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Abstract: To address the challenges of small target detection in aerial images captured by 

unmanned aerial vehicles (UAVs), such as complex backgrounds, dense targets, large scale 

variations, and mobile deployment, this paper proposes an improved algorithm, RRF-

YOLOv11n, based on the YOLOv11n model. Firstly, a convolutional layer C3K2-RVB-

EMA is constructed by integrating RepViTBlock and an efficient multi-scale attention 

module (EMA), enhancing the model's feature extraction capability for multi-scale targets 

in complex backgrounds, especially for significantly deformed small targets. Secondly, to 

deal with the situation where small targets are more numerous in UAV aerial images, a new 

small target detection layer P2 (PredictionLayer2) is added and the large target detection 

layer P5 is removed, effectively improving the capture accuracy of small target features 

while reducing redundant computations in the large target detection layer. Thirdly, a Re-

Calibration FPN is introduced to replace the traditional pyramid, recalibrating the boundary 

and semantic information in features and enhancing the weight of important features. 

Finally, a Focaler-DIoU loss function combining Focal Loss and DIoU is proposed, 

optimizing the accuracy and convergence speed of bounding box regression and solving 

the sample imbalance problem in small target detection. Experimental results show that 

RRF-YOLOv11n outperforms the original YOLOv11n model by 6.9% in the mAP50 

metric on the Vis-Drone2019 dataset, reaching 41.2%, and enhances the detection accuracy 

of small targets in UAV aerial images. Compared with other advanced target detection 

algorithms, this algorithm demonstrates superior performance in both detection accuracy 

and speed. 

1. Introduction 

In recent years, UAV detection technology has been widely applied in various fields such as 

military reconnaissance, logistics and distribution, agricultural plant protection, environmental 

monitoring, and disaster response. However, in practical applications, UAV detection technology 

faces numerous challenges, particularly in the detection of small targets. These small targets are 

typically characterized by weak features, complex backgrounds, dense distribution, and diverse scales 
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posing difficulties for accurate detection. Therefore, research on UAV small target detection 

algorithms has attracted significant attention. 

In the field of deep learning, target detection mainly includes one-stage algorithms such as the 

YOLO series[1], SSD[2], and RetinaNet[3], as well as two-stage algorithms like RCNN[4] and Faster R-

CNN[5] To address the low accuracy of small tar-get detection, Hou[6] et al. improved the YOLOv8 

backbone network by using four feature detection heads to enhance the detection rate of small targets, 

and designed the ConvSPD convolution module and BiFormer attention to strengthen the ability to 

capture shallow detail features of small targets. However, due to the small receptive field of shallow 

features, they cannot fully cover small targets in some complex scenarios. Moreover, the complex 

structure of the ConvSPD convolution may increase the computational load and parameter count of 

the model. Li[7] et al. designed a dilated feature pyramid convolution module to replace the original 

SPPF layer, which strengthens the extraction of detailed features of UAV small targets. They also 

introduced the CSPOK module and GGBD convolution to improve the global feature extraction 

capability and multi-scale feature fusion capability. Peng[8] et al. enhanced the representational 

capability of multi-scale structural feature maps by adding an additional contextual semantic 

enhancement module, which improved the detection capability of small targets, but the false detection 

rate for similar targets remains high. Zhao[9]et al. improved the detection performance in complex 

backgrounds through the DynamicHead with multiple attention mechanisms, increased multi-scale 

detection to enhance the extraction of small and medium targets, and integrated DenseNet to 

strengthen feature transmission and prevent overfitting. Zhou[10] et al. replaced the back-bone network 

CSPDarknet with the lightweight Mo-bileNet-V3, reducing the number of model parameters and 

improving inference speed. Despite extensive research efforts to improve the accuracy of small target 

detection, existing methods still exhibit significant shortcomings in performance under complex 

backgrounds. To address these deficiencies, this paper proposes an improved algorithm based on 

YOLOv11n, namely RRF-YOLOv11n. Through innovative design, this algorithm not only improves 

the detection accuracy of small targets but also significantly reduces model parameters and optimizes 

the use of computational resources, providing an efficient and accurate solution for small target 

detection in UAV aerial photography. 

