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Abstract: The current research mainly focuses on the application of active disturbance 

rejection controller (ADRC) in the motor control field, but its parameter tuning method is 

still highly dependent on experiences or optimization algorithms, which has the 

shortcomings of slow convergence speed and easy to falling into the local optimal result. In 

this paper, a hybrid optimization strategy combining the global search ability of genetic 

algorithm (GA) and the local optimization advantages of particle swarm optimization (PSO) 

is proposed to achieve parameter tuning of ADRC. In the simulation, compared with the 

performance of genetic algorithm, particle swarm optimization and dynamic weight 

adjustment hybrid algorithm under parameter disturbance and load interference, the hybrid 

algorithm has the fastest convergence and the best global search, which is significantly better 

than the particle swarm optimization and genetic algorithm that are prone to local 

optimization. The optimization strategy is based on extended state observer (ESO)bandwidth 

balance dynamic response and noise immunity, and realizes high real-time robust control of 

motor drive with minimum overshoot, fast adjustment and high tracking accuracy. 

1. Introduction 

Reluctance motors (RM) have extremely wide applications in industrial automation and precision 

control, home appliances and new energy fields.RM has the inherent nonlinearity and significant 

torque ripple caused by their double-salient structure pose challenges for achieving robust and high-

performance control [1-2]. Active disturbance rejection control (ADRC), with its model-independent 

design and real-time disturbance compensation, has emerged as a promising solution for RM drives 

[3]. Nevertheless, parameter tuning of ADRC remains highly dependent on empirical methods or 

single optimization algorithms, which suffer from slow convergence and susceptibility to local optima 

[4-5]. Traditional optimization strategies, such as genetic algorithms (GA) or particle swarm 

optimization (PSO), exhibit limitations in balancing global exploration and local exploitation [6]. For 

instance, GA often converges slowly in high-dimensional parameter spaces, while PSO may 

prematurely stagnate in suboptimal regions [7]. These shortcomings hinder the realization of fast 

dynamic response and robust noise immunity required for RM control under parameter perturbations 

and load variations [8]. 
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2. The operation model and parameter setting method of the RM 

2.1 Operation model of RM based on ADRC 

Active disturbance rejection control is a new type of control method improved on the basis of the 

proportional-integral-derivative controller (PID) control algorithm, which has the structural 

characteristics of not relying on the control object model and not distinguishing between internal and 

external disturbances of the system. The commonly used active disturbance rejection controller is 

mainly composed of three parts: tracking differential (TD), extended state observer (ESO), and 

nonlinear state error feedback control rate (NLSEF). 

(1) The function of the tracking differentiator is to extract the required signal according to the input 

characteristics of the controlled object. 

(2) As the core component of active disturbance rejection control, the extended state observer can 

track the important state variables in the system on the one hand, so as to facilitate real-time 

understanding of the system status. On the other hand, according to the overall effect of internal and 

external disturbances in the system model, it can be compensated in time in the form of feedback, 

which is helpful to improve the robustness of the system. 

(3) The linear state error feedback control rate is a nonlinear combination method, the input is the 

error between the state variable of the TD output and the estimated value of the ESO state, and the 

total disturbance compensation of the output combined with ESO is worth the control quantity of the 

controller. 

Reluctance motor realizes electromechanical energy conversion through reluctance torque, which 

has the advantages of simple structure, no permanent magnet, and low cost, but its double salient 

structure leads to significant torque ripple, and the mathematical model shows strong nonlinear 

characteristics. Traditional PID control is difficult to cope with load abrupt changes and parameter 

perturbations, while Active Disturbance Rejection Control provides a new idea for reluctance motor 

control by estimating the internal and external disturbances of the system in real time through the 

extended state observer. 

The core mathematical model of a reluctance motor under d-q axis voltage equations is shown in 

(1)-(2). 

  𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑
𝑑𝑖𝑑

𝑑𝑡
− 𝜔𝑟𝐿𝑞𝑖𝑞                       (1) 

  uq = Rsiq + Lq
ⅆiq

ⅆt
− ωrLⅆiⅆ                       (2) 

where 𝑢𝑑 𝑢𝑞 is stator terminal voltages in the d-axis and q-axis, 𝑅𝑠 is stator winding resistance, 

𝑖𝑑 𝑖𝑞 is stator current components of the d and q axes, 𝐿𝑑 𝐿𝑞 is synchronous inductance in the d-

axis and q-axis, 𝜔𝑟 is rotor angular velocity. 

Electromagnetic torque is expressed by (3). 

