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Abstract: The Houston 2013 benchmark conducted in Houston describes a methodology that 
constructs a sparse pixel graph exclusively over labeled pixels. This approach employs 
learnable multi-scale spectral filtering using Chebyshev-approximated graph wavelets and 
incorporates a lightweight Multi-Layer Perceptron (MLP) head for classification purposes. 
The training procedure integrates feature MixUp at labeled nodes, a composite loss function 
combining focal loss and label smoothing, exponential moving average (EMA) weight 
tracking, an AdamW optimizer with warm-up and cosine scheduling, and mild graph 
augmentation techniques such as random edge drop and addition with re-normalization. 
Implementation executed precisely in accordance with the original methodology, with five 
independent runs producing an overall accuracy (OA) of 90.99% ± 0.41%, average accuracy 
(AA) of 92.11% ± 0.35%, and a Kappa coefficient (κ) of 0.9022 ± 0.0044. These results 
demonstrate not only high accuracy but also minimal variability, providing reassurance of 
the robustness of the methodology. 

1. Introduction 

Recent research on hyperspectral-LiDAR urban scene classification has investigated convolutional 
networks, 3D spectral-spatial CNNs, attention-based transformers, and graph neural networks 
(GNNs)[1-3]. CNNs effectively capture local textures but face challenges with long-range 
relationships. Transformers facilitate the integration of global context, yet they are resource-intensive 
and sensitive to training procedures and scale parameters [4, 5]. Numerous GNNs rely on dense or 
global graph structures, which increase memory consumption and processing time, and risk 
oversmoothing due to fixed diffusion kernels [6,7]. Oversmoothing, in this context, refers to the 
blurring of class boundaries, which can lead to misclassification. The use of fixed diffusion or 
Laplacian kernels may lead to oversmoothing, thereby blurring class boundaries, while shallow, 
single-scale filters can overlook multi-scale spatial features[8]. Reproducibility issues are 
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exacerbated when codebases incorporate complex data augmentation techniques, unstable 
optimization schedules, and hyperparameters that are not transparently linked to publicly available 
implementations. 

MS-GWCN addresses these gaps with a compact design tailored for multimodal fusion, as 
demonstrated in Houston 2013. The graph is labeled-only, with a 5×5 neighborhood, learnable multi-
scale wavelet filters implemented using Chebyshev polynomials, and a stable training recipe (MixUp, 
composite loss, EMA, cosine schedule) that ensures a reliable and consistent training process. The 
approach aligns naturally with co-registered HSI spectra and LiDAR elevation, benefits from light 
graph augmentation, and delivers consistent accuracy with minimal tuning. 

2. Materials 

2.1. Dataset 

We use the fused HIS-LiDAR Houston 2013 benchmark with 15 land-cover classes (Healthy grass, 
Stressed grass, Synthetic grass, Tree, Soil, Water, Residential, Commercial, Road, Highway, 
Railway, Parking lot 1, Parking lot 2, Tennis court, Running track). Training and test splits follow 
TRLabel.mat and TSLabel.mat. The HSI contains 144 VNIR bands at 2.5 m GSD, co-registered with 
LiDAR DSM over the University of Houston campus and nearby urban blocks (349×1905 pixels); 
pseudo-color HSI, grayscale LiDAR, and ground-truth maps are provided in Figure 1. 

 
(a) 

 
(b) 

Figure 1 Visualization of Houston 2013. (a) Pseudo-color image for HSI data. (b) Grayscale image 
for the LiDAR data. 

2.2. Preprocessing 

HSI and LiDAR are standardized feature-wise and concatenated channel-wise into a single data 
cube; only labeled pixels are used to build the graph and to train/evaluate the model. We preprocess 
the co-registered hyperspectral (HSI) cube and LiDAR digital surface model (DSM) with a feature-
wise standardization followed by channel-wise fusion. Let the HSI be hHSI H W BX × ×∈  with hB  spectral 
bands, and the LiDAR DSM be lLIDAR H W BX × ×∈ ( l 1B = ). Denote pixel coordinates by (u,v) with 

{1, , }u H∈ …  and {1, , }v W∈ … . For a fixed band b, the raw value at (u,v) is HSI
, ,u v bx  or LIDAR

