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Abstract: Active distribution networks (ADN) designed to accommodate high-proportion
renewable energy consumption face challenges such as insufficient grid structure flexibility,
power flow fluctuations, and voltage over-limits at high renewable energy penetration rates.
Optimizing the grid structure and coordinating flexible resource planning are urgently
needed to improve system absorption capacity and operational safety. This paper constructs
a multi-objective planning model based on source-grid-load-storage coordination,
incorporating grid structure optimization, distributed energy storage configuration, and
adjustable load scheduling into a unified framework. The objective function covers
maximizing the renewable energy absorption rate, minimizing operating costs, and voltage
deviation constraints. The steps include: (1) establishing a time series model that considers
distribution network trends and uncertainties; (2) introducing a typical scenario generation
method to characterize renewable energy output fluctuations; (3) constructing a mixed
integer linear programming to coordinately optimize grid reconstruction, energy storage
layout, and flexible load scheduling; (4) using an improved genetic algorithm for solution
and designing a multi-scenario iterative convergence mechanism. Case studies show that
compared to a traditional fixed grid structure, the optimized system's renewable energy
absorption rate increases to 93%, with average daily operating costs as low as ¥800, and
the average voltage over-limit probability decreases to 3.01%, significantly enhancing the
flexibility and clean energy utilization of ADN.

1. Introduction

The high proportion of renewable energy integration has profoundly changed the operational
characteristics of ADNs. Distributed photovoltaic and wind power output exhibits significant
volatility and intermittency. Combined with load-side uncertainties, the system faces challenges
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such as voltage excursions, repeated power flow fluctuations, and localized grid constraints.
Relying solely on traditional architectures often makes it difficult to maintain stable operations.
ADNs urgently need to develop new coordination mechanisms that leverage grid structure
flexibility and resource adjustability to ensure the full absorption and efficient transmission of clean
energy within the network.

In this context, it is crucial to comprehensively consider the multi-dimensional factors of power
generation, grid, load, and storage for joint scheduling and planning. The reconfigurability of the
grid structure provides spatial flexibility, the transferability of energy storage can balance
time-series differences, and adjustable loads enable optimized coordination on the load side. By
establishing a multi-objective optimization model that integrates absorption capacity, economic
efficiency, and voltage safety into a unified framework, it can provide system-level support for
ADN in an environment with an increasing proportion of renewable energy.

This paper constructs a mixed-integer linear model that incorporates grid optimization, energy
storage placement, and load regulation, and introduces an improved genetic algorithm and a
multi-scenario generation strategy to solve the problem, achieving a dual integration of modeling
and algorithmic approaches. This unified framework balances the absorption of renewable energy
and operational safety, demonstrating a technical approach for optimizing ADN operations under
conditions with a high proportion of renewable energy. A case study verifies the effectiveness and
engineering value of the research approach.

2. Related Work

Research on ADN has been carried out in different directions, involving grid structure
optimization, distributed resource allocation and digital modeling methods. Different research entry
points emphasize multi-level exploration from power electronic devices to probabilistic modeling
and multi-attribute evaluation, forming a relatively rich reference system. Liu et al. proposed a
multi-objective collaborative optimization method for DC distribution network grid structure and
DPV [1]. This method considers the correlation between photovoltaic output and load power
uncertainty factors, uses a two-dimensional Gaussian mixture model to model the source-load joint
probability distribution, and constructs a typical scenario set by the acceptance-rejection sampling
method. In order to absorb distributed energy such as photovoltaics, electric vehicles, and energy
storage batteries and realize the optimal distribution of power in the distribution network, Xiao et al.
proposed an AC/DC intelligent distribution network structure based on power electronic flexible
devices [2]. Chen et al. took the distribution network planning of multiple regions as the research
object, and used the proposed hybrid multi-attribute evaluation optimization model to analyze the
optimal grid suitable for construction under the differentiated needs of different regions, and
verified the effectiveness of the proposed model [3]. Zhang et al., based on the inspiration of the
advanced power grid in Paris, France, proposed relatively clear definitions of "strong, simple, and
weak™ for high and medium voltage distribution networks, and established a set of typical
coordination scheme optimization models for high and medium voltage distribution network
structure based on safety, reliability and economic evaluation [4]. Wen et al. defined the concept of
load release and proposed a distribution network grid structure economic calculation model that
takes into account the load release process [5]. The model takes into account the dynamic operating
network loss and power outage loss of the distribution network during the load release process, and
quantitatively evaluates the economic efficiency of the distribution network grid structure from the
perspective of the overall planning period. Xu et al. proposed a grid mapping edge computing
structure to drive the emerging digital distributed distribution network [6]. Deka et al. summarized
and compared recent research results on distribution network topology identification and detection
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schemes, and established effective connections between them [7]. Stefenon et al. proposed using
segmentation and edge detection techniques to expand the database, so that classification can be
performed using the Inception v3 deep neural network model [8]. Jiang et al. identified and
compared the topological structure of SOP as a multifunctional power electronic device, including
back-to-back voltage source converter, multi-terminal voltage source converter, unified power flow
controller and direct AC-AC modular multilevel converter [9]. Helmi et al. proposed a novel and
effective optimization framework to solve the reconstruction problem of modern distribution
networks [10]. Although existing studies have proposed a variety of methods, they often lack
systematicity in source-grid-load-storage coupling modeling and global optimization mechanisms.
This paper constructs a unified multi-objective framework and combines it with an improved
genetic algorithm to seek an overall balance between absorption, economy and voltage stability.

