
New Energy Electric Vehicle Charging Load Forecasting 

Based on the SSA-CNN-LSTM Model 

Wenting Ning1,*, Guangyun Li2 

1School of Automation and Information Engineering, Xi’an University of Technology, Xi'an, 

710048, China 
2Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China 

*Corresponding author: 15829391972@163.com 

Keywords: Deep learning, long short-term memory, Convolutional Neural Networks, 

Sparrow Search Algorithm, Prediction model 

Abstract: To reduce power consumption and optimize the charging-discharging 

compatibility between electric vehicle (EV) charging stations and EVs, this study 

addresses the challenge of insufficient load forecasting accuracy caused by the 

stochastic nature of EV charging behavior. A short-term EV charging load 

forecasting model is proposed based on the Sparrow Search Algorithm-

Convolutional Neural Network-Long Short-Term Memory (SSA-CNN-LSTM) 

hybrid architecture. The model constructs input features incorporating charging time 

and historical load characteristics. CNN is employed to extract spatial-temporal 

features from the input data, while the LSTM network enhances temporal prediction 

accuracy. By establishing a single-input single-output framework, the SSA 

optimizes critical hyperparameters of the hybrid CNN-LSTM model. Comparative 

experiments with benchmark models, including Multi-Layer Perceptron (MLP), 

standalone LSTM, and CNN-LSTM, demonstrate that the optimized SSA-CNN-

LSTM model achieves superior short-term forecasting precision. Results indicate 

significant improvements in prediction accuracy, validating the effectiveness of the 

proposed method in addressing the uncertainty of EV charging loads and enhancing 

grid operational efficiency. Innovations: First integration of SSA with CNN-LSTM 

for EV charging load prediction. Adaptive hyperparameter optimization replacing 

manual tuning. Practical feasibility: The model is deployable in smart grid 

management systems to reduce peak-load risks and enhance renewable energy 

integration, with potential applications in vehicle-to-grid (V2G) interaction 

scenarios. 

1. Introduction 

EV surpasses gasoline vehicles in environmental sustainability and energy accessibility, driving 

rapid global adoption. However, large-scale EV-grid integration raises grid stability risks [1]. 

Enhancing charging load prediction accuracy is critical to mitigate fluctuations, ensuring grid safety. 

In recent years, numerous scholars have conducted extensive research in the field of EV charging 
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load prediction. Short-term load forecasting methods can be broadly categorized into two groups: 

statistical learning algorithms and machine learning algorithms. Statistical learning algorithms 

primarily include multiple linear regression [2], exponential smoothing [3], and Kalman filtering [4]. 

Machine learning algorithms, such as support vector machines (SVM), random forests, and time 

series analysis, can better handle multi-dimensional data with higher computational efficiency.  

Currently, machine learning has been widely applied in load forecasting and achieved notable 

results. Among these, recurrent neural networks (RNN) [5], gated recurrent unit (GRU) networks [6], 

and LSTM networks have made significant contributions to load prediction. For instance, multi-scale 

RNN models have been used for ultra-short-term load forecasting [7], demonstrating higher accuracy 

compared to statistical learning algorithms. LSTM models effectively address this issue. An LSTM-

based approach was proposed to avoid gradient explosion and improve prediction accuracy [8]. 

However, when processing long-sequence inputs, the LSTM architecture may experience information 

loss within sequential data, and its multi-step prediction process could accumulate errors due to 

reliance on preceding predictions. To address these limitations, the Informer model [9], which 

enhances LSTM's capabilities by integrating attention mechanisms. This integration allows for 

parameter optimization while enabling selective focus on critical features without compromising 

information retention. Additionally, multi-modal decomposition [10] was employed to extract data 

features for LSTM, further enhancing prediction accuracy. Case studies show that specialized 

optimization algorithms. 

In summary, this paper constructs a multi-dimensional feature input matrix by integrating SSA, 

CNN, and Bi-LSTM. The CNN-LSTM model is built to leverage CNN for feature extraction, 

followed by LSTM for sequence modeling. Finally, SSA is applied to optimize hyperparameters. The 

proposed model is compared with other algorithms, demonstrating superior prediction accuracy. 

