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Abstract: The surface defect detection of aluminum profiles is a crucial core link in 

industrial quality control. Traditional detection methods have practical problems such as 

easy missed detection of small-target defects and easy misjudgment in complex texture 

scenarios. This study constructs an efficient detection model suitable for the surface of 

aluminum profiles based on the YOLOv11 algorithm framework. EfficientViT is used to 

reconstruct the backbone network, and the multi-scale feature extraction capability is 

enhanced through hierarchical attention mechanisms and lightweight convolution operations. 

A Dynamic Deformable Feature Pyramid Network (DDFPN) is introduced, integrating 

RepGFPN re-parameterized connections, VoVGSCSP grouped convolution, and CoordAtt 

coordinate attention mechanism to achieve adaptive fusion of defect features and directional 

sensitivity perception. Experimental results show that compared with the original model, the 

improved EDHF-YOLO model significantly improves detection accuracy and greatly 

reduces calculation amount, effectively balancing detection performance and computational 

efficiency, and providing an innovative technical solution for surface defect detection of 

aluminum profiles. 

1. Introduction 

In industrial manufacturing, aluminum profiles are vital in aerospace, automotive, and construction 

for their excellent properties. Their surface quality is crucial, so efficient defect detection is key. 

Traditional methods are flawed, while CNN - based object detection algorithms like YOLO, 

balancing real - time and accuracy, show promise in industrial defect recognition with the 

development of computer vision and deep learning[1]. 

As the latest iteration of the YOLO algorithm, YOLOv11 exhibits superior performance in general 

object detection tasks. However, surface defect detection for aluminum profiles presents unique 

challenges [2]. Defects such as scratches, pits, and cracks on aluminum profiles exhibit significant size 

variations, with some minute defects occupying less than 1% of the pixel ratio, rendering them highly 

prone to being overlooked during detection. On the other hand, complex background textures, 
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including large-area oxide layers and extrusion patterns on aluminum surfaces, interfere with the 

model’s accurate defect identification, leading to frequent false positives[3]. 

To address these challenges, numerous scholars have conducted extensive research on industrial 

defect detection in recent years. In terms of algorithm optimization, some studies enhance model 

sensitivity to defect features by introducing attention mechanisms[4]. For example, embedding the 

CBAM (Convolutional Block Attention Module) into the Faster R-CNN framework significantly 

improves the accuracy of metal surface crack detection, but this approach struggles to achieve real-

time performance due to its high computational complexity[5]. 

Aiming at the limitations of existing research, this paper proposes a novel detection model, EDHF-

YOLO, based on the YOLOv11n model, integrating the practical requirements for precision and 

speed in aluminum profile surface defect detection. At the backbone network level, EDHF-YOLO 

replaces traditional convolutional architectures with EfficientViT[6], leveraging hierarchical attention 

mechanisms and lightweight convolutional operations to effectively extract multi-scale features. In 

the neck network, a Dynamic Deformable Feature Pyramid Network (DDFPN) is innovatively 

designed, combining RepGFPN’s re-parameterized cross-scale connections, VoVGSCSP’s grouped 

convolution feature enhancement, and the CoordAtt coordinate attention mechanism. This design 

improves the model’s ability to adaptively adjust feature fusion strategies while significantly reducing 

model complexity without compromising accuracy. 

2. The Proposed Method 

2.1 Enhanced YOLO Model 

 

 

Fig.1 EDHF-YOLO structure diagram 

This study introduces multiple modifications to YOLOv11. The backbone network is replaced 

with EfficientViT, which leverages hierarchical attention mechanisms to capture long-range 

dependencies and lightweight convolutional operations to enhance multi-scale feature extraction, 

thereby significantly improving the sensitivity to minute defects[7]. The neck network employs a 

Dynamic Deformable Feature Pyramid Network (DDFPN), incorporating three key innovations: 

RepGFPN, VoVGSCSP and CoordAtt. Specifically, RepGFPN enables adaptive cross-scale feature 

fusion through differentiable connections and re-parameterization design. The VoVGSCSP module 

strengthens local feature representation via grouped convolution and cross-stage connections, 

reducing computational redundancy. The CoordAtt(coordinate attention)mechanism is embedded in 
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the feature fusion path to enhance the model’s directional perception, effectively mitigating 

background texture interference. 

