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Abstract: Active distribution networks (ADN) designed to accommodate high-proportion 

renewable energy consumption face challenges such as insufficient grid structure flexibility, 

power flow fluctuations, and voltage over-limits at high renewable energy penetration rates. 

Optimizing the grid structure and coordinating flexible resource planning are urgently 

needed to improve system absorption capacity and operational safety. This paper constructs 

a multi-objective planning model based on source-grid-load-storage coordination, 

incorporating grid structure optimization, distributed energy storage configuration, and 

adjustable load scheduling into a unified framework. The objective function covers 

maximizing the renewable energy absorption rate, minimizing operating costs, and voltage 

deviation constraints. The steps include: (1) establishing a time series model that considers 

distribution network trends and uncertainties; (2) introducing a typical scenario generation 

method to characterize renewable energy output fluctuations; (3) constructing a mixed 

integer linear programming to coordinately optimize grid reconstruction, energy storage 

layout, and flexible load scheduling; (4) using an improved genetic algorithm for solution 

and designing a multi-scenario iterative convergence mechanism. Case studies show that 

compared to a traditional fixed grid structure, the optimized system's renewable energy 

absorption rate increases to 93%, with average daily operating costs as low as ¥9800, and 

the average voltage over-limit probability decreases to 3.01%, significantly enhancing the 

flexibility and clean energy utilization of ADN. 

1. Introduction 

The high proportion of renewable energy integration has profoundly changed the operational 

characteristics of ADNs. Distributed photovoltaic and wind power output exhibits significant 

volatility and intermittency. Combined with load-side uncertainties, the system faces challenges 
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such as voltage excursions, repeated power flow fluctuations, and localized grid constraints. 

Relying solely on traditional architectures often makes it difficult to maintain stable operations. 

ADNs urgently need to develop new coordination mechanisms that leverage grid structure 

flexibility and resource adjustability to ensure the full absorption and efficient transmission of clean 

energy within the network. 

In this context, it is crucial to comprehensively consider the multi-dimensional factors of power 

generation, grid, load, and storage for joint scheduling and planning. The reconfigurability of the 

grid structure provides spatial flexibility, the transferability of energy storage can balance 

time-series differences, and adjustable loads enable optimized coordination on the load side. By 

establishing a multi-objective optimization model that integrates absorption capacity, economic 

efficiency, and voltage safety into a unified framework, it can provide system-level support for 

ADN in an environment with an increasing proportion of renewable energy. 

This paper constructs a mixed-integer linear model that incorporates grid optimization, energy 

storage placement, and load regulation, and introduces an improved genetic algorithm and a 

multi-scenario generation strategy to solve the problem, achieving a dual integration of modeling 

and algorithmic approaches. This unified framework balances the absorption of renewable energy 

and operational safety, demonstrating a technical approach for optimizing ADN operations under 

conditions with a high proportion of renewable energy. A case study verifies the effectiveness and 

engineering value of the research approach. 

2. Related Work 

Research on ADN has been carried out in different directions, involving grid structure 

optimization, distributed resource allocation and digital modeling methods. Different research entry 

points emphasize multi-level exploration from power electronic devices to probabilistic modeling 

and multi-attribute evaluation, forming a relatively rich reference system. Liu et al. proposed a 

multi-objective collaborative optimization method for DC distribution network grid structure and 

DPV [1]. This method considers the correlation between photovoltaic output and load power 

uncertainty factors, uses a two-dimensional Gaussian mixture model to model the source-load joint 

probability distribution, and constructs a typical scenario set by the acceptance-rejection sampling 

method. In order to absorb distributed energy such as photovoltaics, electric vehicles, and energy 

storage batteries and realize the optimal distribution of power in the distribution network, Xiao et al. 