3. Methodology
3.1 Objective Function Setting

The goal of maximizing the renewable energy consumption rate is achieved by calculating the
ratio of actual grid-connected renewable energy power to the total renewable energy power that can
be generated, defined as:
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PRESEed s the renewable energy output utilized in period t, and Y. Pro* s the

renewable energy output available in that period. The goal of operating economy is modeled by the
total system operating cost, which includes the electricity purchase cost, energy storage operation
expenditure and line loss, and is expressed as [11]:
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C™ s the electricity purchase price in the electricity market, PE™ is the exchange power with

the upper grid, and C*" is the energy storage unit operating cost coefficient. Pi‘t’, Pﬁis represent

loss

the energy storage charging and discharging power, respectively, and C;>* incorporates the line
loss price. The voltage quality constraint uses the deviation of each node voltage from the rated
value as a penalty term, expressed as:

Fy=min Ye1 Xnen Wnlvn,t‘vref|(3)

V..« Is the voltage amplitude at node n during time period t, V™ s the rated voltage, and w, is
the penalty weight. These three objectives are jointly solved through a weighted or hierarchical
optimization approach to achieve a multi-objective optimization result: maximizing renewable
energy output, minimizing operating costs, and stabilizing voltage levels.

3.2 Specific Steps

3.2.1 Constructing a Time Series Model Including Power Flow and Uncertainty

The time series model needs to describe the power balance and network status of the distribution
network in each discrete time period, and take into account the random fluctuations of renewable
energy and load. The power flow calculation of the distribution network is based on branch currents,
and the relationship between node injection power and voltage amplitude is expressed as:
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P, and Q_, are the active and reactive power injections into node n during periodt, V,, is the

node voltage, Z,,, is the line impedance, and Q, represents the set of nodes adjacent to node
n[12]. Uncertainty is introduced through scenario-based methods. New energy power and load
levels are generated by sampling using probability distributions to ensure that different scenarios
can cover typical daily operating patterns. The constraint relationship is:

PRES=p " 1¢, | PLoM=P 15, (5)

PESES represents the output of scenario s at time period t, f)t " and f)t 4 are predicted values,
and ¢ and 6, represent the random disturbances under scenario s. By combining power flow
balance constraints with scenario-based load and output data, the system's operating state can be
fully characterized for each time period and scenario.

3.2.2 Characterizing Renewable Energy Volatility Using Representative Scenario Generation

Renewable energy volatility modeling relies on historical output data and forecast results,
converting high-dimensional random sequences into a limited number of representative scenarios to
reduce computational complexity. A large number of candidate sequences are obtained through
Monte Carlo sampling, and then grouped using K-means clustering. Each group of samples is
represented by a typical day, expressing the characteristics of renewable energy output under
different operating conditions [13]. The similarity between the candidate scenario and the typical
scenario is measured using the Euclidean distance, which is defined as:

b= {Sier (PRES-PIESY(6)

represents the representative output corresponding to the cluster center. After clustering is
completed, the probability of occurrence of each typical scenario is obtained based on the sample
ratio, expressed as:
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Table 1: Typical PV Output Data
Period | Scenariol | Scenario 2 | Scenario3 | Scenario4 | Scenario 5
1 0.05 0.10 0.08 0.12 0.07
2 0.20 0.25 0.22 0.28 0.18
3 0.55 0.60 0.62 0.58 0.50
4 0.88 0.92 0.95 0.85 0.90
5 0.70 0.75 0.72 0.78 0.68
6 0.15 0.18 0.20 0.22 0.16

[Sg| is the number of samples in the cluster. This approach not only reduces the number of
scenarios but also preserves the statistical characteristics of renewable energy fluctuations. Table 1
presents typical PV output data, including normalized results for six time periods and five typical
scenarios, reflecting the differences between morning and evening troughs and midday peaks.