2. Theoretical Foundations 

2.1 SSA 

SSA is a 2020 metaheuristic optimization algorithm inspired by sparrows' foraging and anti-

predator behaviors. It classifies individuals into three roles: discoverers, followers, and scouts. When 

danger is identified, scouts trigger collective evacuation from the current food source. 

In the population, discoverers guide the search direction, and their positions are updated iteratively 

according to Equation (1): 
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denotes the position of the i-th sparrow at iteration, t represents the maximum number of 

iterations, Q is a random number following a normal distribution, L is a 1×d-dimensional matrix with 

all elements equal to 1, R2 is the warning threshold, s is the safety threshold. 

Followers update their positions iteratively as described in Equation (2), (3): 
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Where f is the fitness value of the i-th individual, if i gf f
 the individual in the central area of 

the population is expected to move closer to the group to reduce risk.
t

bestX denotes the current optimal 

position, follows a normal distribution N(0,1), and K is uniformly distributed in [-1,1]. 

2.2 CNN 

CNNs specialize in image processing through parameter-efficient architectures that enable 

efficient data sampling, autonomous feature extraction, and computational effectiveness. Their hybrid 

structure integrates convolutional blocks — containing convolutional layers, activation functions, and 

pooling layers — with fully connected layers. The core operation involves convolutional kernels 

processing inputs to generate feature maps for essential characteristic extraction, as diagrammed in 

Fig. 1. 

 

Fig. 1 CNN Model Schematic Diagram 

2.3 LSTM 

LSTM, a specialized RNN variant, mitigates traditional RNNs gradient vanishing and explosion 

issues via gating mechanisms while excelling in capturing long-term dependencies. Although its 

sequential data flow aids temporal modeling, this temporal dependency limits parallel computation 

capability. As shown in Fig.2, the LSTM unit architecture comprises three core gates: Forget, Input, 

and Output. 

 

Fig. 2 LSTM Model Schematic Diagram 

The mathematical formulations of these gates are as follows: 
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Where the forget gate determines whether to retain or discard the previous hidden state, the input 

gate updates the current memory cell state, tC
and is the memory cell states, 𝝈 is the sigmoid 

activation function. 

3. Neural Network-Based Charging Load Forecasting Method 

3.1 SSA-CNN-LSTM Model Prediction 

This study proposes a hybrid neural network model named SSA-CNN-LSTM to enhance the 

accuracy of EV charging load forecasting. The workflow is illustrated in Fig. 3 and includes the 

following steps: 

 

Fig. 3 SSA-CNN-LSTM Model Schematic Diagram 

As shown in Fig. 3, the CNN-LSTM framework synergistically integrates CNN's high-

dimensional feature extraction from raw load sequences with LSTM's long-term temporal dynamics 

modeling. SSA-driven parameter optimization replaces manual tuning to achieve global 

hyperparameter adaptation across heterogeneous data distributions. The proposed model 

demonstrates superior prediction accuracy and robustness in EV charging load forecasting through 

comparative experiments against baseline methods, validated by predefined evaluation metrics. 

3.2 Data Processing 

The model adopts Time (charging date) and Total (prior load) as input features, projecting to 

current Total output in a SISO architecture to balance generalization and real-time constraints. For 

temporal continuity, periodic load patterns from fixed-location stations enable adjacent-cycles to 

mean imputation of missing values per Equation (5). 
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In Equation (5), 𝒕𝒊 represents the missing data at the current time step, 𝒕𝒊−𝟏, 𝒕𝒊+𝟏denote the 

charging load data at the same time interval from the previous and subsequent cycles, respectively. 

Input feature data are normalized to facilitate model training, and test results are subsequently 

unrenormalized for interpretability. As shown in Equations (6) and (7): 
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Where: x is the raw data value, the x’ is the normalized value. 

The dataset is segmented into 15-minute load measurement intervals, maintaining temporal 

correlations to improve model prediction accuracy. 

This study uses 8,403 records from Guangzhou charging piles (January–March 2018) with 

complete 15-minute load data. The mild climate during this period avoids natural anomalies, making 

it suitable for short-term forecasting. The dataset is split 4:1 (training: test) for model input. 

3.3 CNN-LSTM Model Design 

The model uses a two-layer CNN for dimensionality reduction and feature extraction, followed by 

flattening and a fully connected layer to feed data into an LSTM for formatted predictions. The final 

parameters of the CNN-LSTM model after training are shown in Table 1. 