  𝑇𝑒 = 𝐾(𝐿𝑞 − 𝐿𝑑)𝑖𝑑𝑖𝑞                            (3) 

where 𝑇𝑒  is electromagnetic torque, K is composite proportionality constant, 𝐿𝑑  𝐿𝑞 is 

synchronous inductance in the d-axis and q-axis, 𝑖𝑑 𝑖𝑞 is stator current components of the d and q 

axes. 

Mechanical equations shown in (4). 

                                                                      𝐽𝜔̇𝑟 = 𝑇𝑒−𝑇𝐿                               (4) 

where 𝑇𝑒 is electromagnetic torque, and 𝑇𝐿 is load torque. 
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Its nonlinearity originates from 𝐿𝑑 ≠ 𝐿𝑞 and cross-coupling terms 𝜔𝑟 , 𝐿𝑑 , 𝑖𝑑. It directly affects the 

complexity of parameter tuning. 

2.2 ADRC-Based Noise Suppression and Torque Ripple Reduction in Switched RM Drives 

(1) Signal processing of tracking differentiators (TDs) and reluctance motors. 

TD extracts the smooth tracking signal 𝑣0 (t) and its differentiation 𝑣1(t) from the target speed 

signal 𝑣2 (t).It is used to suppress noise and abrupt changes in the speed signal of reluctance motors。

In terms of noise immunity, the classic TD form (5). 

𝑦(𝑡)≈
1

𝜏
(𝑣(𝑡)−𝑣(𝑡−𝜏))                                 (5) 

where 𝑦(𝑡) is output signal, 𝜏 is time constant, 𝑣(𝑡) is Enter the signal. 

Its time constant, τ, is based on the electromagnetic time constant of the SRM(eg,𝐿𝑑𝑅𝑠)adjust 

smaller τ can quickly track the signal, but amplify noise (e.g., current sampling noise) and need to be 

balanced between dynamic response and noise immunity. For example, in practical applications, 

when the load changes (such as𝑇𝐿  step changes), TD dynamically adjusts the τ value, a smooth 

transition of the speed tracking signal 𝑣1(t) to avoid current shocks caused by sudden changes. 

(2) Extended State Observer (ESO) with perturbation compensation. 

The nonlinear terms of SRM (e.g., cross-coupling term, inductive perturbation) and external load 

perturbations are uniformly regarded as total perturbations 𝑓(𝑥1, 𝑥2, 𝑡 ), ESO is estimated in real 

time using the following equations are expressed by (6). 

{𝑧̇2

𝑧̇1 = 𝑧2 + 𝛽1(𝑦 − 𝑧1)

= 𝑧3 + 𝛽2(𝑦 − 𝑧2) + 𝑏𝑢
𝑧̇3 = 𝛽3(𝑦 − 𝑧1)

                         (6) 

where 𝑧1, 𝑧2 is estimated system state 𝑥1, 𝑥2 is estimated total perturbation, Contains nonlinear 

terms (cross-coupling, inductive perturbation) and external perturbations (e.g., load variations). 

𝛽1, 𝛽2, 𝛽3 is the gain parameter of the observer, which is used to adjust the convergence rate of the 

estimation error. 𝑏 is the control input gain, which indicates the intensity of the influence of the 

control quantity on the dynamics of the system. 𝑢 is the control the input signal, acting on the 

external control quantity of the system, 𝑦 is the measurement output of the system, usually in a 

directly observable state. 

(3) Nonlinear State Error Feedback (NLSEF) and Torque Ripple Suppression.  

NLSEF uses a nonlinear function 𝑓𝑎𝑙(𝑒,𝛼,𝛿) to combine error signals. And the function is shown 

in (7). 

                 𝑓𝑎𝑙(𝑒,𝛼,𝛿)= {

 
|ⅇ|𝛼𝑠𝑔𝑛(𝑒),   |ⅇ| > 𝛿

     ⅇ 𝛿1−𝛼⁄ ,    |ⅇ| > 𝛿
                       (7) 

where ⅇ is error signals, 𝛼 is nonlinear exponents, 𝛿 is error demarcation threshold. 

When α<1, "small error large gain, large error small gain" is realized, and the torque ripple of SRM 

at low speed is effectively suppressed. 

At the same time, the gain can be 𝛽1, 𝛽2adjusted according to the torque-current characteristics of 

the SRM. For example, when the current amplitude 𝑖𝑞 , 𝑖𝑑 is large, overshoot 𝛽0 can be avoided by 

reducing the gain; When the current is low, the gain is increased to improve the dynamic response. 
(4) The overall structure of the ADRC. 