, ,u v bx . 
To remove scale and illumination biases across bands and modalities, we apply z-score 

normalization independently to each feature channel. For a modality {HSI,LIDAR}M ∈  and band b, 
define the mean M

bµ  and standard deviation M
bσ  over the set of pixels used to estimate statistics. In 
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practice, computing statistics on the training subset reduces leakage from test regions; let 
{1, , } {1, , }H W⊆ … × …  denote the index set chosen for that purpose. Then 
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With a small 0ε >  (for example 610− ) to avoid division by zero when a channel has near-constant 
intensity. Vectorizing by pixel, if ,

MBM
u v ∈x   stacks all bands for modality M, then 

 ( ) ( ), ,

M M M M
u v u v ε= − +x x μ σ 1

                                                            (3) 

Where   is element-wise division, , MBM M ∈μ σ  , and 1  is the all-ones vector. 
With both modalities standardized, we fuse them by concatenating channels along the spectral 

dimension to create a single feature cube 

( )HSI LIDAR
h lconcat , ,H W BZ X X B B B× ×= ∈ = + 



                                         (4) 

So that for each pixel (u,v),  

HSI LIDAR
, ,, [ ] B

u v u vu v = ∈z x x ‖ .  
This simple fusion preserves cross-band comparability within each modality while allowing the 

downstream model to learn cross-modal interactions directly from the concatenated representation. 
No histogram matching or hand-crafted scaling between modalities is needed because the 
standardization centers each channel at zero with unit variance. 

The classification protocol operates only on labeled pixels for graph construction, model training, 
and evaluation. Let {1, , } {1, , }H W⊆ … × … be the set of labeled coordinates and , {1, , }u vy C∈ … the 
corresponding class index. Define the complementary unlabeled set {1, , } {1, , } \H W= … × …  . We 
extract the design matrix of node features by stacking vectors ,u vz  over  : 
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This choice keeps memory proportional to | |  rather than HW, which is beneficial for sparse 
graph operations that follow. If one wishes to map 2D coordinates to a unique node index, the 

bijection ( ) ( ), 1i u v u W v= − +  is convenient, and its inverse satisfies 1 1, (( 1) mod ) 1iu v i W
W
− = + = − +  

. 

We use the labeled mask to gather X  without copying the entire image cube to host memory. 
Preprocessing also prepares spatial neighborhoods needed later for graph construction while 

staying within the labeled set. Although the actual edge set is built in the graph module, this 
neighborhood definition during preprocessing ensures that subsequent computations neither access 
nor depend on unlabeled coordinates. The combination of ,X y  , and the index mapping provides a 
compact, leakage-resistant view of the data for training and evaluation. 

From an optimization standpoint, standardized inputs improve the conditioning of linear layers 
and the stability of batch normalization in the downstream network. Let φ  denote any Lipschitz 
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activation and W  a learned weight matrix. When inputs have zero mean and unit variance, the pre-
activation Wz  is better scaled, which reduces the sensitivity of gradients to poorly conditioned 
directions. Empirically, we observe faster convergence and reduced need for per-modality learning 
rate heuristics once z-score normalization is applied per feature channel. 

3. Methods 

3.1. Graph Construction 

Let {1, , } {1, , }H W⊆ … × …  be the set of labeled pixel coordinates, | |C =  . We index nodes by a 
bijection : {1, , }Cπ → …  so that node ( , )i u vπ=  corresponds to pixel (u,v). For a window radius r=2 
(a 5×5 footprint), define the local neighborhood of a labeled pixel (u,v) as 

( , ) {( , ) :| | , | | , ( , ) ( , )}r u v p q p u r q v r p q u v= ∈ − ≤ − ≤ ≠ 
.                                              (6) 

The (binary) adjacency over labeled nodes is then 
1, if ( , ) with ( , ) ( , ) for ( , ),
0, otherwise.

r
ij

j p q p q u v i u v
A

π π= ∈ =
= 




                                              (7) 

Which is made symmetric by construction and augmented with self-loops: A = A + I .  
Let 1diag( , , )CD d d= …  with degrees 

1

C

i ij
j

d A
=

= ∑  . We use the symmetric degree-normalized adjacency 

as the graph operator 

1/2 1/2 , ij
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i j
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L

d d
− −= =L D AD



                                                                         (8) 

In practice, we store L as a sparse COO tensor using the edge list {( , ) : 1}iji j A= = with 
corresponding values ijL .  

