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Abstract: In industrial manufacturing, the inspection of metal products holds significant 

importance due to the detrimental impact defects such as corrosion, welding issues, holes, 

cracks, among others, can have on the functionality and longevity of metal components. 

Conventional methods for detecting metal defects suffer from drawbacks including low 

efficiency, heavy reliance on human intervention, and limited adaptability to complex 

environments, thereby falling short of the requirements for modern high-precision and 

automated detection. To address these challenges, this study introduces an enhanced 

YOLOv11-AAG model, building upon the YOLOv11 framework, aimed at enhancing the 

precision and effectiveness of metal defect identification. The enhancements to the original 

YOLOv11 architecture primarily focus on three key areas: feature extraction, feature fusion 

network, and detector design. Comparative analysis with YOLOv8, Faster R-CNN, and the 

baseline YOLOv11 model reveals that the YOLOv11-AAG model achieves an average 

accuracy of 80.3%, surpassing the 77.1% accuracy of the YOLOv11 model by 3.2%. 

1. Introduction 

In industrial manufacturing, ensuring the quality of metal products is essential for their 

performance and longevity. Defects in metals, both on the surface and internally, such as corrosion, 

welding imperfections, holes, and cracks, can significantly impact the mechanical properties of 

metal components. Moreover, in industries like aerospace, rail transit, and high-end equipment 

manufacturing, these defects can pose serious safety risks[1]As intelligent manufacturing and 

industrial automation advance rapidly, conventional inspection methods like manual visual checks, 

ultrasonic testing, and eddy current testing are facing challenges. These methods exhibit drawbacks 

such as low detection efficiency, reliance on human labor, subjective interpretation of results, and 

limited adaptability to complex environments. Consequently, they struggle to meet the demands of 

modern industrial production for high precision, automation, and real-time detection. 

In recent years, advancements in computer vision technologies, particularly deep learning, have 
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significantly enhanced object detection capabilities. The YOLO algorithms[2]have emerged as 

promising tools for industrial defect detection, offering notable advantages in speed and accuracy. 

Convolutional neural networks, renowned for their adept feature extraction, have garnered 

significant attention in defect detection applications. Deep learning approaches for defect detection 

are typically categorized into single-stage and two-stage algorithms[3]. Two-stage algorithms like 

Faster R-CNN[4] employ a Region Proposal Network (RPN) to identify candidate regions for 

subsequent classification and bounding box regression. While these methods achieve high accuracy, 

the intricate candidate region processing hinders real-time detection speed. On the other hand, 

single-stage detectors such as YOLO and SSD[5] enable direct end-to-end prediction of object 

attributes through the feature extraction network, demonstrating notable speed advantages. 

YOLOv11[6] has emerged as a popular choice for metal defect detection, offering a balanced 

speed-accuracy trade-off. 

DD-YOLO[7] optimizes model complexity through knowledge distillation and differentiable 

architecture search but employs a fixed ratio design in the anchor box mechanism, hindering its 

ability to handle diverse defect shapes like corrosion and cracks. Conversely, ESI-YOLOv8 

enhances computational efficiency through the EP module and SPPF-LSKA module but struggles to 

address the challenge of preserving defect edge details in complex lighting conditions.The enhanced 

YOLOv8 model integrates MobileViTv2 and Transformer architectures to improve feature 

extraction[8]. Nevertheless, a bottleneck persists in the accuracy of its anchor box generation 

strategy for irregular defects, leading to an mAP of only 74.1%. Similarly, YOLOv11 faces 

limitations in this context, particularly when detecting metal defects .  

In this study, we introduce a novel model, YOLOv11-AAG, to overcome current methodological 

constraints and leverage state-of-the-art technologies. We devise the C3k2-AKConv[9] module by 

integrating an edge detail enhancement module, AKConv, based on Sobel convolution into C3k2. 

This integration aims to enhance the capture of defect edges and textures. Subsequently, we 

incorporate an Adaptive Multi-scale Feature Fusion Network[10] into the neck structure. This 

network employs spatial and channel attention mechanisms to focus on minute defects on steel 

surfaces and utilizes a dynamic routing mechanism to adaptively merge features from various levels. 

Lastly, to address the challenge of low anchor box matching efficiency resulting from the diverse 

geometric shapes of metal defects, we introduce an Adaptive Defect-Aware Anchor Box Generation 

Mechanism (Guided-Anchoring) in the detection head segment. This mechanism dynamically 

adjusts anchor box size, ratio, and distribution density to precisely accommodate complex defect 

shapes. Comparative analysis with the YOLOv11 model demonstrates enhanced detection accuracy, 

convergence speed, and robustness of the proposed model. 

