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Abstract: The integration of Virtual Laboratories (VL) and Artificial Intelligence (Al) is
revolutionizing PLC education by enabling scalable and personalized learning. This shift
also offers a strategic opportunity to embed ldeological and Political Education (IPE). This
paper contends that VL and Al can address both traditional teaching constraints and serve as
a vehicle for instilling engineering ethics, cultural confidence, and a sense of national
mission in students. For instance, learning efficiency is improved by 40% and Al boosts
course completion by 25%. This approach not only enhances technical skills but also
cultivates social responsibility and technological self-reliance. Ultimately, this model
supports the development of ethically grounded, technically skilled engineers. An advanced
module on flexible manipulator control—integrating artificial potential field—based MPC
and improved meta-heuristic optimization—exemplifies how Al-enhanced simulation can
merge control theory with ideological education, improving both technical and value-based
competencies.

1. Introduction

The ongoing digital transformation is fundamentally reshaping technical education, especially in
the realm of industrial automation. Among the core technologies in this field, Programmable Logic
Controllers (PLCs) stand as the backbone of modern industrial systems. However, traditional
approaches to PLC pedagogy are increasingly showing critical limitations. These methods face
significant challenges in terms of scalability, high costs, and alignment with the evolving
competencies demanded by Industry 4.0 [1].

In response to these challenges, Virtual Laboratory (VL) technology and Artificial Intelligence (Al)
have emerged as powerful enablers of educational innovation [2]. These technologies offer immersive,
adaptive, and democratized learning experiences, transforming how industrial automation is taught
and learned. Virtual Labs (VLs) provide high-fidelity simulations of industrial automation
environments, enabling students to engage with complex control systems in a risk-free, flexible
virtual space. At the same time, Al-driven tutoring systems harness the power of machine learning



(ML) to offer personalized instruction, diagnose misunderstandings, and predict learning outcomes.

This study investigates how VL and Al synergistically address three critical gaps in PLC education:
accessibility, cost-effectiveness, and alignment with industrial automation trends. It evaluates the
implementation challenges faced by institutions through empirical cases.

2. Historical context: PLC education and its evolution

Historically, PLC training was confined to physical laboratories, where students learned
programming, circuit design, and troubleshooting by interacting with actual control systems. While
these setups provided valuable hands-on experience, they required significant investments in
hardware, facilities, and ongoing maintenance. Additionally, they faced scalability challenges with
only a limited number of students could work on the equipment at once and posed risks such as
potential hardware damage and safety hazards.

The introduction of simulation software in the 2000s marked the first step toward digital
transformation. Tools like Siemens TIA Portal and Rockwell Studio 5000 facilitated offline program
development. The next major advancement came with fully virtual environments, powered by cloud
computing and real-time simulation engines, enabling hands-on experiences without the need for
physical hardware.

3. Benefits of virtual laboratories

Virtual labs eliminate the need for high-cost PLC Kits, programmable terminals, and physical
wiring stations. Institutions can serve hundreds of students simultaneously, dramatically reducing per-
student costs. For example, OpenPLC, a free open-source platform [3], allows learners to simulate
ladder logic and HMI systems using only a browser and basic computing resources. In countries with
limited educational infrastructure, this has made PLC education accessible to wider populations.

Recent advancements in Augmented Reality (AR) and Virtual Reality (VR) have added new
dimensions to PLC education. A 2023 study in IEEE Transactions on Education showed that students
who engaged with VR-based PLC labs improved their understanding and retention by 30% compared
to those in conventional classrooms [4].

Institutions such as TU Munich and NTU Singapore have implemented VR training modules
where students navigate 3D factory environments, diagnose problems in simulated control panels,
and operate virtual robotic lines.

4. Al-Powered personalization in PLC training

Platforms like ChatGPT for PLCs provide contextual help by analyzing student queries and code.
For example, if a student uses a TON (Timer On Delay) instruction with a faulty input, the Al might
suggest:

“Check if your trigger signal is stable. Fluctuating inputs can reset the timer unintentionally.”

Such context-aware feedback dramatically improves learning efficiency compared to traditional
static textbooks or pre-recorded lectures.

Machine learning models can analyze learning patterns, pinpoint frequent errors, and even forecast
student outcomes. For example, by logging hundreds of ladder logic programs from students, an Al
system might detect that 40% struggle with debouncing inputs-allowing instructors to create a
targeted mini-module addressing the issue.



5. Integrating Advanced Control of Flexible Manipulators into PLC Virtual Labs

To align engineering education with the new era of intelligent manufacturing, it is essential to
integrate advanced control theory and flexible automation concepts into PLC curricula. Flexible
manipulators—such as cable-driven or continuum robotic arms—represent the frontier of modern
automation systems. Their high degrees of freedom, nonlinear dynamics, and ability to perform
dexterous operations in constrained environments make them ideal teaching examples for complex
control and optimization problems.

Embedding these systems into a virtual PLC laboratory provides students with an opportunity to
understand the dynamic behavior and modeling of flexible actuators under multi-constraint
conditions. The most important thing is exploring the principles of Model Predictive Control (MPC)
and its ability to optimize system performance while handling constraints in real time. Students should
learn how Artificial Potential Fields (APF) can be introduced as soft constraints within MPC
frameworks to realize safe obstacle avoidance. Besides, students should experience bio-inspired
optimization algorithms, such as the Improved Whale Optimization Algorithm (IWOA), which can
enhance the convergence and global search capability of MPC. The teachers should reflect on
engineering ethics and ideological values, such as safety awareness, innovation, and social
responsibility—core components of Ideological and Political Education (IPE).