Based on these improvements, the EDHF-YOLO (Efficient Dynamic Hybrid Fusion YOLO) 

model is proposed, which maintains detection accuracy while significantly reducing computational 

complexity—achieving a balance between precision and efficiency to enhance surface defect 

detection for aluminum profiles. The network architecture of EDHF-YOLO is shown in Figure 1. 

2.2 EfficientViT 

EfficientViT employs a hybrid design that combines lightweight convolutions with attention 

mechanisms, reducing model parameters by approximately 20% compared to traditional CNN 

architectures. This design fully meets the dual requirements of high precision and low resource 

consumption in industrial inspection scenarios. Additionally, its dynamic feature routing mechanism 

adaptively adjusts the weight allocation of features across different scales, making it particularly 

suitable for detecting aluminum defects with significant size variations. 

The architecture of EfficientViT is illustrated in Figure 2. The right panel depicts the basic 

structural diagram of EfficientViT, including feedforward networks with depthwise convolutions 

(FFN+DWConv) and multi-scale linear attention modules. The left panel demonstrates the multi-

scale linear attention mechanism:after generating Q/K/V tokens through linear projection layers, 

lightweight small-kernel convolutions are employed to produce multi-scale tokens. These tokens are 

then processed by ReLU linear attention, and the outputs are finally concatenated and fed into a linear 

projection layer for feature fusion. 

 

Fig.2 Structure of EfficientViT 

In this paper, the third and fourth C3K2 blocks along with Conv modules in the YOLOv11 

Backbone are replaced with EfficientViT, enhancing multi-scale feature extraction capability through 

the introduction of a hierarchical Transformer architecture. While achieving a 31.5% reduction in 

parameter count, the improved backbone significantly enhances feature extraction for aluminum 

profile defects, laying a foundation for subsequent Neck optimization. 

2.3 Dynamic Adaptive Feature Pyramid Network (DAFPN) 

This study presents an innovative design for the Neck component of YOLOv11, proposing 

a Dynamic Deformable Feature Pyramid Network (DDFPN). The network effectively enhances 

multi-scale feature fusion efficiency through three improvement strategies. By integrating 

RepGFPN’s re-parameterized cross-scale connection technology, VoVGSCSP’s grouped 

convolution feature enhancement method, and the CoordAtt coordinate attention mechanism, 
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DDFPN constructs a three-level processing architecture comprising dynamic connection, feature 

enhancement, and directional perception. This architecture is particularly suitable for aluminum 

profile surface defect detection, enabling it to address challenges such as significant defect size 

variations and irregular morphologies. 

2.3.1 RepGFPN 

As a key component of DDFPN, RepGFPN (Reparameterized Generalized Feature Pyramid 

Network) breaks through the limitations of static fusion in traditional FPN by leveraging 

differentiable connection weights and re-parameterization techniques[8]. RepGFPN primarily 

addresses the inefficiency of traditional FPN in multi-scale feature integration. The core advantage 

of this module lies in its ability to enable efficient interaction between high-level semantic features 

and low-level spatial features with a more lightweight structure, making it particularly suitable for 

tasks with high real-time requirements, such as the aluminum profile surface defect detection studied 

in this paper. 

RepGFPN replaces traditional fixed paths with differentiable connections to enable dynamic 

adjustment of the feature fusion process.During the training phase, RepGFPN maintains a multi-

branch structure to capture rich features; during inference, it converts the multi-branch structure into 

a single path through weight fusion, significantly enhancing computational efficiency. This 

decoupling strategy between training and inference architectures reduces computational overhead 

while preserving model performance. 

2.3.2 VoVGSCSP grouped convolution enhancement 

As the core component of the VoVGSCSP module, Grouped Shuffle Convolution (GSConv) offers 

significant advantages in lightweight network design. The structure diagram of GSConv generation 

is shown in Figure 3.This component seamlessly integrates Depthwise Separable Convolution 

(DWConv) with the Ghost feature map principle[9]. First, DWConv performs spatial feature extraction 

on the input feature map along the channel dimension, effectively avoiding redundant channel 

computations in traditional convolutions and fundamentally reducing computational overhead. 