The root of the active disturbance rejection method is to use the compensation term to observe and 

compensate the sum of the "uncertain model" and the "unknown interference" of the system as the 
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total disturbance. The system display of ADRC is shown in the figure 1. 

 

Figure 1 ADRC block diagram 

where 𝑣0 is the target velocity, 𝑣 is the actual velocity, 𝑣1 is the tracking velocity, 𝑣2 is the 

tracking acceleration, 𝑧1 is the observed velocity, 𝑧2 is the observed acceleration, and  𝑧3  is the 

observed perturbation. 

2.3 Matching analysis of ADRC parameters and parameters of RM 

For the strong nonlinearity and parameter perturbation problems of reluctance motors, ADRC 

compensates for dynamic disturbances in real time through ESO. The parameter matching principle 

is as follows: The bandwidth 𝜔0 of ESO needs to cover the inductance change rate (𝜔0 ∝  𝜕𝐿/ 𝜕𝜃 ⋅
𝜔𝑚 ) and is limited by the sampling frequency (𝜔0 ≤0.1𝑓𝑠 ). The current loop bandwidth 𝜔𝑐  is 

designed based on the electrical time with a constant (𝑟𝑒 = 𝐿𝑚𝑎𝑥 ∕ 𝑅) under the harshest working 

conditions. The gains𝑘𝑝 =𝜔𝑐
2and 𝑘𝑑 =2𝜔𝑐 are enhanced to improve the dynamic tracking capability. 

The velocity loop bandwidth and transition time (𝑇∝ 𝐽/𝐵)work together to suppress the effects of 

mechanical inertia and torque ripple. This matching method significantly enhances the robustness, 

immunity to disturbances and parameter adaptability of the reluctance motor system through 

hierarchical bandwidth design and disturbance observation, providing theoretical support for high-

precision control. 

where 𝑘𝑝, 𝑘𝑑  is error feedback gain, T, r, R, J, B stands for transition time, damping coefficient, 

resistance, moment of inertia, and damping coefficient respectively, 𝑓𝑠 is sampling frequency, 𝜔𝑚 

is the mechanical angular velocity of the motor, L(𝜃, 𝑖) is nonlinear inductance. 

3. Parameter tuning method of Reluctance Motor 

3.1 Common methods of parameter tuning 

3.1.1 Optimal control method 

The optimization algorithm is used to tune the parameters to achieve the optimization of a certain 

performance index. The method starts by defining performance indicators, defining the performance 

indicators of the system, such as the integration of control errors, the minimization of control energy, 

etc. Then, the optimization algorithm is used to search for the optimal parameters in the given 

parameter space. Finally, the effect of the optimal parameters is verified in simulation and in real 

systems. 
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3.1.2 Model reference adaptive method 

By comparing the actual output of the system with the output of the reference model, the 

parameters are automatically adjusted to reduce errors. After that, the adaptive law design is carried 

out, the adaptive law of the parameters is designed, and the parameters are adjusted according to the 

systematic error. Then, according to the adaptive law, the parameters are adjusted in real time to track 

the reference model. Finally, the stability is analyzed to ensure the stability and performance of the 

adaptive system. 

3.2 Design and implementation of hybrid optimization strategy 

3.2.1 Optimization objectives and fitness functions 

Among them, 𝜔1 =0.6, 𝜔2 =0.3, 𝜔3 =0.1is the weight coefficient, and then its rationality is 

determined by simulation experiments. 

3.2.2 Hybrid Optimization Algorithm Steps 

(1) GA Global Search 

1) Encoding and initialization 

Parameter selection and range setting: The key parameters include ESO bandwidth 𝜔0, NLSEF 

gain 𝛽0, 𝛽1and TD filter factor. The parameter range is set according to the dynamic characteristics 

of the reluctance motor, e.g. ∈  [50,500] rad/s, to ensure that the actual system bandwidth 

requirements are covered. 

Advantages of real number encoding: The physical meaning of the parameters can be directly 

preserved by real number encoding, which can avoid the decoding error of binary encoding and 

improve the search efficiency. 

Initial population generation: 50 individuals are randomly generated to ensure population diversity. 

In order to avoid the deviation of the initial value, Latin hypercube sampling (LHS) was used to 

evenly cover the parameter space. 