proposed an AC/DC intelligent distribution network structure based on power electronic flexible 

devices [2]. Chen et al. took the distribution network planning of multiple regions as the research 

object, and used the proposed hybrid multi-attribute evaluation optimization model to analyze the 

optimal grid suitable for construction under the differentiated needs of different regions, and 

verified the effectiveness of the proposed model [3]. Zhang et al., based on the inspiration of the 

advanced power grid in Paris, France, proposed relatively clear definitions of "strong, simple, and 

weak" for high and medium voltage distribution networks, and established a set of typical 

coordination scheme optimization models for high and medium voltage distribution network 

structure based on safety, reliability and economic evaluation [4]. Wen et al. defined the concept of 

load release and proposed a distribution network grid structure economic calculation model that 

takes into account the load release process [5]. The model takes into account the dynamic operating 

network loss and power outage loss of the distribution network during the load release process, and 

quantitatively evaluates the economic efficiency of the distribution network grid structure from the 

perspective of the overall planning period. Xu et al. proposed a grid mapping edge computing 

structure to drive the emerging digital distributed distribution network [6]. Deka et al. summarized 

and compared recent research results on distribution network topology identification and detection 
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schemes, and established effective connections between them [7]. Stefenon et al. proposed using 

segmentation and edge detection techniques to expand the database, so that classification can be 

performed using the Inception v3 deep neural network model [8]. Jiang et al. identified and 

compared the topological structure of SOP as a multifunctional power electronic device, including 

back-to-back voltage source converter, multi-terminal voltage source converter, unified power flow 

controller and direct AC-AC modular multilevel converter [9]. Helmi et al. proposed a novel and 

effective optimization framework to solve the reconstruction problem of modern distribution 

networks [10]. Although existing studies have proposed a variety of methods, they often lack 

systematicity in source-grid-load-storage coupling modeling and global optimization mechanisms. 

This paper constructs a unified multi-objective framework and combines it with an improved 

genetic algorithm to seek an overall balance between absorption, economy and voltage stability. 

3. Methodology 

3.1 Objective Function Setting 

The goal of maximizing the renewable energy consumption rate is achieved by calculating the 

ratio of actual grid-connected renewable energy power to the total renewable energy power that can 

be generated, defined as: 

F1=max
∑  t∈T Pt

RES,used
⋅Δt

∑  t∈T Pt
RES,avail

⋅Δt
(1) 

Pt
RES,used

 is the renewable energy output utilized in period t, and ∑  t∈T Pt
RES,avail

 is the 

renewable energy output available in that period. The goal of operating economy is modeled by the 

total system operating cost, which includes the electricity purchase cost, energy storage operation 

expenditure and line loss, and is expressed as [11]: 

F2=min(∑  t∈T Ct
buy
Pt
grid

Δt+∑  i∈S Ci
stor
(Pi,t

ch+Pi,t
dis)Δt+∑  l∈L Cl

loss
Pl,t
lossΔt)(2) 

Ct
buy

 is the electricity purchase price in the electricity market, Pt
grid

 is the exchange power with 

the upper grid, and Ci
stor

 is the energy storage unit operating cost coefficient. Pi,t
ch, Pi,t

dis represent 

the energy storage charging and discharging power, respectively, and Cl
loss

 incorporates the line 

loss price. The voltage quality constraint uses the deviation of each node voltage from the rated 

value as a penalty term, expressed as: 

F3=min∑  t∈T ∑  n∈N wn|Vn,t-V
ref|(3) 

Vn,t is the voltage amplitude at node n during time period t, Vref is the rated voltage, and wn is 

the penalty weight. These three objectives are jointly solved through a weighted or hierarchical 

optimization approach to achieve a multi-objective optimization result: maximizing renewable 

energy output, minimizing operating costs, and stabilizing voltage levels. 

3.2 Specific Steps 

3.2.1 Constructing a Time Series Model Including Power Flow and Uncertainty 

The time series model needs to describe the power balance and network status of the distribution 

network in each discrete time period, and take into account the random fluctuations of renewable 

energy and load. The power flow calculation of the distribution network is based on branch currents, 

and the relationship between node injection power and voltage amplitude is expressed as: 
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Pn,t+jQn,t
=Vn,t∑  m∈Ωn

(
Vn,t-Vm,t

Znm
)
*

(4) 

Pn,t and Q
n,t

 are the active and reactive power injections into node n during period t, Vn,t is the 

node voltage, Znm is the line impedance, and Ωn represents the set of nodes adjacent to node 

n[12]. Uncertainty is introduced through scenario-based methods. New energy power and load 

levels are generated by sampling using probability distributions to ensure that different scenarios 

can cover typical daily operating patterns. The constraint relationship is: 

Pt,s
RES=P̂t

RES
+ϵt,s,Pt,s

Load=P̂t
Load

+δt,s(5) 

Pt,s
RES represents the output of scenario s at time period t, P̂t

RES
 and P̂t

Load
 are predicted values, 

and ϵt,s and δt,s represent the random disturbances under scenario s. By combining power flow 

balance constraints with scenario-based load and output data, the system's operating state can be 

fully characterized for each time period and scenario. 