This table shows the distribution of output differences across different scenarios, which can be
used for probability-weighted calculations in subsequent optimization.
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3.2.3 Establishing a Mixed Integer Linear Programming Model to Handle Multivariate
Optimization

The mixed integer linear programming model introduces Boolean variables on top of continuous
variables to characterize the switchability of the grid structure and the start/stop states of flexible
resources. This allows for a unified description of power flow constraints, equipment operating
boundaries, and optimization objectives. The line switch status is represented by a binary variable,
which enables the distribution network topology to be dynamically adjusted under different
operation schemes and ensures the linear approximation of the network physical laws [14]. The
node power balance must be satisfied in each time period and scenario, which is expressed as:

PUIHPII Tica, PII=PL ieq, PIV (@)

Pffff; is the node's local renewable energy output, PS}}S is the upper grid exchange power, P}
is the energy storage unit charge and discharge power, and Q, represents the branch or device
collection connected to the node. Line loss and current limit are linearized, and line flow switch
variables are introduced to ensure reasonable routing. The constraint form is:

-P"™.y <P[V<P["™.y (9)

y, is a binary variable indicating whether the line is operational, and P;™* is the rated capacity

of the line. In this way, grid structure reconstruction and energy storage and load regulation
decisions are integrated into the MILP solution framework, enabling direct constraint solving of the
multi-objective optimization function, ensuring both mathematical feasibility and optimality of the
results.

3.2.4 Introduction of an Improved Genetic Algorithm

When solving mixed-integer linear programming, genetic algorithms use chromosomes to
represent grid switching states and energy storage operation strategies. The fitness function is
composed of a weighted combination of renewable energy consumption rate, operating costs, and
voltage deviation. To avoid falling into local optimality, adaptive crossover and mutation operators
are introduced. Specifically, the probability is dynamically adjusted based on the iterative algebra.
When the population diversity is insufficient, the mutation rate is increased, and when the
convergence trend is obvious, the crossover rate is reduced. The mathematical form of fitness
calculation is:

Z PRES used
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a,B,y are the weight coefficients, which represents the operatlng cost of scheme x. The voltage
deviation is calculated as the absolute difference. The selection of parent and offspring is completed
by roulette combined with tournament strategy to enhance the replication probability of excellent
individuals [15]. The expression of dynamic crossover probability is:

Fit(x)=a-

pc:pc,min+(pc,max_pc,min) f — (11)

max favg

f is the fitness of the individuals participating in the crossover, f,,. and favg are the maximum
and average fitness, respectively, and p__. and p__ - are the upper and lower bounds. The final

result is a global optimal solution achieved through multiple iterations. The algorithm maintains the
search range while improving convergence speed. Table 2 shows the convergence of the mean and
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optimal fitness values at different generations of the genetic algorithm.
Table 2: Convergence of the mean and optimal fitness values

Generation | Average | Best | Crossover | Mutation | Feasibility

Fitness | Fitness | Probability | Probability Rate
10 0.62 0.70 0.82 0.09 91%
20 0.71 0.80 0.78 0.07 94%
30 0.77 0.86 0.74 0.06 96%
40 0.83 0.91 0.70 0.05 97%
50 0.87 0.94 0.66 0.04 98%
60 0.89 0.96 0.64 0.03 99%

This table shows that individual fitness gradually improves during the iteration process,
crossover and mutation probabilities dynamically adjust with changes in diversity, and the solution
feasibility rate approaches stability with iteration.

4. Results and Discussion
4.1 Example Comparison

4.1.1 New Energy Absorption Rate

The case study selected a 30-node distribution system, using a typical summer daily load curve
as the background. The photovoltaic and wind power curves were derived from historical data
superposition error simulations. The installed energy storage capacity was set at 20% of the total
peak load, and the electricity purchase price was based on a real-time price sequence. This method
was compared with a standard genetic algorithm and particle swarm optimization. The runtime
covered a 24-hour period, and the available output of renewable energy was generated based on
scenario generation. The optimal scheduling solution was solved under different algorithmic
frameworks. The effectiveness of each method in improving the absorption rate is shown in Figure
1:
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Figure 1: New Energy Absorption Rate

The results show that the differences between the curves of the different algorithms are smaller
during low-load periods, but are more pronounced during peak renewable energy output periods.
The proposed method achieves an absorption rate of 0.93, significantly outperforming the
comparison algorithm, and remains above 0.85 during most periods. This demonstrates that the
combination of a mixed-integer linear model and an improved genetic algorithm can effectively
achieve resource matching and dynamic topology adjustment, improving the efficiency of
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renewable energy utilization during periods of high power output. It also maintains stable
performance during periods of fluctuating power output. The comparative method exhibits
significant limitations during periods of high power consumption, indicating that its search
capabilities are insufficient for globally coordinating energy storage and power purchase selection.