2. The proposed method 

2.1 Enhanced YOLO Model 

YOLOv11, the new-generation computer vision model launched by Ultralytics, has achieved 

significant improvements in both speed and accuracy compared to previous models in the YOLO 

series. For example, its backbone network adopts the more efficient C3K2 module to replace the 

original C2f module, enabling the selection of appropriate feature extraction methods according to 

different needs and scenarios. This improvement enhances the flexibility and adaptability of the 

model, allowing it to better handle image data of varying complexities. It also introduces the C2PSA 

module, which, through the multi-head attention mechanism and feedforward neural network, can 

selectively focus on important parts of the input features, suppress unimportant information, and 

enhance multi-scale feature extraction capabilities. The neck network uses a PAN-FPN structure, 

which enhances the fusion of shallow position information and deep semantic information through 

bottom-up path enhancement, thereby strengthening the target localization ability. The detection head 

of YOLOv11 adopts a decoupled design and DWConv operation, reducing model parameters and 

computational overhead. 

In general, through improvements in architectural optimization, performance enhancement, and 

adaptability improvement, YOLOv11 has become a more advanced,efficient and adaptable computer 

vision model. 
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However, for the problem of missed detection and false detection caused by the characteristics of 

small target detection in UAV aerial images, such as complex background, dense targets, large scale 

changes, and indistinct features, the effect of using YOLOv11n is not ideal, and there is still much 

room for improvement. Based on YOLOv11n, this paper proposes a model RRF-YOLOv11n suitable 

for small target detection in UAV aerial images, as shown in Fig. 1. 

 

Figure 1 Structure diagram of the RRF-YOLOv11n network. 

2.2 Structure of C3K2-RVB-EMA 

 

Figure 2 The structure of RepViTBlock. 

In recent years, the RepViT-SAM model optimized for high-resolution visual tasks has been 

proposed. Its core component, RepViTBlock, integrates depthwise separable convolution with 

feedforward neural networks to construct an efficient feature extraction architecture. As shown in 
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Figure 2, this module adopts an early convolutional backbone design, achieving a fourfold down-

sampling of input features through two sets of 2-strided convolutions. This strategy inherits the 

advantages of traditional CNN feature extraction, enabling the model to quickly capture basic visual 

features such as edges and textures in the initial stage, while significantly reducing computational 

complexity. 

It is worth noting that the RepViTBlock incorporates an SE component for channel attention within 

its structure, which can dynamically allocate weights to feature channels: enhancing the 

representation power of key features while effectively suppressing irrelevant and redundant 

information. This ultimately helps the model significantly improve its performance in selecting 

effective features in complex scenarios. Additionally, thanks to its pure convolutional network 

architecture, the model demonstrates excellent real-time performance when processing high-

resolution images, making it particularly suitable for applications where inference speed is a critical 

factor. 

In the backbone of the YOLOv11n model, the original C3K2 module adopts the Bottleneck 

structure for feature extraction and computational efficiency optimization. However, when dealing 

with small targets in drone aerial images, it has insufficient feature extraction capabilities for small 

targets, limited multi-scale feature fusion ability, poor robustness against complex backgrounds, and 

low computational efficiency and accuracy. Therefore, this paper draws on the idea of RepViTBlock 

and designs the C3K2-RVB module to improve the C3K2 module. The C3K2-RVB module replaces 

the Bottleneck module in C3K2 with RepViTBlock; this module reduces the computational load and 

parameter quantity by using depthwise separable convolution and structural reparameterization, and 

effectively extracts multi-scale features by combining the depthwise down-sampling module and 

multi-stage design, significantly improving the accuracy rate. Further, the EMA attention mechanism 

is integrated into the RepViTBlock of C3K2-RVB to form the C3K2-RVB-EMA module (structure 

shown in Figure 3). The EMA attention can dynamically regulate the channel and spatial position 

weights of the feature map, enhancing the focus on small target features, weakening background 

interference, and weighted fusion of multi-scale features, thereby improving the model's perception 

efficiency for multi-scale targets. 

 

Figure 3 The structure of C3K2-RVB-EMA. 