Subsequently, leveraging the Ghost mechanism, a small number of real convolution operations 

generate "ghost" feature maps, significantly reducing the computational cost of feature generation by 

reusing existing feature information. The process is illustrated in Formulas (1) and (2): for an input 

feature 𝐹 ∈ ℝ𝐶×𝐻×𝑊 ,it is first divided into two subgroups 𝐹1, 𝐹2 ∈ ℝ𝐶/2𝑋𝐻𝑋𝑊  , each undergoing 

convolution operations: 

𝐹1
′ = 𝐶𝑜𝑛𝑣(𝐹1), 𝐹2

′ = 𝐶𝑜𝑛𝑣(𝐹2) (1) 

Subsequently, information interaction is achieved through the Channel Shuffle operation: 

Fout = Shuffle([F1
′ , F2

′ ]) (2) 

This design significantly reduces the number of parameters in the module while enhancing feature 

reusability, making it particularly suitable for feature extraction in complex texture scenarios of 

aluminum profile surfaces. 

In the neck of YOLOv11, VOV-GSCSP is appropriately integrated with GSConv. This integration 

leverages the characteristics of DWConv and Ghost to reduce parameters and computational 

complexity, making the model lighter and inference faster. Meanwhile, more accurate and 

comprehensive feature extraction enhances the capture of aluminum profile defects, improving 

detection accuracy. This achieves a balance between lightweight design and high performance, 

meeting the requirements of industrial quality inspection scenarios. The generated structure diagram 
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of GSConv is shown in Figure 3. 

 

Fig.3 Structure of GSConv 

2.3.3 CoordAtt directional perception mechanism 

CoordAtt enhances the model's ability to perceive directional features of defects by decomposing 

spatial attention into horizontal and vertical directional attentions. It has obvious advantages over 

classic mechanisms like SE (Squeeze-Excitation) and CBAM (Convolutional Block Attention 

Module). SE only focuses on channel dependencies, compressing spatial information through global 

pooling, which easily leads to loss of positional details. In contrast, CoordAtt decomposes channel 

attention into 1D pooling operations along X and Y directions, capturing long-range dependencies in 

a single dimension while preserving precise positional information in the other dimension. This meets 

the localization requirements for defects of different scales in aluminum profile defect detection, 

Therefore, the CoordAtt directional perception mechanism enables more accurate detection of 

aluminum profile defects under complex texture backgrounds, demonstrates stronger generalization 

in tasks such as object detection and semantic segmentation, and aligns with the characteristics of 

aluminum profile surface defect detection. 

3. Experiments 

3.1 Experimental Environment 

The experimental runtime environment is based on a Windows 11 64-bit operating system, 

equipped with an Intel Core i7-11800H processor and an NVIDIA GeForce RTX 3060 discrete 

graphics card. The GPU features 6GB GDDR6 video memory and operates with the CUDA 11.8 

computing platform, providing robust parallel computing support for deep learning model training. 

The system is configured with 16GB RAM to ensure smooth data reading and computational 

processes. The development environment employs Python 3.8 programming language and constructs 

algorithm models based on the PyTorch 2.0.1 deep learning framework, fully leveraging its dynamic 

computational graph characteristics and distributed training capabilities. 

3.2 Dataset and Preprocessing 

The aluminum profile dataset used in this experiment is derived from the Guangdong Industrial 

Intelligent Manufacturing Big Data Innovation Competition on Alicloud Tianchi, targeting technical 

challenges in industrial quality inspection scenarios. The dataset comprises 3,416 aluminum profile 

images from real production environments, including 1,828 single-defect samples and 1,588 multi-

defect samples in the training set. Defect types cover nine typical industrial defects such as dirt spots, 

paint bubbles, and scratches. All images have a uniform resolution of 2560×1920, with YOLO-format 

label files generated using the Labelme annotation tool, making it highly suitable for model training 

in object detection tasks. 
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This study employs a multi-dimensional data augmentation strategy. Geometric transformations 

such as cropping, translation, rotation, and mirroring are used to simulate the different spatial 

distributions of defects on aluminum profiles. Photometric transformations including brightness 

adjustment and Gaussian noise addition are applied to mimic complex lighting and industrial 

environmental interference. Meanwhile, the Cutout technique is introduced to randomly erase local 

regions of images, forcing the model to learn global defect features and effectively enhancing the 

model's generalization ability for tiny defects and occluded scenarios. 

