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Abstract: To address the challenges of small target detection in aerial images captured by
unmanned aerial vehicles (UAVSs), such as complex backgrounds, dense targets, large scale
variations, and mobile deployment, this paper proposes an improved algorithm, RRF-
YOLOv11n, based on the YOLOv11n model. Firstly, a convolutional layer C3K2-RVB-
EMA is constructed by integrating RepViTBlock and an efficient multi-scale attention
module (EMA), enhancing the model's feature extraction capability for multi-scale targets
in complex backgrounds, especially for significantly deformed small targets. Secondly, to
deal with the situation where small targets are more numerous in UAV aerial images, a new
small target detection layer P2 (PredictionLayer?) is added and the large target detection
layer P5 is removed, effectively improving the capture accuracy of small target features
while reducing redundant computations in the large target detection layer. Thirdly, a Re-
Calibration FPN is introduced to replace the traditional pyramid, recalibrating the boundary
and semantic information in features and enhancing the weight of important features.
Finally, a Focaler-DIoU loss function combining Focal Loss and DIoU is proposed,
optimizing the accuracy and convergence speed of bounding box regression and solving
the sample imbalance problem in small target detection. Experimental results show that
RRF-YOLOv11n outperforms the original YOLOv11ln model by 6.9% in the mAP50
metric on the Vis-Drone2019 dataset, reaching 41.2%, and enhances the detection accuracy
of small targets in UAV aerial images. Compared with other advanced target detection
algorithms, this algorithm demonstrates superior performance in both detection accuracy
and speed.

1. Introduction

In recent years, UAV detection technology has been widely applied in various fields such as
military reconnaissance, logistics and distribution, agricultural plant protection, environmental
monitoring, and disaster response. However, in practical applications, UAV detection technology
faces numerous challenges, particularly in the detection of small targets. These small targets are
typically characterized by weak features, complex backgrounds, dense distribution, and diverse scales
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posing difficulties for accurate detection. Therefore, research on UAV small target detection
algorithms has attracted significant attention.

In the field of deep learning, target detection mainly includes one-stage algorithms such as the
YOLO seriest!, SSD!?, and RetinaNetl, as well as two-stage algorithms like RCNN™ and Faster R-
CNND! To address the low accuracy of small tar-get detection, Houl® et al. improved the YOLOVS
backbone network by using four feature detection heads to enhance the detection rate of small targets,
and designed the ConvSPD convolution module and BiFormer attention to strengthen the ability to
capture shallow detail features of small targets. However, due to the small receptive field of shallow
features, they cannot fully cover small targets in some complex scenarios. Moreover, the complex
structure of the ConvSPD convolution may increase the computational load and parameter count of
the model. Lil" et al. designed a dilated feature pyramid convolution module to replace the original
SPPF layer, which strengthens the extraction of detailed features of UAV small targets. They also
introduced the CSPOK module and GGBD convolution to improve the global feature extraction
capability and multi-scale feature fusion capability. Pengl®l et al. enhanced the representational
capability of multi-scale structural feature maps by adding an additional contextual semantic
enhancement module, which improved the detection capability of small targets, but the false detection
rate for similar targets remains high. Zhao®et al. improved the detection performance in complex
backgrounds through the DynamicHead with multiple attention mechanisms, increased multi-scale
detection to enhance the extraction of small and medium targets, and integrated DenseNet to
strengthen feature transmission and prevent overfitting. Zhou™ et al. replaced the back-bone network
CSPDarknet with the lightweight Mo-bileNet-V3, reducing the number of model parameters and
improving inference speed. Despite extensive research efforts to improve the accuracy of small target
detection, existing methods still exhibit significant shortcomings in performance under complex
backgrounds. To address these deficiencies, this paper proposes an improved algorithm based on
YOLOv11n, namely RRF-YOLOv11n. Through innovative design, this algorithm not only improves
the detection accuracy of small targets but also significantly reduces model parameters and optimizes
the use of computational resources, providing an efficient and accurate solution for small target
detection in UAV aerial photography.