2.3 Add a small target detection layer 

The YOLOv11n detection layer (Figure 4(a)) is in a three-head form, consisting of P3, P4, and P5 

layers, which correspond to resolutions of 80×80, 40×40, and 20×20 respectively for detecting targets 

of different scales. Among them, the P5 layer has a lower resolution and rich semantic information, 

and is mostly used for large target detection. However, due to its large pixel receptive field, it is prone 

to losing details when processing small targets; while the local features of small targets (such as 

vehicles and pedestrians) in unmanned aerial vehicle remote sensing images are crucial for detection, 

the P5 layer cannot effectively express these features. 
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To address this issue, this paper proposes an improvement: deleting the P5 large target detection 

layer and adding a dedicated small target detection layer P2 (Figure 4(b)). The resolution of the P2 

layer is increased to 160×160, with a smaller pixel receptive field, which can retain more details of 

small targets and thereby improve the accuracy of small target detection; at the same time, this 

modification can reduce redundant computations in feature fusion of the model and further enhance 

the ability of multi-scale feature extraction. 

 
(a) Original three-detector head structure. (b) Improve the structure of the three detection heads. 

Figure 4 Improvement of the detection head structure. 

The introduced small target detection layer has enhanced the processing capability of the 

YOLOv11n model for unmanned aerial vehicle (UAV) aerial photography tasks with small targets. 

It effectively reduces the omission and false detection of small targets, improves the detection 

accuracy, and ensures the balance of computational efficiency. Through optimized design, this model 

demonstrates higher performance when dealing with small-sized targets in complex scenarios, while 

maintaining overall computational efficiency. 

2.4 Structure of Re-CalibrationFPN 

The Neck structure of YOLOv11n adopts a design combining FPN and PANet. The core idea is 

to fuse multi-scale feature maps through top-down, bottom-up and lateral concatenation paths to 

generate feature maps (such as P3, P4, P5) rich in semantic and detailed information for target 

detection. However, after multiple sampling in this structure, the feature details are easily lost, 

resulting in insufficient feature capture for small aerial targets and causing missed detections and 

false detections; moreover, the direct fusion of low-level and high-level features is prone to 

redundancy and inconsistency, and without feature re-calibration and boundary enhancement 

mechanisms, it is unable to dynamically adjust feature weights, weakening the expression of 

important features, and affecting the detection effect of small targets and blurred boundaries. 

To solve the above problems, this paper replaces the original FPN with Re-CalibrationFPN: a new 

SBA module is added to selectively aggregate and re-calibrate the boundaries and semantic 

information, enhancing the weight of important features, to refine the target contour and calibrate the 

target position; at the same time,a new recalibration attention unit (RAU) block is introduced, 

adaptively extracting complementary information from two inputs (Fs and Fb) shallow and deep 

information is input into two RAU blocks in different ways to make up for the lack of high-level 

spatial boundary information and low-level semantic information. Finally, after 3×3 convolution, the 

two RAU blocks are concatenated to output, achieving robust combination of different features and 
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rough feature refinement, as shown in Figure 5. 

The calculation formula of RAU is as follows: 

𝑇1
′ = 𝑊𝜃(𝑇1), 𝑇2

′ = 𝑊∅(𝑇2) (1) 

𝑃𝐴𝑈(𝑇1, 𝑇2) = 𝑇1
′ ⊙ 𝑇1 + 𝑇2

′ ⊙ 𝑇2 ⊙ (⊙ (𝑇1
′)) + 𝑇1 (2) 

Among these, T1 and T2 are input features. Two linear mappings and sigmoid functions 𝑊𝜃(·) 

and 𝑊𝜃(·) are applied to the input features to reduce the channel dimension of the input features to 

32, resulting in feature maps T1
' and T2

'. ⊙ denotes element-wise multiplication, and ⊙(∙)is the 

inverse operation performed by subtracting the feature T1
', which refines the imprecise and coarse 

estimates into accurate and complete prediction maps. 

Finally, using a convolution operation with a kernel size of 1×1 as the linear mapping process, the 

output of the SBA module can be calculated by the following formula: 

𝑍 = 𝐶3×3 (𝐶𝑜𝑛𝑐𝑎𝑡(𝑃𝐴𝑈(𝐹𝑆, 𝐹𝑏), 𝑃𝐴𝑈(𝐹𝑏, 𝐹𝑠))) (3) 

Among them, 𝐶3×3(∙)  is a 3×3 convolution operation with batch normalization and ReLU 

activation layers. FS and Fb are features containing deep semantic information and shallow boundary 

information respectively. Concat(∙) is the concatenation operation along the channel dimension, and 

Z is the output of the SBA module. 

 

Figure 5 The struct of SBA and RAU. 