3.2.2 Characterizing Renewable Energy Volatility Using Representative Scenario Generation 

Renewable energy volatility modeling relies on historical output data and forecast results, 

converting high-dimensional random sequences into a limited number of representative scenarios to 

reduce computational complexity. A large number of candidate sequences are obtained through 

Monte Carlo sampling, and then grouped using K-means clustering. Each group of samples is 

represented by a typical day, expressing the characteristics of renewable energy output under 

different operating conditions [13]. The similarity between the candidate scenario and the typical 

scenario is measured using the Euclidean distance, which is defined as: 

ds,k=√∑  t∈T (Pt,s
RES-Pt,k

RES)
2
(6) 

Pt,k
RES represents the representative output corresponding to the cluster center. After clustering is 

completed, the probability of occurrence of each typical scenario is obtained based on the sample 

ratio, expressed as: 

πk=
|Sk|

∑  j |Sj|
(7) 

Table 1: Typical PV Output Data 

Period Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

1 0.05 0.10 0.08 0.12 0.07 

2 0.20 0.25 0.22 0.28 0.18 

3 0.55 0.60 0.62 0.58 0.50 

4 0.88 0.92 0.95 0.85 0.90 

5 0.70 0.75 0.72 0.78 0.68 

6 0.15 0.18 0.20 0.22 0.16 

|Sk| is the number of samples in the cluster. This approach not only reduces the number of 

scenarios but also preserves the statistical characteristics of renewable energy fluctuations. Table 1 

presents typical PV output data, including normalized results for six time periods and five typical 

scenarios, reflecting the differences between morning and evening troughs and midday peaks. 

This table shows the distribution of output differences across different scenarios, which can be 

used for probability-weighted calculations in subsequent optimization. 
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3.2.3 Establishing a Mixed Integer Linear Programming Model to Handle Multivariate 

Optimization 

The mixed integer linear programming model introduces Boolean variables on top of continuous 

variables to characterize the switchability of the grid structure and the start/stop states of flexible 

resources. This allows for a unified description of power flow constraints, equipment operating 

boundaries, and optimization objectives. The line switch status is represented by a binary variable, 

which enables the distribution network topology to be dynamically adjusted under different 

operation schemes and ensures the linear approximation of the network physical laws [14]. The 

node power balance must be satisfied in each time period and scenario, which is expressed as: 

Pn,t,s
Gen+Pn,t,s

Grid+∑  i∈Ωn
Pi,t,s
stor=Pn,t,s

Load+∑  l∈Ωn
Pl,t,s
flow(8) 

Pn,t,s
Gen is the node's local renewable energy output, Pn,t,s

Grid is the upper grid exchange power, Pi,t,s
stor 

is the energy storage unit charge and discharge power, and Ωn represents the branch or device 

collection connected to the node. Line loss and current limit are linearized, and line flow switch 

variables are introduced to ensure reasonable routing. The constraint form is: 

-Pl
max⋅y

l
≤Pl,t,s

flow≤Pl
max⋅y

l
(9) 

y
l
 is a binary variable indicating whether the line is operational, and Pl

max is the rated capacity 

of the line. In this way, grid structure reconstruction and energy storage and load regulation 

decisions are integrated into the MILP solution framework, enabling direct constraint solving of the 

multi-objective optimization function, ensuring both mathematical feasibility and optimality of the 

results. 

3.2.4 Introduction of an Improved Genetic Algorithm 

When solving mixed-integer linear programming, genetic algorithms use chromosomes to 

represent grid switching states and energy storage operation strategies. The fitness function is 

composed of a weighted combination of renewable energy consumption rate, operating costs, and 

voltage deviation. To avoid falling into local optimality, adaptive crossover and mutation operators 

are introduced. Specifically, the probability is dynamically adjusted based on the iterative algebra. 