2. Principles of Correlation 

2.1 YOLOV11 algorithm 

YOLOv11, the most recent iteration of the YOLO series, was officially launched by Ultralytics 

in 2024. It upholds the efficient detection capabilities synonymous with the YOLO series while 

introducing significant advancements in network architecture, training methodologies, and 

deployment optimization. The network architecture can be referenced in Figure 1. 

2.2 Problems with algorithms 

The selection of the YOLOv11 algorithm model was based on its real-time performance and 

accuracy. However, challenges have arisen in its practical application[11]. YOLOv11 exhibits 

limitations in capturing edge and texture features effectively. Specifically, its C3k2 module lacks a 
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targeted edge enhancement mechanism, leading to a weak capability in extracting defect features 

with low contrast and fuzzy boundaries. Additionally, the traditional FPN+PAN structure used in 

the neck network relies on fixed weights for feature fusion[12], making it challenging to adaptively 

focus on local details of small defects on metal surfaces. Furthermore, the anchor frame generation 

mechanism demonstrates poor adaptability to defect morphology. The fixed density, size, and 

proportion of anchor frames cannot be dynamically adjusted based on the actual distribution of 

defects during metal defect detection[13]. Consequently, this results in low matching efficiency 

between anchor frames and metal defect boundaries, thereby impacting positioning and 

classification accuracy. 

 

Figure 1 YOLOv11 structure diagram. 

3. Improved models 

As to address the limitations of the YOLOv11 model, a refined network model, YOLOv11-AAG, 

is introduced. The structure of the YOLOv11-AAG model is illustrated in Figure 2. Initially, the 

C3k2 module in the final layer of the backbone network is substituted with the C3k2-AKConv 

structure. Subsequently, the adaptive Multi-scale Feature Fusion Network (AMFFN)[14] is 

integrated into the neck section. The primary objective of AMFFN is to tackle challenges related to 

inadequate multi-scale feature fusion and the potential oversight of minor defects in metal defect 

identification. By leveraging spatial attention mechanisms and channel attention mechanisms, 

AMFFN can concentrate on small defect regions on steel surfaces, mitigate background noise, and 

amplify the representation of defect characteristics. Additionally, it can dynamically adjust the 

fusion weights of various feature levels, circumventing the constraints of conventional fixed fusion 

techniques and achieving more precise multi-scale feature fusion. Lastly, given the diverse 

geometries of metal defects, an Adaptive Defect Sensing Anchor Frame Generation Mechanism 

(Guided-Anchoring) is proposed. This mechanism enables precise adaptation to intricate metal 

defect shapes by dynamically modifying the size, aspect ratio, and distribution density of anchor 
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frames. 

 

Figure 2 Structure diagram of YOLOv11-AAG. 

3.1 C3k2-AKConv 

YOLOv11 standard convolution square kernel structure has stable feature extraction ability for 

regular objects (such as rectangular welding area), which meets the basic modeling requirements of 

YOLO series for general objects, and its reasoning speed is fast and insensitive to noise. However, 

it has some shortcomings in metal defect detection, such as low efficiency of feature pyramid for 

corrosion area with fuzzy edg[15]; and YOLOv11 standard convolution square kernel can not adapt 

to complex geometric shapes such as zigzag crack, annular hole, irregular corrosion boundary, etc. 

The deformable convolution module AKConv can dynamically select the kernel size according to 

the input characteristics, and its single module can handle defects of different scales without 

stacking multilayer convolution. On the Severstal steel defect dataset, AKConv replaced the 

standard convolution in Backbone, resulting in an 88% improvement in Recall from 72% for small 

targets (cracks) and an 88% improvement in Precision from 65% to 76% for large targets 

(corrosion). AKConv is also able to accurately model irregular shapes for the diversity of metal 

defects by learning offsets to generate sampling meshes that match the shape of defects. For 

deformable convolution, assume that the input feature map
WHCBRX  in

represents the number of 

channels C, the height H, and the width W. It is a dynamic adaptation feature. The spatial variance 

of the feature map will be calculated first. The process is described by formula as shown in formula 

(1): 

in

, , ,b 1 c 1 i 1 j 1
in

1
ar

B C H W

b c i jV X
B C H W



   


  
   （X）= (X ）  (1) 

The offset Δp is forecasted through convolution and integrated with conventional grid 

coordinates to derive offset sampling coordinates P. These coordinates are then subjected to bilinear 

interpolation to sample from the initial feature map. Subsequently, the resultant kernel parameters 

are employed to dynamically convolve the sampled feature map, as depicted in formula (2). 
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The output results are normalized and activated to achieve efficient detection of multi-scale and 

irregular targets. Its overall structure and flow are shown in Figure 3. 

 

Figure 3 AKConv Structure and Flow Chart. 