3.3 Evaluation Metrics 

To comprehensively evaluate the performance of the model in aluminum profile defect detection, 

this study employs mean average precision (mAP), precision, recall, giga floating-point operations 

(GFLOPs), and frames per second (FPS) as core evaluation metrics[10]. These metrics quantitatively 

analyze the model's practical performance in industrial quality inspection scenarios from dimensions 

including detection accuracy, localization precision, and real-time capability.Relevant calculation 

formulas are as follows: 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1
(3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5) 

𝐹𝑃𝑆 =
1

𝑇𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒
(6) 

In the formulas, TP represents the number of defect samples correctly detected by the model, FP 

denotes the number of normal samples misclassified as defects, FN indicates the number of defect 

samples missed by the model, and 𝑇𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the inference time for a single image. 

3.4 Efficiency Analysis of EfficientViT 

To explore the optimal deployment position of EfficientViT in the backbone network, this paper 

designs five sets of comparative experiments as shown in Table 1. The evaluation metrics include 

mean average precision (mAP, %), number of parameters (Params/M), GFLOPs, and inference frame 

rate (FPS). The first to fourth C3K2 modules in the Backbone of YOLOv11 were respectively 

replaced with EfficientViT (denoted as EVT-1 to EVT-4), and the effect of simultaneously replacing 

the third and fourth modules (EVT-3&4) was tested. The analysis focuses on the correlation between 

the replacement position and the feature hierarchy. 

Table 1 EfficientViT module validity experiments 

Model mAP% Params/M GFLOPs FPS 

YOLOv11n 82 7.6 16.5 68 

YOLOv11-EVT-1 82.5 6.8 15.6 67 

YOLOv11-EVT-2 83.8 6.3 15.8 67 

YOLOv11-EVT-3 83.7 5.8 15.0 66 

YOLOv11-EVT-4 84.5 5.6 14.7 65 

YOLOv11-EVT-3&4 84.6 5.2 14.5 64 

Table 1 shows that as the replacement position of EfficientViT shifts backward, the mAP increases 

from 82% to 82.5%. This is because the lower resolution of feature maps in deeper layers reduces the 
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computational cost of EfficientViT's windowed attention with decreasing dimensions, while its long-

range dependency modeling capability enables more efficient extraction of global structures for 

defects like linear scratches and large-area paint bubbles. The table indicates that replacing the 3rd 

and 4th C3K2 modules yields the most significant improvement in joint detection accuracy for cross-

scale defects on aluminum profiles. This is because the third and fourth layers of the backbone 

network, located in the middle-high layers of the feature pyramid, integrate semantic information and 

spatial positioning capabilities. In the EVT-3&4 configuration, the model dynamically suppresses 

background textures of aluminum profiles via attention weights to reduce invalid computations, 

maintaining an FPS of 64 to meet industrial real-time detection requirements. Thus, replacing middle-

high layers represents the optimal balance between accuracy and lightweight design. 

3.5 Ablation Study 

By systematically removing or replacing each module, the experiment performs comparative 

analysis on performance changes of the model in aluminum profile defect detection scenarios, thereby 

clarifying the specific impacts of different innovations on metrics such as detection accuracy and real-

time capability. The results of relevant ablation experiments are detailed in Table 2, providing a 

quantitative basis for validating the effectiveness of each model component.  

Table 2 Results of different improved ablation test of YOLOv11 

Method EfficientViT DDFPN P/% mAP/% Params/M GFLOPs Model Size/MB 

YOLOv11   86 82 7.6 16.5 16.2 

A √  87 84.6 5.2 14.5 13.4 

B  √ 86 85 4.8 12 12.8 

C √ √ 90 88 5.2 10.3 14.3 

The ablation experiment results show that each improved module has a differentiated impact on 

the performance of the YOLOv11 model. After replacing the Backbone with EfficientViT 

(Experiment A), the model's parameter count (Params/M) decreased by 2.4, the computational load 

(GFLOPs) was reduced to 14.5, and the model size (Model Size/MB) was compressed to 13.4. This 

is attributed to EfficientViT's hierarchical attention mechanism and lightweight convolution design, 

which achieves redundant parameter reduction by dynamically allocating computational resources. 

The precision (P%) and mean average precision (mAP%) increased by 1% and 2.6%, respectively. 

The introduction of the Dynamic Deformable Feature Pyramid Network (DDFPN, Experiment B) 

further optimizes multi-scale feature fusion capabilities. Its internal dynamic convolution and 

adaptive weight allocation mechanisms enable the model to reduce parameters to 4.8 and 

computational load to 12 while increasing mAP% to 85, verifying the module's balanced detection 

capability for defects of different scales. However, the precision remains unchanged, indicating that 

the optimization of the feature pyramid has limited effect on false detection suppression and needs to 

be synergistically improved with other modules. 

