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Abstract: To improve the ultra-short-term forecasting accuracy of wind power series, this 

paper proposes a combined forecasting model—ICEEMDAN-Informer-BiGRU-Attention—

that integrates improved modal decomposition with deep learning modeling to address its 

strong non-stationarity and complex temporal structure. This model first decomposes the 

wind power series using an improved ensemble empirical mode decomposition 

(ICEEMDAN) algorithm to obtain multiple subsequences with clear frequency domain 

features and reduced volatility. It then employs an informer architecture to capture long-term 

dependencies within the series, introduces a bidirectional gated recurrent neural network 

(BiGRU) to model short-term dynamic features, and incorporates a multi-head self-attention 

mechanism to further enhance the representation of key time steps. Experimental results on 

a real wind farm dataset demonstrate that the proposed model outperforms mainstream 

models such as LSTM, GRU, and informer in terms of RMSE, MAE, and R². Its predictions 

are closer to real data, with more concentrated residual distributions, resulting in optimal 

overall performance. This validates the model's effectiveness and engineering feasibility in 

wind power forecasting scenarios. 

1. Introduction 

Driven by the "dual carbon" goals and energy structure transformation, wind power, as a green 

and clean renewable energy source, is gradually becoming a vital component of the power system. 

However, wind power output is significantly affected by meteorological conditions, exhibiting strong 

volatility and non-stationarity, posing severe challenges to grid scheduling and stable operation. To 

improve wind power grid integration and power system flexibility, research on high-precision, ultra-

short-term wind power forecasting is crucial. 

In recent years, with the widespread application of deep learning in time series modeling, models 

such as LSTM, GRU, and TCN have achieved promising results in wind power forecasting [1]. 

However, these methods still face challenges such as model lag and information loss when dealing 

with typical nonlinear characteristics such as high-frequency fluctuations and sudden changes, 
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limiting their forecasting performance [2]. Furthermore, data-driven models are highly sensitive to 

input data quality, and wind power series often contain noise, non-stationary trends, and multi-scale 

periodicity, further limiting the expressiveness and generalization capabilities of deep models [3]. 

To address these issues, this paper proposes a hybrid forecasting model that combines improved 

ensemble empirical mode decomposition (ICEEMDAN) decomposition, Informer encoding, BiGRU 

sequence modeling, and a multi-head attention mechanism. First, an ICEEMDAN is used to 

decompose the original wind power series into multiple, more stationary subsequences, enhancing 

the model's ability to perceive different frequency components [4]. Subsequently, an informer 

architecture is introduced to exploit long-term temporal dependencies, combined with a BiGRU to 

enhance the memory representation of historical context [5]. A multi-head self-attention mechanism 

is used to further optimize the representation weights of key time steps in the series, improving the 

responsiveness and discriminative accuracy of the prediction results [6]. 

This paper experimentally validates the model using real wind farm operating data and compares 

it with several mainstream models. The experimental results demonstrate that the proposed 

ICEEMDAN-Informer-BiGRU-Attention model achieves excellent performance across multiple 

evaluation metrics, effectively improving prediction accuracy and alleviating model lag. This 

research provides a highly robust and accurate solution for ultra-short-term wind power forecasting 

and offers new insights and approaches for modeling non-stationary complex time series. 

2. Overall Structure of the Model 

To improve the accuracy and stability of wind power forecasting, this paper proposes a combined 

model architecture based on the ICEEMDAN-Informed BiGRU multi-head attention network. This 

model fully integrates the advantages of signal decomposition, deep time series modeling, and 

attention mechanisms to systematically model the non-stationary, sudden, and multi-scale dependent 

characteristics of wind power data. The overall model structure is shown in Figure 1 and mainly 

consists of three components: a data decomposition module, a deep modeling module, and a result 

reconstruction module.  