3.2. Multi-Scale Graph Wavelet Convolution 

Let N B×∈X   stack fused HSI+LiDAR feature for the N label nodes, and let N N×∈L   be as above. 
A single GraphWaveletConv layer implements a learnable filter bank 1{ }

m

S
s mg =  acting on X , where the 

scale vector 1 0
T[ , , ] S

Ss s >= … ∈s   is learned end-to-end. Intuitively, small scales emphasize high-
frequency, edge-preserving detail (helpful for man-made boundaries such as roads, rails and building 
outlines captured by LiDAR height jumps), while large scales aggregate broader spatial-spectral 
context. 

We approximate each wavelet kernel smg  by a Chebyshev polynomial of order K applied to the 
graph operator L . Let 0{ }K

k kT =  be Chebyshev polynomials with 

0 1 1 2( ) , ( ) , ( ) 2 ( ) ( )k k kT T T T T− −= = = −L X X L X LX L X L L X L X  

Given a base wavelet kernel ( )g λ (e.g., 2 /2( ) tanh( )g e λλ λ −= ), its dilated form at scale ms  is 
( ) ( ).

ms mg g sλ λ=  The corresponding Chebyshev approximation is 
1 1

0 2 2
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Where the coefficients ( ){ }k ma s  are differentiable in sm and learned end-to-end. Responses from 
all scales are concatenated and linearly projected, followed by batch normalization and LeakyReLU; 
a residual alignment path is used when channel counts differ. Five such blocks are stacked, then a 
three-layer MLP maps node embeddings to class logits. This design preserves LiDAR-driven 
structural edges at small scales while aggregating HSI spectral context at larger scales.  

For each scale we obtain a filtered response 

( )

0
( ) ( )

K
m N B

k m k
k

a s T ×

=

= ∈∑H L X 

                                                             (10) 
To fuse the multiscale information, we concatenate along the channel dimension 

( ) ( )
1

S m N SB
m

×
== ∈H H ‖

                                                                  (11) 

A learnable projection out( )SB CW ×∈ maps H  to the layer’s output width outC , followed by batch 
normalization and a pointwise nonlinearity: 

( )BN , ( ), ( ) max( , ) (LeakyReLU)W x x xφ φ α= + = =Z H b Y Z
                             (12) 

When the input width in outC C≠ , a residual alignment ensures stable deep stacking: 
in out

res , (learned)C CP P ×= + ∈Y Y X 

                                                      (13) 

If in outC C= , we use the identity skip res = +Y Y X . 
Because each term ( )kT L X  is computed via sparse-dense products with L , the cost per scale is 

( nnz( ))K L , making the bank efficient even on large labeled graphs. 

3.3. Training Strategy 

We train on the labeled-node graph of Houston 2013 by combining feature-level MixUp, a 
composite objective that interpolates focal loss and label-smoothing, an AdamW optimizer with 
warm-up and cosine decay, an exponential moving average (EMA) of weights, and lightweight graph 
augmentation. These components are designed to respect the HSI+LiDAR fusion setting, the recipe 
stabilizes optimization under class imbalance and registration noise common in urban scenes. 

Feature MixUp on labeled nodes. For each mini-batch we sample ~ Beta(0.2,0.2)λ  and a random 
permutation π  over the labeled index set. Given fused features B

i ∈x   and ground-truth class 
{1, , }iy C∈ … , we construct mixed node features  ( )(1 )i i iπλ λ= + −x x x . 

Mixing across the concatenated HSI+LiDAR vector smooths modality-specific noise while 
preserving discriminative trends because both modalities were standardized. The network outputs 
logits ( )ii fθ=z x  and probabilities , , ,exp( ) / exp( )i c i c i k

k
p z z= ∑ . 