2. The proposed method
2.1 Enhanced YOLO Model

YOLOv11, the new-generation computer vision model launched by Ultralytics, has achieved
significant improvements in both speed and accuracy compared to previous models in the YOLO
series. For example, its backbone network adopts the more efficient C3K2 module to replace the
original C2f module, enabling the selection of appropriate feature extraction methods according to
different needs and scenarios. This improvement enhances the flexibility and adaptability of the
model, allowing it to better handle image data of varying complexities. It also introduces the C2PSA
module, which, through the multi-head attention mechanism and feedforward neural network, can
selectively focus on important parts of the input features, suppress unimportant information, and
enhance multi-scale feature extraction capabilities. The neck network uses a PAN-FPN structure,
which enhances the fusion of shallow position information and deep semantic information through
bottom-up path enhancement, thereby strengthening the target localization ability. The detection head
of YOLOv11 adopts a decoupled design and DWConv operation, reducing model parameters and
computational overhead.

In general, through improvements in architectural optimization, performance enhancement, and
adaptability improvement, YOLOv11 has become a more advanced,efficient and adaptable computer
vision model.
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However, for the problem of missed detection and false detection caused by the characteristics of
small target detection in UAV aerial images, such as complex background, dense targets, large scale
changes, and indistinct features, the effect of using YOLOv11n is not ideal, and there is still much
room for improvement. Based on YOLOv11n, this paper proposes a model RRF-YOLOv11n suitable
for small target detection in UAV aerial images, as shown in Fig. 1.
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Figure 1 Structure diagram of the RRF-YOLOv11n network.

2.2 Structure of C3K2-RVB-EMA
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Figure 2 The structure of RepViTBlock.

In recent years, the RepViT-SAM model optimized for high-resolution visual tasks has been
proposed. Its core component, RepViTBlock, integrates depthwise separable convolution with
feedforward neural networks to construct an efficient feature extraction architecture. As shown in
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Figure 2, this module adopts an early convolutional backbone design, achieving a fourfold down-
sampling of input features through two sets of 2-strided convolutions. This strategy inherits the
advantages of traditional CNN feature extraction, enabling the model to quickly capture basic visual
features such as edges and textures in the initial stage, while significantly reducing computational
complexity.

It is worth noting that the RepViTBlock incorporates an SE component for channel attention within
its structure, which can dynamically allocate weights to feature channels: enhancing the
representation power of key features while effectively suppressing irrelevant and redundant
information. This ultimately helps the model significantly improve its performance in selecting
effective features in complex scenarios. Additionally, thanks to its pure convolutional network
architecture, the model demonstrates excellent real-time performance when processing high-
resolution images, making it particularly suitable for applications where inference speed is a critical
factor.

In the backbone of the YOLOv11ln model, the original C3K2 module adopts the Bottleneck
structure for feature extraction and computational efficiency optimization. However, when dealing
with small targets in drone aerial images, it has insufficient feature extraction capabilities for small
targets, limited multi-scale feature fusion ability, poor robustness against complex backgrounds, and
low computational efficiency and accuracy. Therefore, this paper draws on the idea of RepViTBlock
and designs the C3K2-RVB module to improve the C3K2 module. The C3K2-RVB module replaces
the Bottleneck module in C3K2 with RepViTBlock; this module reduces the computational load and
parameter quantity by using depthwise separable convolution and structural reparameterization, and
effectively extracts multi-scale features by combining the depthwise down-sampling module and
multi-stage design, significantly improving the accuracy rate. Further, the EMA attention mechanism
is integrated into the RepViTBlock of C3K2-RVB to form the C3K2-RVB-EMA module (structure
shown in Figure 3). The EMA attention can dynamically regulate the channel and spatial position
weights of the feature map, enhancing the focus on small target features, weakening background
interference, and weighted fusion of multi-scale features, thereby improving the model's perception
efficiency for multi-scale targets.
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Figure 3 The structure of C3K2-RVB-EMA.
2.3 Add a small target detection layer