2.5 Focaler-DIoU Loss Function 

The traditional CIoU loss function in YOLOv11n takes into account the center distance, aspect 

ratio, and intersection-over-union (IoU) of bounding boxes. However, when dealing with small 

targets, the aspect ratio penalty term is prone to introducing additional noise, resulting in inaccurate 

regression; and it has low sensitivity to small target detection and is difficult to locate, with limited 

effectiveness in complex backgrounds, target overlaps, and scenarios with dense small targets. 

To address these issues, this paper designs a Focaler-DIoU loss function based on FocalLoss and 

DIoU improvement: In this function, FocalLoss uses a regulation factor (1−pt)γ to reduce the weight 

of easily classified samples and increase the weight of difficultly classified samples, thereby 

alleviating the problem of class imbalance; DIoU adds a penalty term on top of IoU, minimizing the 

normalized distance between the center points of the predicted box and the target box, accelerating 

the convergence speed of bounding boxes, optimizing the positioning effect, and reducing positioning 

errors caused by the small size or occlusion of small targets. The core of the Focaler-DIoU loss 

function lies in integrating the mechanism of FocalLoss into DIoU, using the regulation factor to 
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enhance the attention to small targets. 

Its calculation formula is: 

𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) (4) 

𝐿𝐷𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
 (5) 

𝐿𝐹𝑜𝑐𝑎𝑙𝑒𝑟−𝐷𝐼𝑜𝑈 = (1 − 𝐼𝑜𝑈)𝛾 ∙ 𝐿𝐷𝐼𝑜𝑈 (6) 

Here, 𝑝𝑡 represents the predicted category probability by the model; 𝛼𝑡 is the category weight used 

to balance positive and negative samples; γ is the adjustment factor that controls the weight 

distribution of difficult and easy samples; IoU is the intersection-over-union ratio between the 

predicted box and the target box; c is the diagonal length of the smallest enclosing rectangle that can 

contain both the predicted box and the real box; ρ is the Euclidean distance between the centers of 

the predicted box and the real box; b is the center point of the predicted box; bgt is the center point of 

the real box. 

The improved loss function combines the mechanism of FocalLoss, reducing the weight of easy-

to-classify samples (such as large targets) and increasing the weight of difficult-to-classify samples 

(such as small targets), thereby enhancing the focus on small targets. At the same time, it retains the 

advantages of DIoU by minimizing the center point distance to accelerate convergence. Compared to 

the traditional CIoU loss function, it significantly improves the ability to detect small targets and 

performs better in scenarios with dense targets, severe occlusion, or class imbalance. 

3. Experiments and discussion 

3.1 Dataset 

The UAV aerial photography small target dataset used in this experiment is VisDrone2019[11]. 

This dataset was collected and constructed by the AISKYEYE team of the Machine Learning and 

Data Mining Laboratory of Tianjin University. The dataset covers 14 different urban and rural scenes, 

including 10 types of targets such as pedestrians, people, bicycles, cars, vans, trucks, tricycles, 

covered tricycles, buses, and motorcycles. In terms of data scale, the dataset contains a total of 8,629 

images, with 6,471, 548, and 1,610 images in the training set, validation set, and test set respectively. 

The entire dataset contains a total of 2.6 million target instance samples. 

3.2 Experimental environment 

The experimental environment of this paper was all conducted on the GPU. The hardware 

configuration and experimental parameters used are shown in Table 1 and Table 2. 

Table 1 Experimental environment configuration. 

Parameter Experimental Environment 

Operating System Linux 

CPU Inteli9-13900HX 

GPU RTX4090(24GB) 

Internal Storage 64GB 

Python 3.8 

Pytorch 2.1.0 

Cuda 11.8 
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Table 2 Model training parameters. 

Parameter Configuration 

Imagessize 640 

Epoch 300 

Batchsize 16 

Optimizer SGD 

3.3 Evaluation index  

In order to better evaluate the performance of the model, this paper uses precision (P), recall (R), 

mAP50, mAP50:95, parameter quantity, and computational quantity as the main evaluation criteria. 

mAP50 represents the average detection accuracy of the model when the IoU threshold is 0.50, while 

mAP50:95 represents the IoU threshold ranging from 0.50 to 0.95. The corresponding formulas are 

as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8) 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑖

𝑛

𝑖=1

(9) 

Among them, TP represents the number of samples that are actually positive and whose prediction 

result is also positive; FP represents the number of samples that are actually negative but whose 

prediction result is positive; FN represents the number of samples that are actually positive cases but 

whose prediction result is negative; P is the accuracy rate; R is the recall rate, AP is the average 

accuracy rate, and the average value of AP for all categories can be obtained as mAP. 