Composite objective tied to λ . We interpolate between focal loss and label-smoothing with the 
same λ  used in MixUp as focal LS( , ) (1 ) ( , )i i i i iy yλ λ= + −p p   . The focal term emphasizes hard nodes 
from minority classes (e.g., railway, tennis court) using focal , ,( , ) 1 ( log )( )

i ii i i y i yy p pγα= − −p , with 
(0,1]α ∈  and 0γ >  (in our code, we set 0.5, 2.0α γ= = ). Label-smoothing calibrates predictions via a 

smoothed one-hot target 
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With ε=0.05 in our implication. Using a shared λ couples data mixing and objective weighting, 
which empirically stabilizes training on multimodal inputs where HSI and LiDAR can contribute at 
different confidence levels across classes. 

Optimizer and learning-rate schedule. We adopt AdamW with decoupled weight decay η . if tg  is 
the gradient of parameters tθ , Adam moments follow 

2
1 1 1 2 1 2(1 ) , (1 )t t t t t tg gβ β β β− −= + − = + −m m v v 

                                             (15) 

Where 2
tg  denotes element-wise squaring of tg . And the update is             





1 LR( ) t
t t t

t

t η+ = − −
+

mθ θ θ
v                                                                       (16) 

With standard bias corrections  ,t tm v . The learning rate uses linear warm-up for the first warmT  
epochs and cosine annealing thereafter: 

min 0 min warm
warm

0 min warm
min warm
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LR LR ( )
[8 ]LR 1 cos , .

2
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t t T
T

t
t T

pt t T
T T
π

 + − ≤=  − − + + >
 −

                                    (17) 

Warm-up prevents early divergence on mixed HSI+LiDAR features; cosine decay promotes late-
stage refinement at boundaries where LiDAR edges and HSI spectra must align. 

EMA of weights and model selection. We maintain an exponential moving average EMAθ  of 
parameters: EMA EMA (1 ) , 0.999β β β← + − =θ θ θ . At evaluation, we score both the last checkpoint and the 
EMA snapshot, retaining the better performer. EMA smooths stochastic updates caused by MixUp 
and graph sampling, improving generalization on small classes. 

Graph augmentation with re-normalization. Every five epochs we randomly drop existing edges 
and add plausible local edges within the 5×5 footprint, after which we recompute the symmetric 

degree-normalized operator 1/2 1/2 , ij
ij

i j

A
L

d d
− −= =L D AD



 . This mild topology jitter mimics registration 

perturbations between HSI and LiDAR, discourages overfitting to a single graph realization, and 
preserves locality essential for urban boundaries. 

4. Experiments 

4.1. Implementation Details 

The proposed network consists of five GraphWaveletConv blocks with widths [512, 768, 1024, 
1024]. Each block includes a bank of multi-scale wavelet filters with six learnable scales and uses a 
Chebyshev polynomial of order K=4 to approximate the wavelet kernel on the degree-normalized 
graph operator. After the graph stack, features are processed by a compact MLP head with layers 
1024 → 768 → 512 → 256 → C, where C is the number of classes. Regularization involves dropout 
rates of 0.5, 0.4, and 0.3 across the MLP layers, batch normalization after linear projections, and 
nonlinearities applied with LeakyReLU within the graph blocks and GELU in the head to balance 
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stability and expressivity. 
Optimization employs AdamW with a learning rate of 8×10−4, weight decay of 1×10−5, and runs 

for 400 epochs with a 30-epoch warm-up. A cosine schedule reduces the step size to 5×10−6. The 
loss combines focal loss (α=0.5, γ=2.0) for hard and rare categories and label smoothing (ε=0.05), 
linked to the MixUp coefficient. An exponential moving average of parameters with decay 0.999 is 
maintained, with evaluation choosing the better snapshot. Periodic graph augmentation drops 15% 
edges and adds 5%, then re-normalizes adjacency, discouraging overfitting. The graph is built from 
labeled pixels only, connecting nodes within a 5×5 window, with self-loops added and adjacency 
symmetrized and normalized. 

4.2. Metrics 

Performance was assessed using Overall Accuracy (OA), Average Accuracy (AA), the Kappa 
coefficient, and per-class accuracy. Ground-truth maps and predicted classification maps were 
provided for qualitative evaluation. At each epoch, the model was evaluated with OA, AA, and 
Cohen’s Kappa (κ). Per-class accuracy was also calculated for each class c. 