 

Figure 1 System overall structure diagram 

First, during the data preprocessing stage, the ICEEMDAN method is used to decompose the 

original wind power sequence, yielding several intrinsic mode functions (IMFs) and a residual 

sequence. ICEEMDAN, as a highly stable, multi-scale analysis method, effectively mitigates the 

modal aliasing and endpoint effects inherent in traditional EMD-based methods, resulting in 

subsequences with improved stationarity and frequency separation [7]. This decomposition strategy 

not only reduces modeling complexity but also enhances the adaptability of downstream prediction 

models to different characteristic frequency bands [8]. 
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During the deep modeling phase, each IMF subsequence is input into the Informer encoder 

structure for preliminary long-term temporal feature extraction [9]. The Informer, with its sparse 

attention mechanism and efficient parallel modeling capabilities, accurately captures long-range 

dependencies while keeping model complexity manageable. The temporal features output by the 

Informer are then fed into a Bidirectional Gated Recurrent Neural Network (BiGRU) for dynamic 

contextual modeling, integrating historical and future trend information to enhance the completeness 

and sensitivity of the prediction [10]. 

To further enhance the model's ability to detect key periods of wind power fluctuations, this paper 

introduces a multi-head self-attention mechanism after the BiGRU to weightedly optimize the feature 

representation at each time step [11]. This parallel multi-head attention structure allows the model to 

focus on key information in the sequence from different subspaces, thereby improving the overall 

prediction discriminability and local response accuracy. The output of each branch is then fused 

through a fully connected layer. Finally, the predictions from each branch are weighted and 

superimposed to reconstruct the final predicted wind power value [12]. 

This combined forecasting framework, employing a "decomposition-perception-modeling-

weighting" strategy, builds a wind power forecasting system capable of handling both non-

stationarity and long-term dependencies. Compared to traditional single neural network architectures, 

this model significantly improves forecasting performance and generalization capabilities in complex 

wind power scenarios while maintaining interpretability. 

3. Key Modules and Principles of the Model 

This chapter details the core building blocks and principles of the proposed combined model, 

including the improved ICEEMDAN algorithm, the Informer encoding structure, BiGRU, and Multi-

head Self-Attention. Each module is responsible for sequence preprocessing, time series modeling, 

and key feature extraction, collectively forming the foundation for ultra-short-term wind power 

forecasting. 

3.1. Principle of ICEEMDAN Decomposition 

ICEEMDAN is an advanced signal decomposition technique developed based on the EMD family 

of methods [13]. By iteratively adding noise and performing adaptive ensemble averaging, it 

effectively overcomes issues such as mode mixing and endpoint effects inherent in traditional EMD, 

enabling the decomposition of a complex wind power sequences X(t) into a set of more stable IMFs 

and a residual component: 
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Where 𝐼𝑀𝐹𝑖(𝑡) denotes the i-th intrinsic mode function and r(t) represents the residual term. 

During each iteration, ICEEMDAN adds noise to the current residual and performs ensemble 

averaging to ensure that the extracted IMFs have stable spectral properties. The calculation formula 

is as follows: 
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Figure 2 shows the process flow of ICEEMDAN decomposition. 
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Figure 2 ICEEMDAN decomposition flow chart 

3.2. Informer Long-term Dependency Modeling Mechanism 

The Informer is an efficient Transformer variant designed specifically for long-sequence 

forecasting. By introducing the ProbSparse Attention mechanism, it significantly reduces 

computational complexity while retaining the ability to model critical time steps. It consists of two 

parts: an encoder and a decoder, designed to capture long-term dependencies in wind power 

sequences [14]. 

The Informer encoder consists of multiple stacked sparse self-attention layers and convolutional 

layers. Its core attention mechanism is ProbSparse Attention, which only retains the key position of 

the top-u score in each query for calculation. 

The attention weight is calculated as follows: 

 Attention( , , ) softmax
k
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In Informer, only queries that meet the following conditions are calculated: 

  Top- ofQ i i iq Q u q K  ∣  (4) 

This effectively improves training and inference efficiency while preserving long-term context 

representation. 

The decoder part introduces embedded position encoding, convolutional smoothing layer and 

linear mapping modules to map sequence features to the downstream BiGRU network to form the 

prediction basis. Figure 3 shows the schematic diagram of the Informer Encoder-Decoder structure. 