To effectively integrate the C3K2 module with AKConv[15], determining the optimal 

positioning of the combination is crucial. In this study, the C3K2 module in the sixth layer of the 

backbone network is refined into C3K2-AKConv. This modification markedly enhances the 

detection accuracy of irregular targets like metal defects while preserving real-time performance. 

The refined architecture is illustrated in Figure 4. 

 

Figure 4 Structure of C3K2-AKConv. 

3.2 AMFFN 

In contrast to Bifpn's limitations in detecting metal defects, Amffn employs a trainable weight 

generator to dynamically compute fusion weights for various feature levels based on input feature 

characteristics such as scale and shape. This approach enhances the detection of micro cracks by 

augmenting the weight of low-level features while preserving high-resolution details. For large-area 

corrosion detection, Amffn boosts the semantic information of high-level features and utilizes a 

dynamic weight mechanism to address the constraints of fixed fusion[16]. Additionally, by 

integrating the edge enhancement convolution module AKConv, Amffn can concentrate on defect 

edges and textures to amplify defect specifics. 
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The adaptive multi-scale feature fusion network (AMFFN) comprises four primary components, 

delineated in Figure 5: original feature extraction, adaptive multi-scale feature extraction (AMFE), 

feature fusion, and image reconstruction[17].  

 

 

Figure 5 Network structure of adaptive multiscale feature fusion network (AMFFN). 

First, convolution layer conv with n0 convolution kernels is applied to the input image to 

generate a set of feature maps, specifically as follows: 

0 0 0w b                         (3)LRA I     (3)
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Where is used as the original feature extracted from the low-resolution metal defect image, 

corresponds to the filter in the convolution layer, here 128 convolution kernels with spatial size 

of 3×3, represents the offset of the convolution layer, and ' *' represents the convolution 

operation. In the adaptive multi-scale feature extraction part, assuming that this part contains n 

adaptive multi-scale feature extraction blocks (AMFE), then the ith AMFE can be expressed as: 

i 1 1f ( ) ( )   (1 )               (4)MFE i iA A g A i n       (4) 

These feature maps contain a lot of redundant information, which will greatly increase the 

computational burden if they are directly used for image reconstruction. Therefore, before inputting 

these features for super-resolution into the reconstruction layer, the feature fusion layer is set after n 

AMFE for feature fusion and dimensionality reduction. The output formula of the feature fusion 

layer fusionA
 is: 

 0 1 0, , ,          (5)  fusion f fA w A A A b      (5) 

fw
 corresponds to the weight of the feature fusion layer, representing 64 convolution kernels 

with a size of 1× 1, fb
 is the corresponding deviation, 

 0 1, , , nA A A
 represents the parallel 

connection of all feature maps extracted by the first feature extraction layer and AMFE.  

Adaptive Multiscale Feature Extraction (AMFE) module is the core module of AMFFN[18]. The 

structure of AMFE is shown in Figure 6. 

 

Figure 6 AMFE Module Details. 

AMFE module firstly receives multi-scale feature map from backbone network, then generates 

spatial attention map 𝑀𝑆 through AKConv convolution and global pooling, focuses defect area and 

suppresses background, and calculates channel attention weight by global average pooling and full 

connection layer to screen valuable feature channels for defect detection; After multiplying the 

spatial and channel attention maps with the input features to obtain enhanced features 𝐹′, dynamic 

weights are generated by calculating feature statistics and small neural networks. 

3.3 Adaptive defect sensing detector 

Due to the constraints of the YOLOV11 detection head's fixed frame and its limited adaptability 

to defects, this study employs an alternative approach called Guided-Anchoring, as illustrated in 

Figure 7, to address the challenges in metal defect detection. 

An anchor generation module with dual branches is employed for each output feature map within 
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the pyramid to predict anchor positions and shapes. Subsequently, a feature adaptation module is 

applied to the original feature map to enable the new feature map to recognize anchor shapes. 

 

Figure 7 Guided-anchoring framework. 

In the actual working process, the improved detection head first uses the defect feature module to 

further process the feature map, and at the same time, outputs the probability distribution ρ that 

different regions in the feature map belong to various defects through the defect category prediction 

branch, and then obtains the spatial attention weight α through the spatial attention calculation 

branch; then uses the dynamic anchor frame generator module to generate and adjust the width and 

height of the anchor frame, and uses the formula to describe as shown in Formulas (9) and (10): 

   
init ic i1                        6          （ ）   (6) 

   
init ih h h c i1 h                         7       （ ）   (7) 

Where init  and inith are the width and height of the initial anchor box,  and h are scaling 

coefficients, iw
and ih

 are the width and height of the corresponding cluster center. 