Overall Accuracy (OA).     
1

1 ˆOA ( )
N

i i
i

y y
N =

= =∑1  

Average Accuracy (AA).     
1

TP1AA
TP FN

C
c

c c cC =

=
+∑   

Cohen's Kappa (κ).          
1

o e

e

P P
P

κ
−

=
−

 

Where   oP  is the observed accuracy and eP  is the expected accuracy by chance. 

Per-Class Accuracy. Calculated for each class c as TP
Acc

TP FN
c

c
c c

=
+

. 

4.3. Results on Houston 2013 

The MS-GWCN was evaluated on the University of Houston 2013 hyperspectral-LiDAR dataset 
to assess classification performance and stability. It achieved an OA of ~94%, AA of ~93%, and κ ≈ 
0.93, with very low variance over five runs, indicating stable training. The tight variance suggests 
robust convergence due to regularization and multi-scale features. These metrics slightly surpass 
recent state-of-the-art HIS-LiDAR classifiers, which typically report 92-93% OA, confirming 
approach competitiveness. The Kappa range of 0.92–0.93 further confirms reliability, reflecting 
strong agreement beyond chance. An OA of 94% on this challenging dataset marks an improvement 
over earlier methods reporting 86-92% OA. Table 1 shows class-wise accuracies of MS-GWCN and 
aggregate metrics. The model performs well across most categories, with 12 of 15 land-cover classes 
exceeding 90%, and 5 above 98%. Notably, man-made surfaces like Tennis Courts and Running 
Tracks are classified almost perfectly (>96–99%), with Running Track at ~99.8%, thanks to its unique 
spectral signature and flat elevation. Synthetic Grass and residential buildings also reach about 99%, 
due to distinct spectral-spatial patterns and height differences. These high accuracies demonstrate 
MS-GWCN's ability to learn discriminative features for classes with notable spectral or structural 
traits. 

The more difficult classes are those with subtle spectral differences or limited spatial extent. For 
example, Stressed Grass (dry or unhealthy grass) achieved about 83–85% accuracy, slightly lower 
than Healthy Grass (~99%). This difference is due to the spectral similarity between stressed grass 
and other vegetation or soil backgrounds, making it inherently harder to distinguish based on spectral 
features alone. Our model does use LiDAR-derived height information, but since both grass types are 
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on the ground (no elevation contrast) and have only minor spectral differences, confusion between 
healthy and stressed grass patches still occurs. Similarly, the class Road (asphalt street surfaces) had 
one of the lower accuracies (~82%), likely because of the narrow and linear shape of road pixels at 
2.5 m spatial resolution, which causes mixed pixels and boundary confusion. Even advanced CNN or 
GCN models struggle with such thin structures—pure CNN classifiers tend to oversmooth or miss 
narrow roads, while graph-based classifiers can preserve road details but sometimes introduce speckle 
noise. In our results, roads are mostly detected, benefiting from LiDAR’s ability to distinguish ground 
level from elevated structures, but a few road pixels are misclassified as parking lots or driveways, 
which is understandable given their similar materials and layout. Overall, aside from these few classes, 
all other categories (like Trees, Buildings, Parking Lots) are identified with very high accuracy, 
generally 90–98%. Adding LiDAR data significantly improved the separation of certain categories. 
For instance, Trees versus Low Vegetation and Buildings versus Ground, by providing the crucial 
height dimension to differentiate tall objects from flat ones. This complementary use of multiple data 
sources is known to enhance classification accuracy, and our results confirm this trend. 