When the population diversity is insufficient, the mutation rate is increased, and when the 

convergence trend is obvious, the crossover rate is reduced. The mathematical form of fitness 

calculation is: 

Fit(x)=α⋅
∑  t Pt

RES,used

∑  t Pt
RES,avail -β⋅Cop(x)-γ⋅ ∑  n,t |Vn,t-V

ref|(10) 

α,β,γ are the weight coefficients, which represents the operating cost of scheme x. The voltage 

deviation is calculated as the absolute difference. The selection of parent and offspring is completed 

by roulette combined with tournament strategy to enhance the replication probability of excellent 

individuals [15]. The expression of dynamic crossover probability is: 

p
c
=p

c,min
+(p

c,max
-p

c,min
)⋅

fmax-f
'

fmax-favg
(11) 

f
'
 is the fitness of the individuals participating in the crossover, fmax and favg are the maximum 

and average fitness, respectively, and p
c,min

 and p
c,max

 are the upper and lower bounds. The final 

result is a global optimal solution achieved through multiple iterations. The algorithm maintains the 

search range while improving convergence speed. Table 2 shows the convergence of the mean and 

80



optimal fitness values at different generations of the genetic algorithm. 

Table 2: Convergence of the mean and optimal fitness values 

Generation Average 

Fitness 

Best 

Fitness 

Crossover 

Probability 

Mutation 

Probability 

Feasibility 

Rate 

10 0.62 0.70 0.82 0.09 91% 

20 0.71 0.80 0.78 0.07 94% 

30 0.77 0.86 0.74 0.06 96% 

40 0.83 0.91 0.70 0.05 97% 

50 0.87 0.94 0.66 0.04 98% 

60 0.89 0.96 0.64 0.03 99% 

This table shows that individual fitness gradually improves during the iteration process, 

crossover and mutation probabilities dynamically adjust with changes in diversity, and the solution 

feasibility rate approaches stability with iteration. 

4. Results and Discussion 

4.1 Example Comparison 

4.1.1 New Energy Absorption Rate 

The case study selected a 30-node distribution system, using a typical summer daily load curve 

as the background. The photovoltaic and wind power curves were derived from historical data 

superposition error simulations. The installed energy storage capacity was set at 20% of the total 

peak load, and the electricity purchase price was based on a real-time price sequence. This method 

was compared with a standard genetic algorithm and particle swarm optimization. The runtime 

covered a 24-hour period, and the available output of renewable energy was generated based on 

scenario generation. The optimal scheduling solution was solved under different algorithmic 

frameworks. The effectiveness of each method in improving the absorption rate is shown in Figure 

1: 

 

Figure 1: New Energy Absorption Rate 

The results show that the differences between the curves of the different algorithms are smaller 

during low-load periods, but are more pronounced during peak renewable energy output periods. 

The proposed method achieves an absorption rate of 0.93, significantly outperforming the 

comparison algorithm, and remains above 0.85 during most periods. This demonstrates that the 

combination of a mixed-integer linear model and an improved genetic algorithm can effectively 

achieve resource matching and dynamic topology adjustment, improving the efficiency of 
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renewable energy utilization during periods of high power output. It also maintains stable 

performance during periods of fluctuating power output. The comparative method exhibits 

significant limitations during periods of high power consumption, indicating that its search 

capabilities are insufficient for globally coordinating energy storage and power purchase selection. 

4.1.2 System Daily Operating Cost 

In the economic performance test, the system still used the same node scale and renewable 

energy timing curve as input, but the evaluation metric shifted to total operating costs, including 

electricity purchase expenses, energy storage lifespan loss, and network loss costs. Average daily 

operating costs were calculated over eight days. To ensure a fair comparison, all algorithm 

parameters were configured according to commonly recommended values, and the number of 

iterations and swarm size remained consistent. Therefore, the only differences stemmed from the 

search mechanism and modeling capabilities. This method was compared with particle swarm and 

traditional genetic algorithms, and the results are shown in Figure 2. 

 

Figure 2: Daily Average Operating Cost (k¥) 

This method maintains lower costs than the comparison algorithm during most periods. It also 

avoids the cost spikes that occur during certain periods due to simply reducing electricity purchases. 