The YOLOv11n detection layer (Figure 4(a)) is in a three-head form, consisting of P3, P4, and P5
layers, which correspond to resolutions of 80>80, 40>40, and 200 respectively for detecting targets
of different scales. Among them, the P5 layer has a lower resolution and rich semantic information,
and is mostly used for large target detection. However, due to its large pixel receptive field, it is prone
to losing details when processing small targets; while the local features of small targets (such as
vehicles and pedestrians) in unmanned aerial vehicle remote sensing images are crucial for detection,
the P5 layer cannot effectively express these features.
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To address this issue, this paper proposes an improvement: deleting the P5 large target detection
layer and adding a dedicated small target detection layer P2 (Figure 4(b)). The resolution of the P2
layer is increased to 160>160, with a smaller pixel receptive field, which can retain more details of
small targets and thereby improve the accuracy of small target detection; at the same time, this
modification can reduce redundant computations in feature fusion of the model and further enhance
the ability of multi-scale feature extraction.
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(a) Original three-detector head structure. (b) Improve the structure of the three detection heads.
Figure 4 Improvement of the detection head structure.

The introduced small target detection layer has enhanced the processing capability of the
YOLOv11n model for unmanned aerial vehicle (UAV) aerial photography tasks with small targets.
It effectively reduces the omission and false detection of small targets, improves the detection
accuracy, and ensures the balance of computational efficiency. Through optimized design, this model
demonstrates higher performance when dealing with small-sized targets in complex scenarios, while
maintaining overall computational efficiency.

2.4 Structure of Re-CalibrationFPN

The Neck structure of YOLOv11n adopts a design combining FPN and PANet. The core idea is
to fuse multi-scale feature maps through top-down, bottom-up and lateral concatenation paths to
generate feature maps (such as P3, P4, P5) rich in semantic and detailed information for target
detection. However, after multiple sampling in this structure, the feature details are easily lost,
resulting in insufficient feature capture for small aerial targets and causing missed detections and
false detections; moreover, the direct fusion of low-level and high-level features is prone to
redundancy and inconsistency, and without feature re-calibration and boundary enhancement
mechanisms, it is unable to dynamically adjust feature weights, weakening the expression of
important features, and affecting the detection effect of small targets and blurred boundaries.

To solve the above problems, this paper replaces the original FPN with Re-CalibrationFPN: a new
SBA module is added to selectively aggregate and re-calibrate the boundaries and semantic
information, enhancing the weight of important features, to refine the target contour and calibrate the
target position; at the same time,a new recalibration attention unit (RAU) block is introduced,
adaptively extracting complementary information from two inputs (Fs and Fb) shallow and deep
information is input into two RAU blocks in different ways to make up for the lack of high-level
spatial boundary information and low-level semantic information. Finally, after 3>3 convolution, the
two RAU blocks are concatenated to output, achieving robust combination of different features and
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rough feature refinement, as shown in Figure 5.
The calculation formula of RAU is as follows:

T{ = Wo(Ty), T3 = Wy(T,) (1)
PAU(T,T) =TI O +T; OT, O (O (T))+ Ty (2)

Among these, T1 and T2 are input features. Two linear mappings and sigmoid functions Wy( 3
and Wy (9 are applied to the input features to reduce the channel dimension of the input features to
32, resulting in feature maps T: and T2. © denotes element-wise multiplication, and ©(:)is the
inverse operation performed by subtracting the feature T1, which refines the imprecise and coarse
estimates into accurate and complete prediction maps.

Finally, using a convolution operation with a kernel size of 11 as the linear mapping process, the
output of the SBA module can be calculated by the following formula:

7 = Caxs (COncat(PAU(FS,Fb), PAU(Fb,FS))) (3)

Among them, C;43(-) is a 3>3 convolution operation with batch normalization and RelLU
activation layers. FS and F® are features containing deep semantic information and shallow boundary
information respectively. Concat(-) is the concatenation operation along the channel dimension, and
Z is the output of the SBA module.
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Figure 5 The struct of SBA and RAU.
2.5 Focaler-DIloU Loss Function

The traditional CloU loss function in YOLOv11n takes into account the center distance, aspect
ratio, and intersection-over-union (loU) of bounding boxes. However, when dealing with small
targets, the aspect ratio penalty term is prone to introducing additional noise, resulting in inaccurate
regression; and it has low sensitivity to small target detection and is difficult to locate, with limited
effectiveness in complex backgrounds, target overlaps, and scenarios with dense small targets.