The final Experiment C, integrating the two improved modules, achieves a comprehensive 

breakthrough in the performance of the EDHF-YOLO model. The mAP% reaches 88%, the precision 

increases to 90%, while maintaining low parameter count and computational load. This indicates that 

the basic feature extraction capability provided by EfficientViT, the multi-scale optimization of 

DDFPN form complementary advantages. The model not only meets the high-precision requirements 

for micro-target recognition in aluminum profile defect detection but also adapts to the real-time 

requirements of industrial scenarios through lightweight design, validating the effectiveness of the 

multi-module collaborative improvement strategy. 
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3.6 Validation of Model Improvement Effect via Grad-CAM 

This experiment utilizes Grad-CAM (Gradient-weighted Class Activation Mapping) technology 

to visually demonstrate the improvement effect of the optimized model[11]. As a gradient-based 

visualization method, Grad-CAM generates an attention heatmap of the target class on the input 

image by calculating the weights of the last convolutional feature maps in the convolutional neural 

network.  The comparison results of training heatmaps between YOLOv11 and the improved EDHF-

YOLO are shown in Figure (4). 

    
YOLOv11 

    
EDHF-YOLO 

Fig.4 Heatmap Comparison 

The improved model exhibits a distinct "activation focusing" feature in Grad-CAM heatmaps. 

Unlike the original model's wide-range warm-color activation regions, the optimized EDHF-YOLO 

concentrates high-activation areas (red, orange) on the defect cores, with background regions 

dominated by cool tones (blue). Taking linear scratches on aluminum profiles as an example, the 

original model's heatmap often activates normal metal textures alongside defect edges, while the 

improved model forms compact warm regions only at gradient mutation areas of scratches, reducing 

the activation range by approximately 40%. This technique demonstrates that the model has achieved 

a transition from generalization-based detection using statistical features to intelligent discrimination 

using semantic features through precise activation, providing a theoretical basis and visual evidence 

for the practical deployment of industrial vision systems. 

3.7 Experimental Detection Effect Validation 

    

YOLOv11n 

    

EDHF-YOLO 

Fig.5 Comparison of detection effect 
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As shown in Figure 5, the detection results of the original YOLOv11n model and the improved 

EDHF-YOLO model form a sharp contrast. In the detection images, target defects are all marked with 

rectangular boxes for category labels and confidence values. 

The first row of images in the figure shows the detection results of YOLOv11n, and the second 

row shows those of EDHF-YOLO. Compared with the original model, the EDHF-YOLO model 

proposed in this paper—with backbone network reconstruction, dynamic feature pyramid 

optimization—exhibits significantly improved detection performance. These visual results intuitively 

confirm that the EDHF-YOLO model demonstrates higher reliability and practicality in industrial 

defect detection, capable of providing more precise quality inspection support for actual production 

scenarios. 

  

Fig.6 Comparison curve of mAP@0.5% and loss before and after improvement 

Figure 6 (a) and (b) show the mAP@0.5 and Loss comparison plots of the YOLOv11n model and 

the improved EDHF-YOLO model, respectively. As indicated in Figure (a), compared with the 

original YOLOv11n, the EDHF-YOLO model not only demonstrates a significant improvement in 

mAP@0.5% but also features a more stable curve in the later training phase. Figure (b) shows that 

the improved model has a faster convergence speed for Loss, with a smoother curve. 

4. Conclusion 

The improved EDHF-YOLO model possesses remarkable advantages such as lightweight design, 

high detection accuracy, and strong environmental adaptability. While maintaining efficient inference 

speed, it significantly improves the accuracy of industrial defect detection, basically meeting the strict 

requirements of real-time quality inspection in aluminum profile production lines. However, in 

extremely complex scenarios where defects are highly similar to normal textures or multiple defects 

overlap, the model still has some missed detections. Future research will focus on the deep integration 

innovation of Transformer and convolutional networks, explore the application of self-supervised 

learning and domain adaptation technology in expanding industrial datasets, and further enhance the 

model's generalization ability for complex scenarios, providing better solutions for the development 

of industrial visual inspection technology. 
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