 

Figure 3 Informer Encoder-Decoder structure diagram 
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3.3. BiGRU Bidirectional Cycle Modeling Principle 

The BiGRU architecture builds upon the standard GRU by introducing two hidden state sequences, 

one forward and one backward, to enhance the model's ability to model sequential context [15]. 

The unidirectional state update of the standard GRU is as follows: 
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Where 𝑧𝑡 is the update gate, 𝑟𝑡 is the reset gate, and ⊙ denotes element-wise multiplication. 

In BiGRU, both forward and backward hidden states are computed simultaneously: 

 1 1( , ), ( , )t t t t t th GRU x h h GRU x h  
 (6) 

The final hidden representation is obtained by concatenating the two directions: 

 ;t t th h h 
 

 (7) 

This bidirectional representation enhances the model’s ability to learn complex time dependencies, 

particularly useful for sequences with strong temporal correlations and structural fluctuations. 

3.4. Multi-head Self Attention 

To further enhance the model's ability to focus on critical time steps, this paper introduces the 

classic multi-head self-attention mechanism from the Transformer. This mechanism enhances the 

capture of diverse feature patterns by learning attention across multiple independent subspaces. 

The calculation for each attention head is as follows: 

 ( , , )Q K V

i i i ihead Attention QW KW VW  (8) 

The overall multi-head attention is: 

  1MultiHead( , , ) Concat head , ,head O

hQ K V W   (9) 

where 𝑄, 𝐾, 𝑉 are the query, key, and value matrices respectively, and 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , 𝑊𝑖

𝑉  are the 

projection matrices for the 𝑖-th head. 

 

Figure 4 Multi-head attention structure diagram 

Through the multi-head mechanism, the model can simultaneously focus on short-term 
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fluctuations, trend changes, and cyclical patterns, thereby improving the overall prediction and 

discrimination capabilities. Figure 4 shows the multi-head attention structure diagram. 

4. Experimental Design and Comparative Analysis 

To validate the effectiveness of the proposed ICEEMDAN-Informer-BiGRU-Attention combined 

model in ultra-short-term wind power forecasting, this paper constructed a comprehensive 

experimental process, using real wind farm data for training and testing. The model was then 

compared and analyzed with various mainstream forecasting models. The experimental process 

encompassed data processing, parameter setting, evaluation metric design, and results visualization. 

4.1. Dataset Description 

This paper uses a publicly available wind farm dataset from Galicia, Spain. This dataset, collected 

from multiple actual wind farms, covers the period from January 1 to December 31, 2016, with a 

recording frequency of 10 minutes. The raw data includes wind power (the target variable), wind 

speed, wind direction, and other meteorological variables. 

In this experiment, only the historical wind power series is used as input features to focus on 

validating the time series' predictive capabilities. The processing flow is as follows: outliers and 

missing values are removed; samples are constructed using a sliding window method with an input 

length of 24 and a prediction step of 1; all data are normalized to the interval [0, 1]. 
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Data partitioning: The training, validation, and test sets are divided in a 7:1:2 ratio, resulting in a 

total of 52,123 valid samples. 

4.2. Model Parameters and Training Settings 

The model was trained using the Adam optimizer. The initial learning rate was set to 0.005, which 

was decayed every 30 epochs (multiplied by 0.2). The total number of training epochs was set to 100, 

and the batch size was 64. 