3.4 Experimental Results and Analysis 

3.4.1 Algorithm comparison 

In order to comprehensively evaluate the detection performance of RRF-YOLOv11n for small 

targets, under the same conditions, it was compared with several current mainstream target detection 

algorithms. The experimental results are shown in Table 3. 

Table 3 Algorithm comparison experiment on VisDrone2019. 

Model P R mAP50 mAP50:95 Parameters/M GFLOPs 

Faster R-CNN 0.343 0.365 0.305 0.129 63.2 370.0 

SSD 0.210 0.356 0.24 0.117 12.3 63.2 

YOLOv5n 0.438 0.322 0.324 0.188 2.18 5.8 

YOLOv5s 0.482 0.351 0.372 0.225 7.81 18.8 

YOLOv7-tiny 0.425 0.329 0.326 0.191 6.01 12.3 

YOLOv8n 0.436 0.335 0.333 0.196 2.68 6.8 

YOLOv8s 0.505 0.387 0.4 0.238 9.83 23.4 

TPH-YOLOv5[12] 0.501 0.391 0.405 0.246 60.4 145.8 

UAV-YOLOv8s[13] 0.505 0.393 0.402 0.241 10.30 - 

YOLOv11n 0.45 0.344 0.343 0.201 2.58 6.3 

YOLOv11s 0.51 0.398 0.407 0.246 9.41 21.3 

Ours 0.508 0.391 0.412 0.251 2.45 16.5 

28



From Table 3, it can be seen that the improved algorithm ranks at the forefront in terms of detection 

performance. The mAP50 and mAP50-95 values reached 41.2% and 25.1% respectively, which were 

6.9% and 5% higher than those of the baseline YOLOv11n model, respectively. Secondly, the 

improved model outperformed YOLOv11s in terms of recall rate, mAP50, and mAP50-95, and the 

parameter size and computational cost were only 25% and 77% of those of YOLOv11s, respectively, 

demonstrating that the improved model maintained the accuracy improvement while not increasing 

the parameter size and computational cost. Then, compared with the first-stage SSD and the YOLO 

series, the detection accuracy was higher, and the parameter size was only slightly higher than 

YOLOv5n. Secondly, compared with the second-stage Faster R-CNN, the improved model was 

comprehensively ahead. Finally, when comparing with the existing algorithm literature [12] and [13], 

although it was slightly ahead in terms of accuracy and recall rate, the algorithm in this paper was far 

superior in terms of parameter size and computational cost to both [12] and [13]. In summary, the 

comparative experiments verified the superiority of the RRF-YOLOv11n algorithm, improved the 

detection accuracy for small targets based on the drone perspective, effectively balanced the model 

performance, parameters, and computational cost, and outperformed most common algorithms, 

having good design value. 

3.4.2 Ablation experiment 

To verify the effectiveness of the improved module proposed in this paper in enhancing model 

performance and the contribution of each module, an ablation experiment was conducted on the 

VisDrone2019 dataset. The experiment was based on YOLOv11n and gradually integrated the 

improved methods by module. The contributions of each module to the detection accuracy and 

efficiency were quantified. The specific process is as follows: first, replace the C3K2 in the network 

with the C3K2-RVB-EMA structure; then, improve the Neck part to the Re-CalibrationFPN structure; 

next, add small target detection layers and delete the P5 backbone part; finally, replace the traditional 

CIoU loss function with the improved Focaler-DIoU loss function. The detailed results of the ablation 

experiment are shown in Table 4 (Baseline is the YOLOv11n model). 

Table 4 Ablation experiment. 