4.1.2 System Daily Operating Cost

In the economic performance test, the system still used the same node scale and renewable
energy timing curve as input, but the evaluation metric shifted to total operating costs, including
electricity purchase expenses, energy storage lifespan loss, and network loss costs. Average daily
operating costs were calculated over eight days. To ensure a fair comparison, all algorithm
parameters were configured according to commonly recommended values, and the number of
iterations and swarm size remained consistent. Therefore, the only differences stemmed from the
search mechanism and modeling capabilities. This method was compared with particle swarm and
traditional genetic algorithms, and the results are shown in Figure 2.
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Figure 2: Daily Average Operating Cost (k)

This method maintains lower costs than the comparison algorithm during most periods. It also
avoids the cost spikes that occur during certain periods due to simply reducing electricity purchases.
Instead, it provides a more flexible start-stop combination during peak periods, resulting in a more
balanced use of energy storage output. The lowest daily average operating cost reaches ¥800. The
overall operating cost of the genetic algorithm is relatively high, primarily due to the fixed
crossover and mutation parameters, which results in slow convergence and prevents some feasible
solutions from appearing within a finite number of iterations. The particle swarm algorithm
performs slightly better, but lacks a mechanism to break away from local convergence, leading to
significant performance differences during the most cost-sensitive morning rush hour. Overall, the
improved method's economic advantages complement its improved consumption rate,
demonstrating strong overall optimization capabilities.

4.1.3 Voltage Exceeding Probability

The test was conducted under the same system topology, but with increased load and renewable
energy disturbance amplitudes. Multi-scenario Monte Carlo sampling was used to construct
randomized cases. Each scenario lasted 15 minutes, and the total sample size was set to 200. Each
algorithm independently obtained a scheduling plan and counted whether the node voltage exceeded
the rated boundary. The exceeding probability was then calculated to ensure that the results reflect
the method's ability to support voltage stability under uncertain shocks. Figure 3 shows the specific
results.
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Figure 3: Voltage Exceeding Probability

The average voltage exceeding probability for this method is 0.0301, compared to 0.0612 for the
genetic algorithm and 0.0535 for the particle swarm. This indicates that the proposed method
reduces the voltage exceeding probability by almost half. This is because the constructed constraint
model considers voltage boundaries when adjusting the energy storage and grid topology, reducing
local overshoots. The comparative method lacks this global coupling mechanism, making it more
likely to exceed the limit in high-disturbance scenarios.

4.2 Results Analysis

A comprehensive example demonstrates the advantages of proposed method across three metrics:
renewable energy consumption rate, operational economics, and voltage over-limit probability. First,
regarding consumption rate, the improved algorithm not only achieves a maximum utilization rate
of 0.93 during peak hours but also maintains a rate above 0.85 during most periods, significantly
alleviating wind and solar curtailment. This effectiveness is closely related to the optimization
search capability and dynamic topology adjustment. Regarding economic indicators, the average
daily cost for eight consecutive days was lower than that of the control method, reaching a
minimum of ¥9800. This demonstrates superior decision-making capabilities based on a
multi-objective trade-off, managing both electricity purchase costs and energy storage lifespan. In
terms of voltage safety, the average over-limit probability decreased by approximately 51% and 44%
compared to the genetic algorithm and particle swarm optimization algorithms, respectively,
demonstrating stronger adaptability to uncertainty. This is due to the model's effective incorporation
of voltage constraints under random perturbations. Overall, the proposed improved genetic
algorithm and MILP coupling framework achieves a balanced approach of increasing the power
consumption rate, improving economic efficiency, and balancing voltage safety. Compared to
simple search algorithms, it offers substantial improvements in globality and robustness.

5. Conclusion

This paper addresses the operational challenges of ADNs under conditions with a high
proportion of renewable energy and proposes a multi-objective optimization framework for
source-grid-load-storage collaboration. This framework achieves unified coupling of grid
reconfiguration, energy storage configuration, and load scheduling at the model level. At the
algorithmic level, it enhances global search and robustness through improved genetic strategies and
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scenario iteration mechanisms. Case studies demonstrate that this approach can consistently
maintain high absorption levels, superior economic efficiency, and more controllable voltage
security in complex operating environments, validating the role of collaborative optimization in
improving system flexibility and renewable energy utilization. Compared with traditional methods,
the proposed framework not only demonstrates stability across various operational scenarios but
also provides a more feasible planning and scheduling approach for ADN operations. However, it
should be noted that the model still has limitations in terms of parameter dependence and scenario
construction, and uncertainties in actual conditions may be even more complex. Therefore, future
research could further incorporate higher-dimensional stochastic modeling and multi-agent
collaborative control to expand the method's applicability to ultra-large-scale distribution systems
and real-time scheduling.
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