2) Genetic manipulation 

Selection Mechanism: The roulette selection method allocates the selection probability based on 

the fitness value, and the formula is 

𝑃𝑖 =
𝑓𝑖

𝛴𝑗=1
𝑁 𝑓𝑖                              (8) 

where 𝑃𝑖 is the selection probability of the individual, 𝑓𝑖 is the fitness value of the individual, 𝑁 

is the total number of individuals in the population. 

The top 30% of elite individuals are retained to maintain excellent genes and avoid precocious 

astringency. 

Crossover Strategy: The arithmetic crossover operation is defined as (9). 

𝐶ℎ𝑖𝑙𝑑′𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝛼𝑓𝑎𝑡ℎ𝑒𝑟′𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 1 + (1 − 𝛼)𝑓𝑎𝑡ℎ𝑒𝑟′𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 2  (9) 

Among them α∼U (0.2, 0.8), which balances global exploration and local development capabilities 

through dynamic weights. Crossover 𝑃𝑐 probability = 0.8 ensures adequate mix of populations. 

Variation design: Gaussian variation introduces random perturbation, the amount of variation 

obeys N (0, σ), and the standard deviation is σ =0.1⋅ parameter range, so as to ensure that small 

perturbations avoid destroying excellent individuals. 

3) Conditions of Termination. 

The maximum number of iterations is set to 100 generations, and the fitness change threshold is 
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set to 10 consecutive generations, with a change rate of <1%. If the threshold is reached, terminate 

early to avoid redundant calculations. 

(2) Local fine-tuning of particle swarm optimization (PSO). 

1) Particle initialization 

Initial particle selection: The top 10 optimal individuals output by GA are used as PSO initial 

particles, and the global search results of GA are inherited. 

The parameters are set according to the following factors 𝐶1=1.5 and 𝐶2=1.5, focusing on social 

experience (global optimum) to accelerate convergence; The inertia weight ω decreases linearly from 

0.9 to 0.4, and the global exploration is enhanced in the early stage, and the local development is 

emphasized in the later stage. 

2) Speed and location updates 

The classic PSO update formula is used by (9). 

𝑣𝑖𝑑
𝑘+1 = 𝜔⋅ 𝑣𝑖𝑑

𝑘  + 𝐶1𝑟1(𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑘 ) +  𝐶2𝑟2(𝑔𝑑 − 𝑥𝑖𝑑

𝑘 )            (10) 

where  𝜔  is  Inⅇrtia wⅇights, 𝐶1 is individual lⅇarning factors, 𝐶2  is social learning Factors, 

𝑟1, 𝑟2 is random factor, 𝑝𝑖𝑑 is The historical optimal location of the individual, 𝑔𝑑 is global optimal 

location, 𝑣𝑖𝑑
𝑘  is current speed, 𝑥𝑖𝑑

𝑘  is current position. 

3) If the fitness of the PSO is not improved for 5 consecutive generations, the dynamic perturbation 

strategy randomly replaces 5% of the particles (i.e., 1 particle) and injects a new solution to jump out 

of the local optimum. The disturbance amplitude is 10% of the parameter range, balancing exploration 

and development. 

4) The maximum number of iterations of the termination condition is 50 generations, and the 

global optimal fitness change < 0.5% to terminate in advance to ensure convergence accuracy.  

(3) Hybrid strategy synergy mechanism 

1) The connection between GA and PSO is realized by "elite transfer" in the global-local transition 

design: the high-fitness individual output by GA is directly used as the initial particle of PSO, and the 

global search information is retained, and the random particle is added to expand the neighborhood 

search range. 

2) Multi-stage fitness function adjustment 

GA stage: focus on the speed tracking error (weight=0.7) to quickly locate the feasible domain. 

PSO stage: increase the weight of torque ripple suppression (=0.4) and fine-tune the dynamic 

performance. 

3) Convergence safeguards 

The variance 𝜎𝑝
2 of population fitness was monitored, and if it 𝜎𝑝

2was < to 0.1, the population 

convergence was determined to be terminated. The idea of simulated annealing is introduced, and the 

probability 𝑃𝑎𝑐𝑐𝑞𝑝𝑡 = 𝑒−𝛥𝑓∕𝑇acceptance of inferior solutions to avoid precocious maturity (T decays 

with the number of iterations). 

3.3 Improved the parameter tuning method 

3.3.1 Critical proportional method 

Finally, other parameters are calculated according to the empirical formula(11).  

                                                                              𝑘𝑖 =
𝑘𝑝𝑐

2𝜋𝑇
𝑙̇
                                 (11) 

where 𝑘𝑖 is integral gain, 𝑘𝑝𝑐  is critical proportional gain, 𝑇𝑙̇ is Integration time constant. 