Baseline C3K2 

-RVB 

P2 Re-

CalibrationFPN 

Focaler-

DIoU 

P R mAP50 mAP50:95 Parameters/M GFLOPs 

√     0.45 0.344 0.343 0.201 2.58 6.3 

√ √    0.456 0.346 0.351 0.211 2.44 6.1 

√ √ √   0.472 0.369 0.37 0.23 1.84 9.7 

√ √ √ √  0.497 0.404 0.399 0.247 2.42 16.5 

√ √ √ √ √ 0.508 0.391 0.412 0.251 2.45 16.5 

From Table 4, it can be seen that when C3K2 is replaced with the C3K2-RVB-EMA structure, 

mAP50 and mAP50:95 increase by 0.8% and 1% respectively. This indicates that after adding the 

RepViTBlock and EMA module, multi-scale features can be effectively extracted, information loss 

is reduced, and the weights of important features are enhanced while the weights of unimportant 

features are suppressed. Secondly, by adding the P2 small target detection layer and deleting the P5 

large target detection layer, mAP50 and mAP50:95 increase by 2.7% and 2.9% respectively, and the 

parameter quantity decreases by 28.7%. This shows that adding the small target detection layer has 

the performance advantage in detecting small targets. Again, by introducing the Re-CalibrationFPN 

structure instead of the original FPN structure, mAP50 and mAP50:95 increase by 5.6% and 4.6% 

respectively. This result highlights the advantages of Re-CalibrationFPN in dynamic feature fusion, 

cross-layer information interaction, and global context modeling, significantly improving the 

performance of small target detection. Finally, replacing the loss function with Focaler-DIoU, in the 

situation where the parameter quantity and computational quantity hardly change, mAP50 and 
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mAP50:95 increase by 6.9% and 5% respectively. This indicates that this loss function effectively 

handles low-quality samples and class imbalance. From the above ablation results, it can be seen that 

the model accuracy keeps improving, indicating the effectiveness of the model improvement. 

3.5 Visualized results and analysis 

To verify the effectiveness of the improved algorithm in detecting small targets of unmanned aerial 

vehicles (UAVs), a visual comparison was conducted on typical complex scenarios such as dense, 

low-light, and high-altitude targets from the VisDrone2019 test set. The detection results are shown 

in Figure 6. The results indicate that the algorithm proposed in this paper can more accurately detect 

and locate small targets such as cars and pedestrians. 

Specifically, in a dense environment (a), the RRF-YOLOv11n algorithm shows significant 

advantages in dense crowd detection. The red area detected by the YOLOv11n algorithm missed a 

large number of pedestrians. The improved model reduces the number of missed detections and can 

identify occluded targets. In a low-light environment (b), when facing a small vehicle group with 

insufficient lighting, the improved model has a low detection rate of missed areas and performs better 

than the benchmark method, verifying its adaptability to complex lighting conditions in dense vehicle 

scenes. The detection of high-altitude targets further demonstrates the advantages of the improved 

algorithm. In the high-altitude environment (c), YOLOv11n completely missed extremely small 

targets, and the improved model successfully identified most of the targets. 

 
YOLOv11n 

 
RRF-YOLOv11n 

(a) Dense scene (b) Low-light scene (c) High-altitude scene 

Figure 6 Comparison of the detection effectiveness of high-altitude vehicles under bright light 

conditions and low light conditions. 

4. Conclusion 

In response to the challenges faced by small target detection in drone aerial images, such as 

complex backgrounds, dense targets, and diverse scales, this paper proposes an improved algorithm 

RRF-YOLOv11n based on YOLOv11n. By constructing a C3K2-RVB-EMA module that integrates 

RepViTBlock and EMA attention, it enhances the extraction of multi-scale target features in complex 

backgrounds; adding a P2 small target detection layer and eliminating the redundant P5 large target 

layer, it improves the ability to capture the details of small targets while reducing parameters; 

introducing the Re-CalibrationFPN structure to dynamically re-calibrate features to optimize the 

fusion of boundaries and semantic information, alleviating the problem of detail loss in traditional 

FPN; designing the Focaler-DIoU loss function to balance sample distribution and accelerate the 

convergence of bounding box regression. Experiments show that this model achieves an mAP50 of 
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41.2% on the VisDrone2019 dataset, an improvement of 6.9% compared to the baseline, with a 5% 

reduction in parameters and an optimization of computational complexity to 16.5GFLOPs, achieving 

a balanced improvement in accuracy and efficiency. 

However, the improved model still has limitations. For example, the parameter reduction is not 

significant after optimizing tiny targets. In the future, techniques such as pruning and distillation will 

be adopted to reduce model complexity and further improve performance to meet actual deployment 

requirements. 
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