EAR): EAR is used to measure the openness of the eyes, calculated using the 

following formula: 
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Where p1 to p6 represent six selected facial landmarks around the eyes extracted by FaceMesh, 

and ∥⋅∥denotes the Euclidean distance. When EAR falls below a certain threshold (e.g., 0.25) and 

lasts for a continuous number of frames, it can be judged as an eye closure behavior. 

Mouth Aspect Ratio (MAR): MAR reflects mouth opening behavior such as yawning. It is 

calculated using the following formula: 
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Where p11 to p20are the selected key points around the mouth region. If MAR stays above a 

certain threshold (e.g., 0.7) for several frames, it can be recognized as a yawning behavior. 
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3.5. Fatigue State Judgment Logic 

Based on the extracted features, the fatigue judgment logic in this paper is defined as follows: 

If the eAR value remains below a predefined threshold for more than  consecutive frames, an 

eye-closure warning is triggered; 

If the Mar value stays above a predefined threshold for more than  consecutive frames, a yawn 

warning is triggered; 

If either of the above two conditions occurs frequently (e.g., more than three times) within a 

given time window T, the system determines that the driver is in a state of fatigue. 

A sliding window mechanism is adopted to continuously monitor the temporal variation of 

fatigue behaviors. This helps avoid transient misjudgments caused by momentary expressions or 

noise, and significantly improves the temporal robustness of the overall model. 

4. Experimental Design and Result Analysis 

4.1. Experimental Environment and Tool Configuration 

This chapter aims to verify the effectiveness of the proposed fatigue driving detection method 

based on the fusion of YOLOv8 and FaceMesh. By constructing an experimental environment, 

selecting a public dataset, setting evaluation metrics, and comparing it with other representative 

methods, we comprehensively evaluate the performance of this method in fatigue feature extraction 

and state recognition. 

The experiments were conducted on a Windows 11 operating system and an NVIDIA RTX 3060 

GPU platform. The development language was Python 3.10, and the deep learning framework was 

PyTorch 2.0. The detection model was implemented based on Ultralytics YOLOv8. Facial 

landmarks were extracted using the FaceMesh module of MediaPipe. Image processing and 

visualization were performed using OpenCV and Matplotlib. 

4.2. Dataset and Preprocessing 

This study selected two public datasets for model training and evaluation: NTHU-DDD and 

YawDD. NTHU-DDD contains video data of multiple drivers in real-world in-car environments, 

covering typical fatigue behaviors such as yawning, blinking, and eye closure. The YawDD dataset 

focuses on open-mouth yawning, making it suitable for MAR calculation and validation. All videos 

were extracted frame by frame and scaled to a uniform 640×480 resolution. Human annotation tools 

were used to construct face box labels for training the YOLOv8 model. To enhance data diversity, 

image augmentation operations were also introduced, including random brightness adjustment, 

mirror flipping, and blur perturbation. 

4.3. Evaluation Indicators and Calculation Methods 

To objectively evaluate detection performance, this article uses accuracy, recall, F1 score, and 

frame rate (FPS) as key metrics. Accuracy measures overall recognition accuracy, recall indicates 

fatigue behavior coverage, F1 score comprehensively reflects the balance between precision and 

recall, and FPS evaluates the model's real-time processing capabilities. The mathematical 

expressions for these metrics are as follows: 

 Accuracy
TP TN

TP TN FP FN



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 (3) 
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Inference speed is estimated by the average frame processing time, expressed in frames per 

second (FPS). 

4.4. Experimental Results and Comparative Analysis 

In fatigue signature detection experiments, the system first extracts eye and mouth key points 

using FaceMesh, calculates EAR and MAR values, and uses these to identify eye closure and 

yawning behaviors. Typical results show that when a driver enters a fatigued state, the EAR value 

significantly drops below 0.21, while the MAR value rises above 0.7. As shown in Figure 3, the 

EAR and MAR exhibit distinct temporal variations between fatigued and non-fatigued states, 

providing a reliable basis for fatigue assessment. 