 

116



3.3.2 Attenuation curve method 

Set the initial parameters so that the system response shows attenuation oscillations, record the 

attenuation ratio and period of the attenuation curve, and then adjust the parameters to achieve the 

desired attenuation ratio (e.g., 1/4 attenuation). And is shown in (12). 

𝜎 = 𝑙𝑛 (
𝑦(𝑡1)

𝑦(𝑡2)
) ∕ (𝑡2 − 𝑡1)                          (12) 

4. Verification of the convergence of hybrid strategies 

4.1 Simulation and experiments 

Motor parameters: rated power 1.5kW, rated speed 1500rmp, moment of inertia 0.02kg. 𝐽 ⋅
𝑚2.Perturbation scenario: step load 0-5 N⋅m(t=0.5s). 

Parameter perturbation: 20% change ± inductance. 

Comparison of convergence processes for hybrid optimization algorithms, GA, and PSO 

 

Figure 2 The convergence curve of results 

It can be seen that the hybrid optimization algorithm has the lowest fitness value and the fastest 

convergence speed (which may be stable within 50 generations), indicating that its global search 

ability is better than GA and PSO. However, the convergence rate of GA is slower (about 80 

generations), and PSO may fall into a local optimal (late curve fluctuations). The result is shown in 

the figure 2. 

(2) Speed response curves under trial-and-error, GA optimization, and hybrid optimization 

strategies. 

Hybrid optimization (4.5%) was significantly better than trial-and-error (12%) and GA (8%), 

indicating that it had a stronger ability to suppress oscillations. In addition, the hybrid optimization 

only takes 0.08 seconds to adjust the time, indicating that the dynamic recovery speed is the fastest 

and suitable for high-real-time scenarios. At the same time, the 9.7 rpm error of the hybrid 

optimization is the smallest, which verifies the advantage of its tracking accuracy. The result is 

expressed by figure 3. 
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Figure 3 The speed response comparison of result 

(3) Effect of ESO bandwidth 𝜔0 on overshoot. 

 

Figure 4 The sensitivity analysis of result 

The trend is shown in the figure, As the ESO bandwidth increases 𝜔0(50→500), The amount of 

overshoot may decrease first and then increase (the specific shape of the curve needs to be confirmed). 

You can choose 𝜔0 around =200 (assuming the lowest overshoot point) to balance dynamic 

performance with noise immunity. The result is shown in the figure 4. 

4.2 Innovative analysis of hybrid optimization strategies 

(1) Global-local coordination mechanism: The global search capability of GA is used to quickly 

locate the feasible domain of parameters, and then the local optimization feature of PSO is finely 

adjusted to avoid a single algorithm falling into local optimum. 

(2) Dynamic weight adjustment strategy: When there is no improvement in PSO for 5 consecutive 

generations, 5% random particles are re-injected to significantly reduce the risk of premature 
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convergence. 

(3) Multi-objective fitness function: the speed tracking error (60%), torque ripple (30%) and anti-

disturbance recovery time (10%) are comprehensively integrated, and the rationality of weight 

allocation is verified by simulation experiments. 

(4) The results show that the adjustment time of the hybrid strategy is only 0.08 seconds, which is 

42% and 35% shorter than that of GA and PSO, respectively, and the fitness value is reduced to 4.5%. 

The advantages are particularly pronounced in high-noise environments (± 20% inductive 

perturbation). 

5. Conclusion 

In this study, the problems of slow convergence and easy to fall into local optimum in the ADRC 

parameter tuning of reluctance motors were solved through the hybrid GA-PSO optimization strategy. 

Experiments show that this strategy is significantly superior to the traditional methods in terms of 

convergence speed (stable within 50 generations), dynamic response (overcharge of 4.5%, adjustment 

time of 0.08 seconds), and immunity (fitness value of 4.5% under ±20% inductance disturbance), 

and can balance dynamic performance and noise suppression when the ESO bandwidth is optimized 

to 200 rad/s. The feasibility of its application is reflected in its strong adaptability to complex working 

conditions (such as sudden load changes and parameter disturbances) and the efficient matching of 

real-time engineering requirements. In the future, intelligent algorithms (such as deep learning) can 

be further integrated to optimize the weight distribution mechanism and extended to nonlinear control 

scenarios such as permanent magnet motors and multi-energy systems, promoting the deep 

integration of intelligent optimization technology and industrial control, and providing innovative 

solutions for high-precision drive and energy management. 
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