To address these issues, this paper designs a Focaler-DloU loss function based on FocalLoss and
DIoU improvement: In this function, FocalLoss uses a regulation factor (1—pt)y to reduce the weight
of easily classified samples and increase the weight of difficultly classified samples, thereby
alleviating the problem of class imbalance; DloU adds a penalty term on top of loU, minimizing the
normalized distance between the center points of the predicted box and the target box, accelerating
the convergence speed of bounding boxes, optimizing the positioning effect, and reducing positioning
errors caused by the small size or occlusion of small targets. The core of the Focaler-DloU loss
function lies in integrating the mechanism of FocalLoss into DIoU, using the regulation factor to
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enhance the attention to small targets.
Its calculation formula is:

FocalLoss(py) = —a;(1 — p)¥ log(p,) (4)
2 t
p*(b,b9")
LDIOU - 1 - IOU + C—2 (5)
Lrocater-prov = (1 - IOU)V *Lpou (6)

Here, p; represents the predicted category probability by the model; «; is the category weight used
to balance positive and negative samples; y is the adjustment factor that controls the weight
distribution of difficult and easy samples; IoU is the intersection-over-union ratio between the
predicted box and the target box; c is the diagonal length of the smallest enclosing rectangle that can
contain both the predicted box and the real box; p is the Euclidean distance between the centers of
the predicted box and the real box; b is the center point of the predicted box; b% is the center point of
the real box.

The improved loss function combines the mechanism of FocalLoss, reducing the weight of easy-
to-classify samples (such as large targets) and increasing the weight of difficult-to-classify samples
(such as small targets), thereby enhancing the focus on small targets. At the same time, it retains the
advantages of DloU by minimizing the center point distance to accelerate convergence. Compared to
the traditional CloU loss function, it significantly improves the ability to detect small targets and
performs better in scenarios with dense targets, severe occlusion, or class imbalance.

3. Experiments and discussion
3.1 Dataset

The UAYV aerial photography small target dataset used in this experiment is VisDrone2019[11].
This dataset was collected and constructed by the AISKYEYE team of the Machine Learning and
Data Mining Laboratory of Tianjin University. The dataset covers 14 different urban and rural scenes,
including 10 types of targets such as pedestrians, people, bicycles, cars, vans, trucks, tricycles,
covered tricycles, buses, and motorcycles. In terms of data scale, the dataset contains a total of 8,629
images, with 6,471, 548, and 1,610 images in the training set, validation set, and test set respectively.
The entire dataset contains a total of 2.6 million target instance samples.

3.2 Experimental environment

The experimental environment of this paper was all conducted on the GPU. The hardware
configuration and experimental parameters used are shown in Table 1 and Table 2.

Table 1 Experimental environment configuration.

Parameter Experimental Environment
Operating System Linux
CPU Inteli9-13900HX
GPU RTX4090(24GB)
Internal Storage 64GB
Python 3.8
Pytorch 2.1.0
Cuda 11.8
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Table 2 Model training parameters.

Parameter Configuration
Imagessize 640
Epoch 300
Batchsize 16
Optimizer SGD

3.3 Evaluation index

In order to better evaluate the performance of the model, this paper uses precision (P), recall (R),
mAP50, mAP50:95, parameter quantity, and computational quantity as the main evaluation criteria.
mMAP50 represents the average detection accuracy of the model when the loU threshold is 0.50, while
mAP50:95 represents the loU threshold ranging from 0.50 to 0.95. The corresponding formulas are
as follows:

TP

P=Tpsrp 2
oo TP ®
~ TP+FN
n
1
mAP = ;z AP, 9)
i=1

Among them, TP represents the number of samples that are actually positive and whose prediction
result is also positive; FP represents the number of samples that are actually negative but whose
prediction result is positive; FN represents the number of samples that are actually positive cases but
whose prediction result is negative; P is the accuracy rate; R is the recall rate, AP is the average
accuracy rate, and the average value of AP for all categories can be obtained as mAP.