Table 1 The performance across these five runs summarizes OA, AA, and (κ) 
Classes Classes-names Accuracy (%) Classes Classes-names Accuracy (%) 

1 Healthy grass 82.08 ± 0.70 9 Road 86.18 ± 1.33 
2 Stressed grass 93.95 ± 2.15 10 Highway 84.16 ± 6.84 
3 Synthetic grass 99.72 ± 0.27 11 Railway 91.04 ± 6.05 
4 Tree 93.39 ± 1.50 12 Parking lot 1 87.17 ± 11.42 
5 Soil 92.73 ± 0.36 13 Parking lot 2 91.07 ± 0.29 
6 Water 99.44 ± 0.26 14 Tennis court 100.00 ± 0.00 
7 Residential 95.50 ± 1.07 15 Running track 99.38 ± 0.04 
8 Commercial 87.06 ± 1.03    

OA (%) 90.99 ± 0.41 
AA (%) 92.11 ± 0.35 

Kappa(×100) 90.22 ± 0.44 
Figure 2 shows the MS-GWCN land-cover map for Houston 2013, alongside ground truth and a 

baseline for comparison. The MS-GWCN map is clean, with large homogeneous regions correctly 
labeled and minimal noise. The graph convolution encourages smooth labeling among connected 
pixels, reducing salt-and-pepper noise common in pixel-wise classification. Unlike spectral CNNs, 
which can blur features, MS-GWCN preserves sharp boundaries and fine details like roads, thanks to 
localized graph wavelet filters that capture local variations without blurring. Its multi-scale wavelet 
design analyzes the graph at multiple resolutions, smoothing within classes while maintaining 
boundaries, keeping thin features visible and suppressing pixel-level noise. These results align with 
recent studies combining CNNs and GCNs for HSI–LiDAR data, with our approach using wavelet 
kernels to balance detail and smoothness. 

The MS-GWCN map reduces inter-class confusion, especially at class boundaries or mixed 
regions, by integrating hyperspectral and LiDAR data. This fusion helps disambiguate areas like 
building and tree interface, with LiDAR height differentiating features that spectral data alone might 
confuse. The model accurately labels boundary pixels, yielding maps with clear transitions aligned to 
ground truth. Multimodal learning leverages spectral signatures from HSI and geometric details from 
LiDAR, improving discrimination. The graph-based architecture enhances generalization, avoiding 
patchy errors and overfitting. Stable training with smooth convergence and regularization via graph 
wavelet convolutions results in robust, reproducible classification performance. 
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Figure 2 Classification maps on the Houston 2013 dataset over five independent runs. 

4.4. Discussion 

MS-GWCN shows consistent, robust results across five independent runs on the Houston 2013 
HSI+LiDAR benchmark, with tight performance metrics and low dispersion indicating stability and 
precision. Using a t-distribution for n=5, the 95% confidence intervals are provided for each metric, 
showing minimal variation across seeds. Visual and quantitative analyses confirm the consistent 
delineation of features like highways, vegetation edges, and small high-contrast categories, attributed 
to the multi-scale wavelet bank, which preserves discontinuities and enhances within-class 
consistency. Limiting the graph to labeled pixels significantly reduces computational costs without 
compromising accuracy, thanks to the local neighborhood, normalization, and self-loops that stabilize 
propagation. The training strategy combines a balanced loss function and EMA–checkpoint ensemble, 
improving accuracy, regularizing the model, and maintaining high AA and κ scores. The results 
demonstrate that MS-GWCN effectively combines multiscale reasoning and efficient graph 
construction for reliable urban classification. 

5. Conclusions 

In this paper, we propose the MS-GWCN model. It delivers high overall accuracy and balanced 
class-wise performance, outperforming or matching the best reported methods on this benchmark. 
The model excels at integrating complementary hyperspectral and LiDAR information, enabled by 
its graph-based deep learning framework that leverages spectral–spatial relationships. The use of 
multi-scale graph wavelet filters is a key contributor to its success, as they furnish localized, multi-
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resolution feature extraction on irregular data domains. This leads to classification maps that are both 
smooth within regions and precise at the boundaries, a difficult combination for traditional 
approaches. Ultimately, the proposed MS-GWCN demonstrates a state-of-the-art capability in 
multimodal remote sensing image classification, achieving reliable high accuracy while maintaining 
interpretability of the results. These findings suggest that graph-powered spectral-spatial techniques, 
especially ones incorporating wavelet-based convolutions, are a promising direction for complex data 
fusion tasks in the remote sensing community. The strong performance and stability of MS-GWCN 
on a challenging real-world dataset indicate its potential for deployment in practical land-cover 
mapping applications that require both accuracy and consistency. 
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