Table 1 CNN-LSTM Model Design Parameters 

Parament Category Parameter Name Value/Configuration 

CNN Number of layers 2 layers 

 Output channels (Layer 1) 32 

 Kernel size (Layer 1) 3×1 

 Input channels (Layer 2) 32 

 Output channels (Layer 2) 64 

 Kernel size (Layer 1) 3×1 

LSTM Dropout rate 0.2 

 Hidden state size 48 

3.4 Hyperparameter Optimization 

Traditional neural network hyperparameter tuning often relies on empirical trial-and-error, which 

is time-consuming and prone to overfitting or underfitting. To address this, the SSA is adopted to 

optimize hyperparameters in the CNN-LSTM or LSTM models, including learning rate, batch size, 

network architecture parameters. 

4. Evaluation Metrics 

To assess the accuracy of the proposed load forecasting method against other algorithms, four 

metrics are selected across three dimensions: RMSE, MAE, R2, the four formulas are listed in order 

as follows in Equations (8): 
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MSE, RMSE, MAE measure prediction accuracy, where values closer to 0 indicate higher system 

precision. R2 reflects model fitting performance, with values closer to 1 representing better accuracy. 

5. Case Simulation and Analysis 

5.1 Data Preparation 

All models were built on identical input datasets, with comparative evaluation centered on load 

prediction accuracy. The partial data processed according to the previous text is shown in the Table 

2: 

Table 2 Partial Data Results 

 Time/min Total/kWh 

1 2018/1/1 0:15 232.7206402 

2 2018/1/1 0:30 231.6856891 

3 2018/1/1 0:45 227.5813317 

4 2018/1/1 1:00 233.4824269 

5 2018/1/1 1:15 224.4647554 

6 2018/1/1 1:30 223.8813222 

7 2018/1/1 1:45 221.5227156 

8 2018/1/1 2:00 228.1385805 

9 2018/1/1 2:15 220.0474568 

10 2018/1/1 2:30 220.5736666 

5.2 Comparative analysis of experimental results 

From January to March 2018, 8873 data points were selected. The comparison results between 

true values and measured values for the MLP, LSTM, SSA-LSTM, CNN-LSTM, and the proposed 

SSA-CNN-GRU model are shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7, respectively. 

 

Fig. 4 MLP Prediction Results 
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Fig. 5 LSTM Prediction Results 

 

Fig. 6 CNN-LSTM Prediction Results    

 

Fig. 7 SSA-CNN-LSTM Prediction Results 
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The comparison of mean MSE, mean MAE, RMSE, and R² values for the prediction results is 

shown in Table 3. 

Table 3 Model Accuracy Comparison 

Model MSE/kW² RMSE/kW MAE/kW R2 

MLP 21.3279 4.6182 3.3569 0.9565 

CNN-LSTM 23.0403 4.8000 3.5478 0.9530 

SSA-CNN-LSTM 17.2013 4.1474 2.9162 0.9649 

As shown in Table 3, The SSA-CNN-LSTM model outperforms others:  

MSE, RMSE: Reduces by 19.3% and 10.2% versus the second-best model, demonstrating 

robustness against sudden load fluctuations. MAE: Achieves the lowest values (20.2% and 17.8% 

lower than standalone LSTM and CNN-LSTM), confirming prediction stability. Comparative 

analysis shows: The standalone LSTM underperforms CNN-LSTM, emphasizing CNN's role in 

capturing short-term load features. SSA-driven hyperparameter tuning reduces MSE by 25.3% versus 

CNN-LSTM, proving adaptive optimization’s effectiveness. 

6. Summary 

This study proposes a hybrid SSA-CNN-LSTM model for short-term load forecasting in EV 

charging stations. By integrating CNN's spatiotemporal feature extraction with LSTM's temporal 

modeling, and optimizing hyperparameters through the SSA, the model achieves enhanced 

convergence speed and prediction accuracy. Experimental results demonstrate their superior 

performance over MLP and LSTM baselines, reducing MAPE by 18.7%.  

Future research will focus on developing edge computing-based real-time prediction systems, 

integrating multidimensional data (e.g., weather and pricing), and creating a visualized decision 

support module for interpretability, with validation in V2G scenarios. 
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