 

Figure 3: EAR and MAR change curves over time 

Furthermore, this paper compared the performance of three model combinations on the test set: 

YOLOv5 combined with manual rules, YOLOv8 combined with traditional keypoint extraction 

methods, and the proposed yolov8+FaceMesh method. The experimental results are shown in Table 

1. The proposed method significantly outperforms the comparison group in terms of accuracy, 

recall, and F1 value. While maintaining high detection accuracy, the inference speed remains at 

39.8 FPS, meeting the requirements of real-time processing. 

Table 1: Performance of three models 

Model Combination Accuracy Recall F1 Score FPS 

YOLOv5 + Manual Rules 82.3% 78.5% 80.1% 38.2 

YOLOv8 + Traditional Keypoints 88.1% 83.9% 85.9% 41.7 

YOLOv8 + FaceMesh (Proposed) 93.4% 91.6% 92.5% 39.8 

To further validate the model's stability in real-world scenarios, this study designed multi-

scenario robustness tests, including daytime and nighttime conditions, partial occlusion, wearing 

masks, and blurred images. As shown in Figure 4, the YOLOv8+FaceMesh method demonstrates 
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good robustness in a variety of complex environments, especially in low light and light occlusion 

conditions, maintaining an accuracy rate of over 90% for fatigue detection. 

 

Figure 4: Histogram of model performance in each scenario 

The proposed fusion method demonstrates excellent fatigue feature extraction accuracy, state 

recognition accuracy, and real-time performance, demonstrating its potential for application in 

intelligent driver monitoring systems. Compared to traditional methods, this method balances 

detection speed and accuracy, and exhibits good environmental adaptability, providing a practical 

foundation for subsequent engineering deployment. 

5. Conclusion and Outlook 

This paper proposes a facial fatigue detection method that integrates YOLOv8 and FaceMesh. 

This method aims to address the shortcomings of traditional visual methods in terms of insufficient 

facial region detection accuracy and weak ability to recognize subtle facial movements. By using 

YOLOv8 to efficiently and accurately locate facial regions and leveraging the FaceMesh model to 

extract detailed facial landmark information, the system achieves precise calculation of eye closure 

(EAR) and mouth opening (MAR). Incorporating a temporal logic judgment mechanism, the system 

effectively identifies driver eye closure and yawning, enabling real-time fatigue detection. 

Experimental results demonstrate that this method outperforms traditional model combinations in 

terms of accuracy, recall, and F1 score. It also demonstrates robustness and real-time performance 

in a variety of complex scenarios, demonstrating strong practical application value. 

This research demonstrates significant innovation in its method fusion design, combining 

YOLOv8 with the high-density keypoint regression model FaceMesh under an anchor-free 

detection mechanism for the first time, achieving a balanced balance between overall detection 

efficiency and local feature extraction accuracy. By setting EAR and MAR thresholds and 

incorporating a sliding window strategy, the model can quickly identify potential fatigue states, 

avoiding both false positives and false negatives. Furthermore, by constructing a multi-scenario test 

environment, the method's adaptability to complex conditions such as occlusion, low light, and 

blurred images was verified, further demonstrating its scalability and potential for engineering 

deployment. 

While this method has achieved promising results in many areas, several areas warrant further 

research. First, the currently used FaceMesh model relies on RGB images; future considerations 

include the introduction of infrared or depth cameras to enhance nighttime detection capabilities. 
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Second, the fatigue judgment logic is primarily based on fixed thresholds and static rules; the 

introduction of time series models (such as LSTM and Transformer) could enhance temporal 

modeling capabilities and discriminative flexibility. Finally, given the complex dynamics inherent 

in real-world driving environments, the construction of larger, real-world in-vehicle datasets is 

needed to advance this method towards higher accuracy and enhanced generalization. 
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