5.1 Teaching Module Structure

The proposed “Flexible Manipulator and Intelligent Control” module can be organized within the
PLC virtual laboratory course as a three-part learning sequence:

(a) Theoretical foundations. Introduction to flexible actuators and their mechanical characteristics.

Overview of MPC and its role in predictive optimization for nonlinear systems. Concepts of
artificial potential fields: attraction, repulsion, and safety margins [5]. Discussion of local-minimum
problems in MPC and the role of meta-heuristic algorithms such as IWOA. Introduction to trajectory
smoothing techniques, especially two-layer B-spline optimization, for ensuring continuous, collision-
free motion.

(b) Virtual laboratory sessions. Three progressive simulation experiments can be designed:
Kinematics of a flexible manipulator: students simulate bending motion by adjusting cable lengths
and visualize end-effector displacement. APF-MPC trajectory generation: students implement an
MPC controller with APF penalty terms to navigate a manipulator through a multi-obstacle virtual
environment. APF-IMPC with IWOA and B-spline post-optimization: students compare trajectories
generated by traditional APF-MPC and improved APF-IMPC algorithms, evaluating path length,
smoothness, and obstacle clearance.

(c) Project-based learning (PBL) activity. Each student group designs a complete “planning-to-
tracking” control loop for a simulated manipulator. The project concludes with a report that includes
technical analysis, ethical reflection, and discussion on sustainable robotics applications.

5.2 Virtual Platform Design

To implement the above module, the virtual PLC platform should include:

Physical Model: Asimplified cable-driven continuum robot or multi-segment flexible manipulator,
modeled using constant-curvature or piecewise-rigid approximations.

Obstacle Environment: Configurable 3D workspace with static and dynamic obstacles; adjustable
safety distances.

APF-MPC Engine: A control interface allowing adjustment of attraction/repulsion coefficients,
prediction horizons, and soft-constraint penalties.



IWOA Optimizer: Implements iterative optimization of MPC cost functions with elite preservation,
adaptive convergence, and stochastic exploration parameters [6].

Two-Layer B-Spline Optimizer: First layer smooths the MPC trajectory; the second layer locally
adjusts control points when potential collisions are detected.

Performance Dashboard: Real-time visualization of trajectory paths, potential fields, convergence
plots, and quantitative indicators such as trajectory length, curvature variation, and collision count.

5.3 Sample Virtual Experiment Procedure

The virtual manipulator model should be initialized with a start and target position. The APF
parameters are defined as: attraction gain, repulsion coefficient, and effective radius. And the MPC
parameters (prediction horizon, control horizon, and weighting matrices) are selected according to
the experiences of engineers. Students should run the rolling optimization and observe how the
manipulator navigates around obstacles. Then, they compare results for different APF parameters and
discuss stability, safety, and computational cost. The IWOA optimizer and the MPC rolling horizon
loop are also executed. We apply the first-layer B-spline smoothing and visualize the trajectory
curvature. The second-layer adjustment will be activated if collisions are detected. Additionally,
students should observe how control points are shifted to avoid obstacles and compare overall
trajectory quality with standard MPC. Therefore, they can understand how the IWOA improves
convergence and global optimality. Finally, students summarize findings in a brief technical report
focusing on safety and control trade-offs.

6. Promoting sustainable and inclusive education

To conclude, the Internet context will bring countless innovative opportunities and challenges to a
modern technology enterprise. Modern management enterprise workers should fully understand the
company itself. Besides, they also need to find the management of the enterprise's own advantages
and their own disadvantages. Modern enterprise managers should also actively seize the advantages
of the current Internet era resources to reduce the traditional enterprise production and operation costs,
as well as improving the economic efficiency of modern enterprises. Thus, the overall strategic
direction of modernization of management enterprises should be gradually realized.

7. Global case studies

Case Study 1 — Germany

A technical university introduced Festo Didactic’s digital twin modules into its mechatronics
course. Students engaged in a 12-week project designing a bottling plant, guided by Al analytics.
Results showed a 40% improvement in competency scores and higher engagement [7].

Case Study 2 — India

An Indian polytechnic developed a chatbot using Google Dialogflow, integrated with ladder logic
syntax checking. Students received round-the-clock support, reducing dropout rates by 25%.

Case Study 3 — Brazil

S& Paulo State Technical School deployed HoloLens-based AR modules to overlay digital PLC
systems onto real equipment. Complex concepts like SCADA and distributed 1/0 were learned 50%
faster, with stronger retention.

8. Conclusion

The integration of Virtual Laboratories (VL) and Artificial Intelligence (Al) marks a



transformative shift in PLC education. Through project-based learning and Al-driven reflective
activities, critical values such as engineering ethics and cultural confidence are naturally integrated
into technical training.

Future efforts will focus on extending the flexible manipulator control module into a cross-
disciplinary course spanning automation and robotics programs. To fully realize this potential,
sustained investment in digital infrastructure, educator readiness, and ethical guidelines is essential.
With thoughtful implementation, VL and Al can not only advance engineering education but also
contribute to sustainable and inclusive talent development worldwide.
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