3.4 Experimental Results and Analysis

3.4.1 Algorithm comparison

In order to comprehensively evaluate the detection performance of RRF-YOLOv11n for small
targets, under the same conditions, it was compared with several current mainstream target detection
algorithms. The experimental results are shown in Table 3.

Table 3 Algorithm comparison experiment on VisDrone2019.

Model P R mAP50 mAP50:95 Parameters/M GFLOPs
Faster R-CNN 0.343 0.365 0.305 0.129 63.2 370.0
SSD 0.210 0.356 0.24 0.117 12.3 63.2
YOLOv5n 0.438 0.322 0.324 0.188 2.18 5.8
YOLOv5s 0.482 0.351 0.372 0.225 7.81 18.8
YOLOv7-tiny 0.425 0.329 0.326 0.191 6.01 12.3
YOLOv8n 0.436 0.335 0.333 0.196 2.68 6.8
YOLOv8s 0.505 0.387 0.4 0.238 9.83 23.4
TPH-YOLOv5! 0.501 0.391 0.405 0.246 60.4 145.8
UAV-YOLOv8s!!l 0.505 0.393 0.402 0.241 10.30 -
YOLOvlln 0.45 0.344 0.343 0.201 2.58 6.3
YOLOv11s 0.51 0.398 0.407 0.246 9.41 21.3
Ours 0.508 0.391 0.412 0.251 2.45 16.5
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From Table 3, it can be seen that the improved algorithm ranks at the forefront in terms of detection
performance. The mAP50 and mAP50-95 values reached 41.2% and 25.1% respectively, which were
6.9% and 5% higher than those of the baseline YOLOv11ln model, respectively. Secondly, the
improved model outperformed YOLOV11s in terms of recall rate, mAP50, and mAPS50-95, and the
parameter size and computational cost were only 25% and 77% of those of YOLOv11s, respectively,
demonstrating that the improved model maintained the accuracy improvement while not increasing
the parameter size and computational cost. Then, compared with the first-stage SSD and the YOLO
series, the detection accuracy was higher, and the parameter size was only slightly higher than
YOLOvbN. Secondly, compared with the second-stage Faster R-CNN, the improved model was
comprehensively ahead. Finally, when comparing with the existing algorithm literature [12] and [13],
although it was slightly ahead in terms of accuracy and recall rate, the algorithm in this paper was far
superior in terms of parameter size and computational cost to both [12] and [13]. In summary, the
comparative experiments verified the superiority of the RRF-YOLOv11n algorithm, improved the
detection accuracy for small targets based on the drone perspective, effectively balanced the model
performance, parameters, and computational cost, and outperformed most common algorithms,
having good design value.

3.4.2 Ablation experiment

To verify the effectiveness of the improved module proposed in this paper in enhancing model
performance and the contribution of each module, an ablation experiment was conducted on the
VisDrone2019 dataset. The experiment was based on YOLOv1ln and gradually integrated the
improved methods by module. The contributions of each module to the detection accuracy and
efficiency were quantified. The specific process is as follows: first, replace the C3K2 in the network
with the C3K2-RVB-EMA structure; then, improve the Neck part to the Re-CalibrationFPN structure;
next, add small target detection layers and delete the P5 backbone part; finally, replace the traditional
CloU loss function with the improved Focaler-DIoU loss function. The detailed results of the ablation
experiment are shown in Table 4 (Baseline is the YOLOv11n model).

Table 4 Ablation experiment.