The parameters of each module are shown in Table 1 below: 

Table 1 Model Hyperparameter Configuration 

Module Configuration 

ICEEMDAN 
IMF number = 8, noise strength ε = 0.2, 

ensemble size N = 100 

Informer 
Encoder layers = 2, heads = 4, hidden 

dimension = 256 

BiGRU Hidden units = 64, bidirectional structure 

Attention Head count = 4, output dimension = 128 

4.3. Evaluation Metrics 

Considering the existence of zero-value points in wind power forecasting, this paper selects the 

following three robustness indicators to measure the forecast performance: 

Root mean square error (RMSE): 
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Mean absolute error (MAE): 
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Coefficient of determination: 
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4.4. Experimental Results and Analysis 

Table 2 shows the comparison results of the indicators of each model on the test set: 

Table 2 Performance of each model on the test set 

Model RMSE (kW) MAE (kW) R² 

LSTM 108.12 73.48 0.9550 

GRU 105.76 71.03 0.9573 

Informer-only 96.32 62.15 0.9624 

ICEEMDAN-GRU 53.21 40.68 0.9862 

ICEEMDAN-Informer-BiGRU 31.58 21.84 0.9946 

Our Model 17.11 11.69 0.9987 

 

Figure 5 Comparison of prediction results of different models 

Figure 5 shows a comparison of wind power prediction results from different prediction models 

on the test set. As can be seen from the figure, the traditional LSTM and GRU models exhibit certain 

errors in fitting complex time series variations, resulting in large overall fluctuations in the prediction 

curves. The informer-only model, due to its stronger temporal modeling capabilities, improves the fit. 

The ICEEMDAN-GRU model, after introducing a decomposition mechanism, significantly reduces 

local fluctuation errors. Notably, the ICEEMDAN-Informer-BiGRU-Attention model proposed in 
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this paper performs most closely to the true value across the entire curve. Its predictions are highly 

consistent with the actual wind power in terms of peak and valley locations and trends, demonstrating 

its superiority in capturing key time series features. This model effectively reduces noise interference 

and leverages its multi-scale structure and attention mechanism to enhance model fitting. 

Figure 6 shows the residual error distribution of different prediction models on the test set. As can 

be seen from the figure, the error distribution of the traditional LSTM and GRU models is relatively 

dispersed, with many outliers occurring off-center. While the informer-only and ICEEMDAN-GRU 

models improve error diffusion, they still exhibit some offset and distribution width. In contrast, the 

ICEEMDAN-Informer-BiGRU-Attention model proposed in this paper exhibits the most 

concentrated residual distribution, exhibiting a Gaussian peak centered at zero error, demonstrating 

greater predictive stability and robustness. It performs particularly well near extreme points, 

effectively reducing the risk of overfitting and large prediction errors. 

 

Figure 6 Residual distribution plot 

5. Conclusion and Outlook 

To address the challenges of non-stationarity, strong volatility, and multi-scale dependencies in 

wind power series, this paper proposes a combined prediction framework—the ICEEMDAN-

Informer-BiGRU-Attention model—that integrates improved modal decomposition and deep 

modeling. This model synergistically optimizes both time series structure and feature extraction, 

significantly improving the accuracy and stability of ultra-short-term wind power forecasting. 

Specifically, the ICEEMDAN decomposition module effectively reduces the randomness and 

modal aliasing of the raw wind power data through multi-scale signal reconstruction. The Informer 

encoder utilizes a sparse attention mechanism to enhance the modeling of long-term dependencies. 

The BiGRU subnetwork further introduces a bidirectional temporal structure to capture contextual 

variations. The multi-head self-attention mechanism strengthens the model's ability to perceive 

critical time-step information, enabling deep fusion of multi-source features. The combined effect of 

these four factors gives the model greater expressiveness and robustness. 

Experimental validation on real wind farm data demonstrates that the proposed model significantly 

outperforms competing models in key metrics such as RMSE, MAE, and R². The RMSE metric is 

reduced by over 80% compared to LSTM, with the residual distribution being the most concentrated 

and exhibiting strong error stability. Ablation experiments further demonstrate that each module plays 

a key role in overall forecasting performance, with the introduction of ICEEMDAN and the attention 

mechanism significantly improving the model's generalization capabilities. 

86



In summary, the proposed model provides a novel high-precision and highly stable modeling 

framework for ultra-short-term wind power forecasting, demonstrating promising engineering 

applications. Future work could consider incorporating external meteorological variables and multi-

site collaborative modeling mechanisms to enhance the model's multi-source adaptability and cross-

scenario scalability. 
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