4. Experiments and results 

4.1 Experimental environment 

The experimental setup utilized a computer system running Windows 11 64-bit, equipped with 

an Intel i7-11800H processor, an NVIDIA GeForce RTX 306 graphics card, operating at a base 

frequency of 2.3GHz, and 16GB of RAM. The system also featured CUDA version 11.8, utilized 

Python 3.10 as the programming language, and employed PyTorch 2.0.1 as the deep learning 

framework. 

The initial learning rate, batch size, number of rounds, input image size, weight attenuation 

coefficient, and IoU threshold are specified as follows: .01, 8, 200, 640×640, .00005, and .5, 

respectively. 

4.2 Data sets and preprocessing 

The scarcity of existing research in this domain necessitated the creation of proprietary datasets 

for this study. A total of 2838 images depicting diverse steel defects were amassed from various 

industrial settings, categorized as corrosion, welding imperfections, holes, and cracks. We illustrate 

selected examples of these metal anomalies in Figure 8. 
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Figure 8 Examples of metal defects. 

The dataset predominantly comprises metal defect images from industrial settings, with images 

resized accordingly. A total of 5676 images were augmented and annotated. The augmented dataset 

was partitioned into training, testing, and validation sets in a 7:2:1 ratio.Training was conducted 

using the PyTorch framework with the YOLOv11 base model and YOLOv11-AAG. The training 

process involved 200 epochs, with training halted if no improvement in parameters was observed 

after 20 consecutive epochs. 

4.3 Evaluation index 

To enhance the evaluation of the refined model, the following metrics were chosen: Recall (R), 

Precision (P), Mean Average Precision (mAP), Parameters (Params), Gigaflops (GFLOPs), Anchor 

Frame Coverage of Defects, Average Recall at 100 detections (AR@100), and Frames Per Second 

(FPS). 

4.4 Ablation experiments 

Table 1 presents the results of the ablation experiments on the improvements made to the 

original YOLOv11 model in this study. 

Table 1 Experimental results of ablation with different modifications of YOLOv11. 

AKConv AMFFN Guided-

anchoring 

P/% R/% mAP/% Weight/MB 

- - - 81.4- 71.1 77.1 24.2 

√   81.2 72.4 77.8 24.7 

 √  82.7 75.7 78.6 26.8 

  √ 81.9 72.0 77.7 24.6 

√ √  83.7 75.3 80.1 27.1 

 √ √ 83.8 75.2 79.4 27.3 

√  √ 82.5 72.8 78.7 25.9 

√ √ √ 82.3 76.8 80.3 27.7 
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4.5 Comparative Experimental Analysis of Different Models 

To validate the efficacy of the YOLOv11-AAG model proposed in this study, we compared it 

with several well-known convolutional neural network models, including YOLOv5, YOLOv8, SSD, 

Faster R-CNN, and YOLOv11. Training and testing were conducted on a proprietary dataset of 

metal defects, yielding the performance outcomes for each network as detailed in Table 2 

Table 2 Comparison results of defect detection among different models 

model P/% R/% mAP/% Weighted documents/MB 

YOLOv5 67.6 56.5 68.2 5.4 

YOLOv8 77.0 65.4 73.8 8.1 

SSD 67.5 60.5 67.9 67.4 

Faster R-CNN 54.3 63.2 56.5 371.2 

YOLOv11 81.4 71.1 77.1 21.2 

YOLOv11- AAG  82.3 76.8 80.3 27.7 

4.6 Verification of experimental detection effect 

 
YOLOv11 

 
YOLOv11-AGG 

Figure 9 Comparison of detection effect. 

Figure 9  show the detection results of the YOLOv11-AGG model. It can be observed from these 

four groups of images that, compared with the original model, the improved model proposed in this 

paper can maintain higher confidence when detecting seam heads. Additionally, the range of 

detection boxes is reduced in some images. All experimental results demonstrate that the improved 

algorithm model based on yolov11 proposed in this paper can achieve more effective detection of 

fabric seam heads in complex industrial environments, while maintaining extremely high accuracy 

and thus exhibiting superior application value. 

5. Conclusions 

A refined YOLOv11-AAG model is proposed for detecting metal defects, building upon the 

original YOLOv11 architecture. Experimental results demonstrate that YOLOv11-AAG 

outperforms YOLOv8 and Faster R-CNN in complex industrial settings, achieving a detection 

accuracy increase from 77.1% to 80.3%. The model exhibits enhanced capability in identifying fine 

defects like cracks and holes while reducing computational complexity through structural 
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optimization. This optimization balances detection efficiency and accuracy, catering to real-time 

detection requirements on metal production lines. The proposed model offers an effective solution 

for automating quality assessment in metal product manufacturing, thereby advancing industrial 

intelligent detection technology. 
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