Instead, it provides a more flexible start-stop combination during peak periods, resulting in a more 

balanced use of energy storage output. The lowest daily average operating cost reaches ¥9800. The 

overall operating cost of the genetic algorithm is relatively high, primarily due to the fixed 

crossover and mutation parameters, which results in slow convergence and prevents some feasible 

solutions from appearing within a finite number of iterations. The particle swarm algorithm 

performs slightly better, but lacks a mechanism to break away from local convergence, leading to 

significant performance differences during the most cost-sensitive morning rush hour. Overall, the 

improved method's economic advantages complement its improved consumption rate, 

demonstrating strong overall optimization capabilities. 

4.1.3 Voltage Exceeding Probability 

The test was conducted under the same system topology, but with increased load and renewable 

energy disturbance amplitudes. Multi-scenario Monte Carlo sampling was used to construct 

randomized cases. Each scenario lasted 15 minutes, and the total sample size was set to 200. Each 

algorithm independently obtained a scheduling plan and counted whether the node voltage exceeded 

the rated boundary. The exceeding probability was then calculated to ensure that the results reflect 

the method's ability to support voltage stability under uncertain shocks. Figure 3 shows the specific 

results. 
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Figure 3: Voltage Exceeding Probability 

The average voltage exceeding probability for this method is 0.0301, compared to 0.0612 for the 

genetic algorithm and 0.0535 for the particle swarm. This indicates that the proposed method 

reduces the voltage exceeding probability by almost half. This is because the constructed constraint 

model considers voltage boundaries when adjusting the energy storage and grid topology, reducing 

local overshoots. The comparative method lacks this global coupling mechanism, making it more 

likely to exceed the limit in high-disturbance scenarios. 

4.2 Results Analysis 

A comprehensive example demonstrates the advantages of proposed method across three metrics: 

renewable energy consumption rate, operational economics, and voltage over-limit probability. First, 

regarding consumption rate, the improved algorithm not only achieves a maximum utilization rate 

of 0.93 during peak hours but also maintains a rate above 0.85 during most periods, significantly 

alleviating wind and solar curtailment. This effectiveness is closely related to the optimization 

search capability and dynamic topology adjustment. Regarding economic indicators, the average 

daily cost for eight consecutive days was lower than that of the control method, reaching a 

minimum of ¥9800. This demonstrates superior decision-making capabilities based on a 

multi-objective trade-off, managing both electricity purchase costs and energy storage lifespan. In 

terms of voltage safety, the average over-limit probability decreased by approximately 51% and 44% 

compared to the genetic algorithm and particle swarm optimization algorithms, respectively, 

demonstrating stronger adaptability to uncertainty. This is due to the model's effective incorporation 

of voltage constraints under random perturbations. Overall, the proposed improved genetic 

algorithm and MILP coupling framework achieves a balanced approach of increasing the power 

consumption rate, improving economic efficiency, and balancing voltage safety. Compared to 

simple search algorithms, it offers substantial improvements in globality and robustness. 

5. Conclusion 

This paper addresses the operational challenges of ADNs under conditions with a high 

proportion of renewable energy and proposes a multi-objective optimization framework for 

source-grid-load-storage collaboration. This framework achieves unified coupling of grid 

reconfiguration, energy storage configuration, and load scheduling at the model level. At the 

algorithmic level, it enhances global search and robustness through improved genetic strategies and 
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scenario iteration mechanisms. Case studies demonstrate that this approach can consistently 

maintain high absorption levels, superior economic efficiency, and more controllable voltage 

security in complex operating environments, validating the role of collaborative optimization in 

improving system flexibility and renewable energy utilization. Compared with traditional methods, 

the proposed framework not only demonstrates stability across various operational scenarios but 

also provides a more feasible planning and scheduling approach for ADN operations. However, it 

should be noted that the model still has limitations in terms of parameter dependence and scenario 

construction, and uncertainties in actual conditions may be even more complex. Therefore, future 

research could further incorporate higher-dimensional stochastic modeling and multi-agent 

collaborative control to expand the method's applicability to ultra-large-scale distribution systems 

and real-time scheduling. 
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