Baseline | C3K2 | P2 Re- Focaler- P R mAP50 | mAP50:95 | Parameters/M | GFLOPs
-RVB CalibrationFPN DIoU
N 0.45 | 0.344 | 0.343 0.201 2.58 6.3
N v 0.456 | 0.346 | 0.351 0.211 2.44 6.1
N N N 0.472 | 0369 | 0.37 0.23 1.84 9.7
N N N N 0.497 | 0.404 | 0.399 0.247 2.42 16.5
N N N N N 0.508 | 0.391 | 0.412 0.251 2.45 16.5

From Table 4, it can be seen that when C3K2 is replaced with the C3K2-RVB-EMA structure,
mAP50 and mAP50:95 increase by 0.8% and 1% respectively. This indicates that after adding the
RepViTBlock and EMA module, multi-scale features can be effectively extracted, information loss
is reduced, and the weights of important features are enhanced while the weights of unimportant
features are suppressed. Secondly, by adding the P2 small target detection layer and deleting the P5
large target detection layer, mAP50 and mAPS50:95 increase by 2.7% and 2.9% respectively, and the
parameter quantity decreases by 28.7%. This shows that adding the small target detection layer has
the performance advantage in detecting small targets. Again, by introducing the Re-CalibrationFPN
structure instead of the original FPN structure, mAP50 and mAP50:95 increase by 5.6% and 4.6%
respectively. This result highlights the advantages of Re-CalibrationFPN in dynamic feature fusion,
cross-layer information interaction, and global context modeling, significantly improving the
performance of small target detection. Finally, replacing the loss function with Focaler-DloU, in the
situation where the parameter quantity and computational quantity hardly change, mAP50 and

29



mMAP50:95 increase by 6.9% and 5% respectively. This indicates that this loss function effectively
handles low-quality samples and class imbalance. From the above ablation results, it can be seen that
the model accuracy keeps improving, indicating the effectiveness of the model improvement.

3.5 Visualized results and analysis

To verify the effectiveness of the improved algorithm in detecting small targets of unmanned aerial
vehicles (UAVs), a visual comparison was conducted on typical complex scenarios such as dense,
low-light, and high-altitude targets from the VisDrone2019 test set. The detection results are shown
in Figure 6. The results indicate that the algorithm proposed in this paper can more accurately detect
and locate small targets such as cars and pedestrians.

Specifically, in a dense environment (a), the RRF-YOLOv11n algorithm shows significant
advantages in dense crowd detection. The red area detected by the YOLOv11n algorithm missed a
large number of pedestrians. The improved model reduces the number of missed detections and can
identify occluded targets. In a low-light environment (b), when facing a small vehicle group with
insufficient lighting, the improved model has a low detection rate of missed areas and performs better
than the benchmark method, verifying its adaptability to complex lighting conditions in dense vehicle
scenes. The detection of high-altitude targets further demonstrates the advantages of the improved
algorithm. In the high-altitude environment (c), YOLOv11ln completely missed extremely small
targets, and the improved model successfully identified most of the targets.

st NS S e e, R

nnnnn

RRF-YOLOv11n
(a) Dense scene (b) Low-light scene (c) High-altitude scene

Figure 6 Comparison of the detection effectiveness of high-altitude vehicles under bright light
conditions and low light conditions.

4. Conclusion

In response to the challenges faced by small target detection in drone aerial images, such as
complex backgrounds, dense targets, and diverse scales, this paper proposes an improved algorithm
RRF-YOLOv11n based on YOLOv11n. By constructing a C3K2-RVB-EMA module that integrates
RepViTBlock and EMA attention, it enhances the extraction of multi-scale target features in complex
backgrounds; adding a P2 small target detection layer and eliminating the redundant P5 large target
layer, it improves the ability to capture the details of small targets while reducing parameters;
introducing the Re-CalibrationFPN structure to dynamically re-calibrate features to optimize the
fusion of boundaries and semantic information, alleviating the problem of detail loss in traditional
FPN; designing the Focaler-DIoU loss function to balance sample distribution and accelerate the
convergence of bounding box regression. Experiments show that this model achieves an mAP50 of
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41.2% on the VisDrone2019 dataset, an improvement of 6.9% compared to the baseline, with a 5%
reduction in parameters and an optimization of computational complexity to 16.5GFLOPs, achieving
a balanced improvement in accuracy and efficiency.

However, the improved model still has limitations. For example, the parameter reduction is not
significant after optimizing tiny targets. In the future, techniques such as pruning and distillation will
be adopted to reduce model complexity and further improve performance to meet actual deployment
requirements.
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